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Abstract 

Insulin-dependent diabetes mellitus is generally considered to result from a T-cell 
mediated auto immune destruction of the insulin producing B-cells in the pancreatic 
islets of Langerhans. Considerable progress has been made with regard to the unrav­
eling of the pathogenesis of the disease, but neither the initiation of the disease 
process, nor the progression to overt insulin-dependency is understood. A major 
advantages in case of type 1 diabetes is the presence of spontaneous animal mod­
els of the disease that all ow investigation of particular aspects of the disease. While 
in most autoimmune diseases, the process must be initiated, either by breakdown of 
tolerance through chemicals or induction of autoimmunity with specific autoantigens, 
diabetes develops spontaneously in non-obese diabetic (NOD) mice and biobreed­
ing (BB) rats. Despite this major advantage, both models have considerable limita­
tions. The present article deals with this notion, with focus on the best studied 
model in NOD mice. It is concluded that, although much can be learned from ani­
mal modeis, extrapolation to human disease must be done with great care. To put 
it extreme, an inbred mouse or rat strain can be considered as a case-report of the 
disease in humans. 

Genetics 

Type 1 diabetes in humans is characterized by a relatively strong but heterogeneous 
genetic predisposition, with a polygene ic trait (1-3). In particular genetic loci within 
the major histocompatibility complex on the short arm of chromosome 6 are strongly 
associated with either susceptibility to, or protection against development of dia­
betes. Interestingly, the major contributor, designated IDDM-I, consists of several 
HLA loci within the MHC region (4, 5). In Table 1, the frequencies of certain HLA 
class II alleles are indicated in a large cohort of juvenile onset type I diabetes in 
the Netherlands. From these data, it is evident that, although certain combinations of 
haplotypes of HLA-DR and -DQ are clearly far more frequently present amongst 
IDDM patients than in the general population, less than half of these patients have 
the predisposing haplotypes, while 11 % of the general population contains these 
high-risk haplotypes. This implies that the vast majority of subjects with high risk 
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Table I. Comparison of three most frequent HLA phenotypes in IDOM patients with general population. 

HLA 

OR3/3 - DQ2/2 
OR3/4 - DQ2/8 
OR4/4 - OQ8/8 
High risk tatal 
Law risk (DR2 - DQ6) 

IDDM patients 
(n=309) 

8.1% 
30.7% 

5.8% 
44.6% 
0.9% 

General population (duteh) 
(N=504) 

3.0% 
3.4% 
0.2% 
6.6% 

25.4% 

haplotypes will never develop IDDM, since the incidence rates in the population at 
large are in the range of 0.1-0.4%. In families with lOOM, first degree relatives have 
an increased risk (ca. 5%), while identical twins show concordance rates of 25-55%. 
Thus, HLA genes are important, but neither required nor sufficient for the develop­
ment of lOOM. Moreover, diabetes specific genes or alleles have not been identified. 
This suggests that particular combinations of predisposing genetic loci, rather than 
individual genes, will determine the actual risk of disease development. The results 
of the genetic studies also imply that environmental factors strongly influence the 
genetic trait. 

While animal models are useful to study the genetic predisposition to diabetes, 
environmental issues associated with disease development in humans cannot easily 
be addressed in animaIs. 

Genetic predisposition is also associated with disease progression in NOO mice (6-8). 
Again, a polygeneic trait is evident. Multiple genetic loci contribute to development 
of diabetes, but as in humans, MHC is most strongly associated with the disease 
(TabIe 2). The similarities with diabetes in humans is even more striking with regard 
to protection. Aspartic acid on position 57 of the OQB chain (e.g. OQB 1 *0602) 
in men (9), or mice (10) is associated with strong protection against development of 
diabetes. However, while a wide range of HLA class 11 alleles are associated with 
susceptibility to diabetes in humans, the mouse equivalent I-Ag? is the only MHC 
haplotype in mice to be associated with this disease. Nonetheless, several non-MHC 
regions contributing to disease predisposition appear to be homologous between mice 
and men. 

Immunology 

Type 1 diabetes in humans is characterized by rather general immunological phe­
notypes. A defective peripheral immunoregulation has been described in several 
studies (11-15). Even at the level of C04/C08 ratios, differences between patients 
and controls are reported. Few studies on prediabetic subjects have been published, 
but the data suggest that abnormalities on the levels of lymphocyte subsets exist prior 
to clinical presentation of diabetes. The relative increases in T -cells expressing both 
C045RA and C045RO, which represent in vivo activated T -cells as illustrated by 
the expres sion of HLA class 11 and C025, may be caused by a maturation defect in 
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Table 2. Comparison of insulin-dependent diabetes in men and mice. 

Genetic predisposition, polygeneic 
trait 

IDDMI/idd-J 
Environmental effects 
Endogenous retrovirus in B-cells 
Incidence 
Age at diabetes onset 
Gender bias 
Defective peripheral regulation 
T -cell driven insulitis 
Peri-insulitis 
Leukocyte infiltrates in other 

tissues 
Disease transmission via BMT 
Humoral reactivity to B-cells 
Autoantigens 

Delayed onset with immunosup­
pression 

Successful intervention therapies 

Humans 

Yes 

Multiple haplotypes 
Probable 

? 
0.3% 

0- >70 years 
No 
Yes 
Mild 
(no) 

sometimes 

Yes 
yes 

GAD65, insulin, IA-2, 
38kD, . .. 

Yes 

? 

Non mice 

Yes 

One haplotype 
Yes 
Yes 

80-90% 
3 months 

Yes 
Yes 

Severe 
Yes 

Always 

Yes 
(yes) 

GAD65, insulin, 38kD, 
peripherin, ... 

Yes 

OKT3, anti-MHC, intra-oral, 
-venous or-nasal autoantigens 

and peptides 

diabetie patients (16). Alternatively, a constant priming, e.g. with islet autoantigens or 
viral products, mayalso result in the relative increase of activated Iymphocytes (15). It 
is generally believed th at the cytokine product ion pattern of pathogenie T-cells is 
Th l-like (i.e. interferon-g, IL-2, TNF), while non-destructive T -cell autoreactivity 
appears to be anti-inflammatory in nature (Th2; IL-4, IL-5 and IL-lO) (17). This 
dichotomy is primarily based on animal studies (18, 19), but most studies on cytokine 
production of T -ceIIs reactive with islet cell autoantigen support this concept (20, 21). 

All evidence so far supports a T-cell driven pathogenesis of type 1 diabetes in 
humans. In addition to the abnormalities described above, studies using immunosup­
pressive agents (22, 23), as weil as case reports on adoptive transfer with non-T-cell­
depleted bone marrow from a diabetic patient to an immuno-incompetent reJative of 
this patient (24) are in line with this hypothesis. In fact, recurrent insulitis and B-cell 
destruction that was noted in patients receiving a pancreas segment of their non­
diabetic twin was observed in the absence of islet autoantibodies (25). The latter are 
commonly used the predict onset of IDDM (26). Moreover, islet cell autoantibodies 
have been used the define the potential targets of pathogenie T-cells in IDDM. Thus 
far, GAD65, insulin, IA-2 and ICA69 have been defined on this basis (27-32), while 
other candidates were defined by T-cells, rather than autoantibodies (imogen-38, 
insulin-secretory granule protein of 38kDa) (33, 34). Thus far, none of these candi­
dates were defined primarily on basis of animal models of diabetes. In fact, presence 
of various islet autoantibodies in NOD mice is still disputed. 
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The NOO mouse model has contributed significantly to the design of studies to 
define the pathogenesis of diabetes in humans. The notion that T -celIs play a central 
role in B-cell destruction were corroborated with the finding of insulitis in men (35) 
and mice (36), although the so-called non-destructive insulitis or peri-insulitis (36-40) 
has not been reported in humans so far (Tabie 2). Furthermore, the degree and extent 
of insulitis in humans is much less than that in NOO mice (41, 42). Interestingly, all 
NOO mice will develop a degree of insulitis, regardless of lack of progression to 
overt diabetes. 

Other studies to support the role of T -celIs in NOO mice include adoptive transfer 
(43-45), lack of diabetes in athymic mice and prevention of disease with monoclonal 
antibodies against T-cells (46). While several candidate autoantigens are recognized 
by T-cells of mice and men, such as GA065 (28,47), insulin (30, 48, 49) and insulin­
secretory granule protein 38kOa (34, 50, 51), others have only been reported in either 
mice (peripherin (52), hsp60 (53» or men (IA-2 (54». 

Recently, HLA-OR and -OQ transgenic mice have been used to study HLA 
restricted T-cell reactivity to human islet autoantigens in vivo. Interestingly, the 
immunodominant HLA-restricted epitopes that were defined af ter immunization with 
human autoantigens were identical to those identified by human T -cell clones iso­
lated from type 1 diabetes patients (55-60). In fact, the HLA binding affinity of T­
cell epitopes defined upon immunization of HLA transgenic mice and patient derived 
T-cells was relatively high, while epitopes of T-cells generated from non-diabetic 
subjects was relatively low (59). These finding implicate that in this context, mouse 
studies may be useful to study in vivo reactivity of HLA restricted T -celIs specific to 
human autoantigen and the definition of human T -cell epitopes. 

Immunotherapy 

The experience with immunotherapy is relatively limited in human type 1 diabetes. 
Several trials using immunosuppressive agents have been applied with varying 
degrees of clinical benefit, but it is evident that general immunosuppression poten­
tially delays the clinicalonset of diabetes, or increases the rate of remission. The 
list of immunointervention trials in diabetes is long (61-63). At this stage, most 
emphasis is put on nicotinamide (64), insulin prophylaxis (37, 65) and oral or nasal 
tolerance induction with insulin (66-68). Clearly, studies in mi ce are a logical fust 
step to assess efficacy of treatment, although failure in mice does not preclude poten­
tial success in humans. It has been convincingly shown that T -celIs to either GA065 
(47, 69), insulin (48), hsp60 (53) or 38kOa secretory granule protein (50) can cause 
B-cell destruction and diabetes in NOO mice. In fact, T -celIs reactive to other yet 
undefined islet autoantigens have also been shown to be pathogenic in NOO mice 
(40, 70). The known candidate autoantigens have effectively been used to prevent or 
delay autoimmune destruction of B-cells in NOD mice (37, 68, 71-75). However, it 
remains to demonstrated that these antigens indeed are suitable and effective in 
humans, without aggravating the autoimmune response to either B-cells (76), or other 
tissue, since none of the candidate autoantigens are islet specific. 
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Caveats 

As illustrated above, the similarities between men and NOO mice are astonishing in 
many respects, but evident discrepancies in the pathogenic processes between these 
two species must been appreciated. First, the homogeneous nature of inbred mouse 
strains such as NOO mice is an advantage with regard to synchronization of diabetes 
onset, high incidence rates and limited inter-individual biological variability, while at 
the same time it does not pay tribute to the large heterogeneity of type I diabetes in 
humans in terms of genetic background, clinical presentation and phenotype. 

Second, particular aspects of the immune process in lOOM can be studied in great 
detail with help of transgenic (40, 77-85) and knock-out (86) mouse mode Is. Unfortu­
nately, such models have obvious disadvantages once extrapolated to the situation in 
humans for the obvious reasons, and can introduce cel I biological artifacts th at 
obscure 'natura!' tolerance and autoimmunity. On the same line, the mechanisms 
involved in islet graft survival or destruction may be quite different from the 'natura!' 
pathogenesis of type 1 diabetes, both in mice and men (87-89). For instance, 
intrathymic implantation of islets of Langerhans have only been successful in achiev­
ing tolerance in mice and rats (90), while such efforts failed in non-rodent mammais. 
Finally, the interpretations of studies on adoptive transfer in NOD mice must be done 
with great care. Clearly, the kinetics of the B-cell destruction process are quite dif­
ferent, but more importantly, the treatment of the recipient mice with either irradia­
tion or chemicals interferes with regulatory processes that occur in vivo. It may be 
argued that in fact, the mechanism of adoptive transfer is more similar to graft-v er­
sus-host reactions than spontaneous autoimmune reactivity in terms of effector cell 
numbers, treatment of recipients and kinetics. Nonetheless, diabetologists should be 
grateful to have models as close to the disease in humans as the spontaneous model 
in NOO mice. Surely, the mice have been very informative and helpful in shaping the 
experimental approaches to unravel human autoimmune B-cell destruction. 
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