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Physics. — Prof. J. D. vAN DER WaALS on: “Ternary Systems.”
II. (Continued from page 463). |

- It oceurs frequently in-a binary. mlxture that two phases coexist

Wthh have the same concentration. In this.case the pressure when
we move along the connodal curve is either maximum or minimum.
An isobar may ' then be drawn, touching both the hquld- and the
vapour _branch, and the 1sobars of other values of » cut then both
branches twice. The Z-curves for such a bmary mlxture will have
a much more comphcated shape than I have given up to now, and
if 'we should now have a ternary system in which one or two or
the three. pairs which may be tormed from it show this particularity
then the C-surface will also show _partleularltxes whose .main fea~

tures we shall examine, As a minimum pressure has not yet been:

observed for normal substances we shall only dlscuss the case of

. thaximum pressure.
The pmperty that.for a bivary system the concentratxon of liquid

and vapour are the same\ coheres- with another property' for such
systems, which I have. d1scussed Cont. lI, p. 86, thongh I have
neglected . to. point out the relatmn between these two properties.
Thls second properfy and the relation is found from the followmg
formula, One of the condmons for coexistence is: :

- We write . S
IP"‘f(T)— pdv

‘ (~ —f()_—fax o

Tor the case that 2= ry we derive {rom the above formulae:

‘and so0 - -

~ Y

U2

Wh'icﬁ equation acenrs ;:alrea‘lld‘)‘r in Théor.  Mol. Arch.v-.‘ Néetl, XXIV.
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In order that (3 )dv integrated between the liquid and the vapour

volume, be equal to O, (59 r must be equal to zero somewhere

between these two volumes. In conmsequence the particularity that
mixtures may be formed, for which o=y ocours only when a

locus exists in the 2v diagram, along which (—-)-—0 Accordingly

Quint has observed the circumstance that, keeping 7 constant the
curve p=jf(xv) in the mixture of HCl and C;H; shows a maxi-
mum. In Cont, II p. 86. I have discussed such a locus, and
proved that for great volumes it has an asymptote parallel to the
volume-axis, and that for small volumes it moves to the side of the
component for which b is greater. In fig. 7 the dotted line passing
through P and Q, represents this locus. On the left of this curve

(3_9 is posifive, and on the r1ght negative. All the isobars must
»T

then possess a tangent parallel to the s-axis in the-points ‘where
they cut this locus. In fig. 7 the course of some curves of equal
pressure has been traced. The temperature is assumed to_be so
low that the plait on the y-surface stretches over the whole breadth

of the diagram, and so the curve, for which (55) = 0, continues
Zz

to consist of two isolated branches. The curves L PM and L' Q M'
represent these branches, viz. the dotted ones.

The limits of the unstable region are somewhat wider, and they
are also indicated as passing throucrh L,P and M, or L, Qand M,
in the figure they are indicated by lines of alternately larger and
smaller dots. That these limits of the unstable region must pass

through P and @, follows from the property, that if (%g) is equal
vy

to 0, the condition:

821'0 821/1 azw 2—
W 3 (amav) =9

. . . . G ap\ __
is satisfied in the points, in which —5—5_ — (B—v) 0 is.

If we closely examine the character of the points P and Q, we
conclade that p in the point Q is really a maximum, The point Q,
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isothermal of the concentration xq and on that

namely, lies on the
isothermal it is the po

while on
36

.

t where the pressure is maximum

m

“
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a section parallel to the z-axis, the value of p is also maximum.
The point P on the other hand, lying on the isothermal of the con-
centration xp, represents a phasis for which the pressure on the
isothermal is minimum, while p along a line parallel to the s-axis
in P, is maximum. From this follows 1% that the isobar passing
through P has a double point in the point P, and 20 that the
lines of equal pressure enclose the point Q, — and in such a way
that as the pressure approaches that of Q, the closed curves get
narrower, and keep also enfirely within the limits of #=0 and
#=1 and are completely enclosed in the z» diagram.

The isobar through P had a shape which may be considered as
transition form between the shapes for pressures which are greater,
and pressures which are smaller than pp. For pressures which are
greater the isobar consists of two separate branches, viz. 1st a
closed curve round Q and 204 a branch lying above P and which
therefore, remaining on the liquid sheet, belongs to a volume
smaller than that of P. In fig. 7 we can take for it e. g. the
branch passing through ¢, which must show a maximum-volume
on the doited line. Then the closed curve of Q, belonging to the
same isobar, is indicated by the curves passing through C' and C",
For the isobar of P these two separate branches have drawn so
near each other, that they have met in P. Accordingly this isobar
has the following shape, indicated by 4PB'B"A"A'PB. The points
B' and B" must be thought connected by a piece lying outside
=1 and in the same way the points 4" and 4' by a piece
outside #= 0. The lines of equal pressure for p < pp must fill up
the space lying within APA’' and BPB' apnd that below A4"B".
4 similar curve, provided p > pr, begins below A4 on the curve
z=0, passes on to greater values of «, has a tangent parallel to

the v-axis on the locus for which (g—i’) =0, and then returns to
Z

smaller values of . It is continued for vapour volumes greater
than that of 4"B", and appears again between BPB' provided p be
also greater than Pj. The shape between BPB' is analogous to
that of 4PA’,

In order to find the mixture for which liquid and vapour con-
centration is equal, we must determine on a line, paralle]l to the
v-axis two points chosen on the same isobar, in such a way that

f (gf) dv=0, In the figure the points D' and D” have been
2

Va

v
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chosen for this. Of course one point D had to be taken on the left
of the locus PQ, the other on the right.

The pressure on the connodal curve being maximum for that
mixture, the comnodal curve must touch a curve of equal pressure
both in D and in D'. On the left.and on the right of D and also
of D' the connodal curve must pass on to isobars of lower pressure.
If we assume the maximum pressure of the first component at the
chosen temperature to be equal to p¢, and that of the second com-
ponent to be lower e.g. pB, the connodal curve has a shape as is
represented by the somewhat heavier curves CEDFB and C"E'D"F"B",
But we must take care that 2z > 2r and «;m < op.

o

Fig. 8,

36*
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The accurate knowledge of the course of the isobars is required
for indicating the value of { at every value of p for the binary
mixture and so also for the description of the shape of the &-surface
for a ternary mixture, if the here discussed peculiarity occurs for
at least one of the pairs. And in order to be able to do this also
at higher temperatures, at which the critical phenomena occur, and
because the course of the isobars at-such temperatures is greatly
modified, 1 bave represented this modification in Fig.8 (pag. 543).

The principal modification, which is to be introduced in fig. 7,
and which leads to fig. 8 is this, that the isobar through P presents
its whole closed curve within the limits of 2=0 and #=1. The
curve PQ has slightly changed its place and its shape (see Cont.
IT pag. 88), buk the change is comparatively small. That the whole
curve keeps within the av-diagram follows from two circumstances.
1st . The pressure of P, which is a minimum pressure on the iso-
thermal of 2p, lies but little below that which can be realised as
liquid phasis, if the temperature is close to that at which both
minimum- and maximum pressure disappear and 224 the difference
of pressure along a connodal curve generally increases at higher
temperatures. The whole curve showing itself, the course of isobars
for which p» < pp can also take place without interruption within
the whole av-diagram — at least for values of p lying above a
certain limit which may be derived from the preceding conside-
rations without nearer indication. If we follow such an isobar, e.g.
CFHIMNO, it must be possible fo draw a tangent parallel to the
v-axis in # and H and also in M and A, in which four points the

., (9 . S . .
curve for which (—aﬁ) = 0 is cut; in point I, in which the curve for
v

which (g-‘:) = 0, is cut, the tangent must be parallel to the z-axis

Between F and A, and also between M and .V the value of »
retrogrades. For the isobar passing through X the retrogression on
the left side of the figure continues, but it has just ceased on the
right side.

In fig. 8 point S indicates the plaitpoint and the isobar passing
through S must therefore touch the connodal curve in that point.
In the same way the connodal curve must touch a curve of equal
pressure in the points D and D'. All this proves that the tempe-
rature is thought to be so high, that there is still question of a
maximum pressure on the connodal curve. (Consult the observations
of KueNeN and those of QuINT for mixtures which have minimum-
critical temperature). Between S and R is retrograde condensation
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of the second kind and the fact that the values of zp and zg duffer
so little is in accordance with the fact that it is very difficult to
prove r. c. II experimentally.

Let us now proceed to describe the shape of { for the binary
mixture, in the first place according to fig. 7, so at lower tempe-
ratures. Let us begin with p < »r, so » smaller than the mini-
mum pressure of the isothermal of the first component, We assume
this value of pr to be greater than 0. In this case has { one
value, at least on the side of #=10. As soon as p is chosen some-
what greater than pz, there are three values of the volume for
small values of » and so also for §. If we apply the same consi-
derations to values of = near z=1, py must be substituted for
»r. The whole curve consists then, for p somewhat larger than
oL and py, first of a continuous curve (vapour branch), and further
of two separate parts lying on the right and the left, each termi-
pating in a cusp (see fig. 9).

\

g 0. Pig 10

If p has increased to the value which the pressure has on the
line with the loop, the two cusps in fig. 9 have met, and the
upper branches on the right have coincided with those on the left
and form two curves with a double point. This is the case which
I mentioned in note (1) on p. 459. In this case the vapour branch
lies still lowest, then follows the liquid branch which shows a
discontinuity, and above it again the branch of unstable conditions,

also showing a discontinuity.
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As soon as the pressure has increased to p¢ (the maximum tension
of the first component) the vapour branch has moved so far upward
that it has reached the liquid branch on the left side of the figure.
For the right side this would take place for p = pz (maximum
tension of the second compoment). And for pressures between pc
and pp the gas- and liquid branches have a double point on the
left of 2p — in the same way for pressures between pz and pp
a double point on the right of & .

For pressures above Pp the gas-branch has moved above the
liquid branch; for p = Pp these two branches touched each other,
If the pressure is made to draw near to pq, the gas-branch and
the branch of unstable phases form a closed curve, which has a
cusp right and left, which eurve is reduced to a point for p =pq,
and for still higher values of p also this point has disappeared, and
only the liquid branch remains.

‘We shall be brief in the discussion of the value of £ at different
pressure at the temperature assumed in fig. 8. The J-curve for the
pressure p==pc i8 represented in fig. 11; the four cusps lie at
zry og, ¢y and «n. For a somewhat lower pressure p = px the
right crest has disappeared, and for a still lower pressure p = ps
(plaitpoint pressure) the right part of £ is curved continuously. So
we have here between & and R retrograde condensation of the
second kind. I shall leave the modification of { for pressures
greater than p¢ undiscussed.

Tig. 11

For a binary mixture I have pointed out that there is a connec-
tion between the circumstance that two phases of equal concentra-
tion can coexist, and the ecircumstance that for a mixture of the
two components of that system a minimum eritical temperature
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occurs. The existence of such a connection having since been perfectly
confirmed by the experiments of KugNEN and QUINT, we are naturally
led to investigate whether a minimum-critical temperature can occur
also for a mixtare of three substances — and what are the conditions
for the existence of such a minimum eritical temperature. That
connection could however not follow and could not be derived simply
from the principle of continuity, but considerations of a molecular-
theoretical nature were required to conclude to the existence of such
a connection. Therefore I shall at the moment, as we consider it
only our task to examine what follows for a ternary system from
the assumption of continuity, refrain from seeking the conditions
which the components must satisfy in order to be able to form a
mixture which possesses maximum pressure and assume only that
a mixture can really be formed from the three chosen components
for which' liquid and vapour are composed in the same way and
whose coexistence pressure is therefore maximum.

If we take the pressure somewhat smaller than that maximum
pressure, so that we get a section of vapour and liquid sheet as
drawn in fig. 10 for every section normal to the zy-surface passing
through the point representing that special mixture, the connodal
curve will consist of two closed curves, of which the inner curve
indicates the vapour phasis. If p is equal to that maximum pressure,
the two closed curves have been reduced to one point, the point
where the two sheets touch each other. Under a still greater pressure
the vapour sheet will have risen quite above the liquid sheet. With
decreasing pressure the two closed curves extend, and if we took
only the principle of conmtinuity into account, a great many cases
would be possible. For instance the extending closed curves might
reach the sides of the triangle which represent the pairs of which
the ternary system consists, and cut them in two points, either one
side or two sides, or all three the sides. In the last case the three
pairs which compose the ternary system, would possess all three the
properties of maximum pressure. But an extension is also possible,
at which the second and the third side is never cut twice — and
even one at which none of the sides is cut twice, and at which
therefore the closed curve which extends and which is changing its
shape, reaches the sides of the triangle for the first time in one of the
angles, In this case the ternary system would bave maximum pres-
sure, without this being the case with any of the pairs of which
it consists. The ‘investigation of conditions which are required for a
minimum critical temperature will probably be able to decide the

-10 -
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question as to the possibility of these cases. But I shall not enter
into this subject at least for the present. -

Between the two closed parts of which the projection of the con-
nodal curve on the zy-surface consists, lies another closed curve, the
projection of the double points. The curve, which-consisted of one
branch in the case discussed on page 460 within the triangle 043,
consists in this case of two branches lying within the triangle. Atany
rate it will always consist of two branches theoretically; but for the
g-surface we mneed only to know that part which lies within the
triangle. 'When p has the value of the before-mentioned maximum
pressure, the closed curve of double points too contracts to one point.
This point is the same as that to which the two closed parts of the
connodal curve contract.

If for 2 moment we take recourse to molecular-theoretical consi-
derations to derive properties of the locus of the double points, we
should write down the equation of p. 461 in this way:

Der
= f{—=—~1).
fog 4 f( T )

In this equation which holds good at least as an approximation,
§ /= constant and po = o= % and oZ =5 2
we put /= constant an pc,-—27 bgan 573 =97 3"
Keeping T constant, we get by differentiation:

dp da db Ter fda b
—=(——2 =) = (e
P (a b) /T (a b
or
dp Tcr db Tcr da
= f =)= 1),
=T =)r-Ur

Keeping p constant we find the condition:

¢

da L.

— b

a __fT -
b T )
— =1

b fT

In the limiting case, for continually decreasing values of 7, the
value of the second member =1, and so:

T r By,

-11 -
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from which for the projection of the curve of the pressures of
coincidence at very low temperatures follows:

l1da 1 @
fl__v,_'__ a 0z b oz
de~ 1 9a 1 ob
ady b oy
or
a
r
dy de
dw—'* a
oy
oy

d .
1f 3.% has an arbitrary value, as is the case when the locus has

a a
! L a "I;' a "'b—‘
been reduced to a point, then ~a—m~=o, and in the same way - =90,
Y

ie. -az;- and so also T, must be capable of having a minimum. In

this way we arrive therefore for a ternary system at the same
result, as I had formerly obtained for a binary system, also for the
limiting case of low temperatures.

If we do not consider the limiting ease, which would correspond
with 7=0, but if we give T a definite value, we find:

, FF=1

from which follows that for the maximum pressure at temperature
=T the values of # and y are found from the two following
equations

a
B-b__. 1 al_aé
3z 1. b oz
— 1
/7

and

-12 -
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a
a_b— i al 9b

3y "‘"‘f%_l 5oy

: < . . .
If we assume that b decreases with z, - must increase with « and in

the case of a minimum it must have passed that minimum. So the
point for which the coincidence pressure is maximum, and for which
also there is equality of composition of liquid- and vapour phasis,
lies more to the side of the components with the smallest molecules
than the point indicating the mixture with minimum-eritical-tempe-
rature — and this will be the more so in proportion as 7 is higher.

For the case that 7', as function of rand y might be represented
by approximation as a plane (see Cont. II, p. 153) we find

?: constant, and so the line of the double points under a constant
xr

pressure is a straight one.

RELATION OF VOLUME, CONCENTRATION AND TEMPERATURE FOR
COEXISTING PHASES OF A TERNARY SYSTEM.

1

In fig. 2 of the preceding communication the curve 4BPRB'A
represents the projection of the connodal curve on the w-surface of
a binary system in the sv-diagram at a constant temperature. This
line may also be taken asrepresenting the relation between molecular
volume and concentration of a binary mixture at given temperature.
If the temperature was put lower, this curve would have consisted
of two isolated branches, one representing the liquid volumes, and
the other the gas-volumes. Let us now think as third axis, a y-axis,
and let us think also in fhe oyr-plane a similar curve drawn for
a binary mixture that consists of the first and the third substance.
If we further draw for every point of the right-angled triangle of
the ozy-plane the volume at which a mixture 1epresented by that
point loses or resumes its homogeneity at increasing pressure, we get
a surface which consists of two isolated sheets at low temperatures,
and which at higher temperatures e. g. when 7' is above 7' of one
of the components, is contracted to ome sheet.

If 7 is increased the form of the surface is modified in that senge
that the new surface lies quite within that of lower temperature,
At least for substances which do not enter into chemical combi-
nations with each other, and which continue to consist in them-

-13 -
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selves of invariable molecules — so which do not associate to more
complicate atom-groups.

For a binary mixture I have (Cont. II p. 101) derived the diffe-
rential-equation for the relation between », # and T'. We shall be able
to find in the same way the differential equation for the relation
between »,2,y and 7.

For coexistence of two phases of a ternary system, distinguishing
the phases by the indices 1 and 2, the following equations must be

satisfied
L @®=®,
@=@,
| ) @)
and !

=Yy vy (%vﬂ)g— Ty (g_;f’ 2"‘."/2 (g";"{)z

in which %p represents (g_j)my:z‘ ete.

If the concentration for the first phasis is given, and so z; and
71, then the quantities vj, sy, ¥, and vy are determined by the four
above equations, and so the properties of the coexisting phasis. But
in order to calculate them all the equations would have to be known,
for which the knowledge of the equation of state is required. Even
if we make use of them, the intricacy of these forms does not admit
of the solution of the unknown quantities. Results, however, can be
derived from the differential equation, even if we do not know these
quantities accurately, and these results are not without interest. In
the same way as is followed in Cont. I page 102 for a binary
mixture, we find for a ternary system :

-14 -
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0? R,
(vo— ”1)38 zdvl’l‘a Ld dﬂ”l"l‘a ald'h +

!

2 az
+ (=) gaa‘g’ o+ ok g dn
T
+ @—31) }avla 1+8mlw “’1+ 5+ (e91) —57: ceee (1)

The quantity (s)» is, see Le. p. 104, for normal substances a
negative quantity.

If we keep T constant for the moment, so if we inquire into
properties of one of the before-mentioned surfaces, we can derive the
following rule for the position of the line that conmects the two
coexisting phases. If we for instance imagine on the liquid sheet a
point determined by v, @ and y; and if we inquire into the direction
of the line connecting the coexisting phasis with the chosen liquid
phasis, so into the quantities proportionate tovy—v,, 23—z, and
Y2—y1, We bring in point 1 as center a quadric surface:

o*y 824/2_}_84/2 Py L Y

. — a4 (R ay=C. (2)
Bv 3" 3w1 8v1 8y1 Bv1

yo+-2 021 Oy

We cut that surface through the tangent plane at the liquid shee,
then the direction of the line comnecting the two nodes, will be con-
jugate to the section of tangent plane and quadric surface cosines.
The locus of the middle of the chords, whose cosines are equal to
4y w and v, is given by:

of , of

af
has s+

@_0
and this equation leads to (1), when in equation (1) 4T is put
equal to O and when dv, dz and dy, are substituted for v, # and y
and so when this middle plane is tangent plane to the v, r, y-surface
under consideration. \

On account of the importance which the surface represented by
(2) has for the equilibrium of the ternary systems, it deserves a closer
examination.

If a definite quantity of a subsiance, which is ternary composed,
is to be in equilibrium at given temperature in a given volume

dy ou d d B .
then al'z, P Bw nd - a«;; e ya must have an invariable value

-15-
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throughout the space. For a homogeneous phasis this condition is
satisfied. And when therefore the given quantity of substance is homo-
geneously distributed through the space, we have a state of equilibrium.
But if that state is to be realised the condition of stability must
also be satisfied. From the principle that w must be a minimum,
we derive for the condition of stability: )

2 2
g‘;’d2+a—"—“d2 a‘”d2+2 ag"’ td o +
2
+2i%@@+2a%M@>m

This condition can be brought under the following form :?)

%y
1 (3% %y azw )2 |t m?:)
W(Wd"_l"awa dz + d ’-[- 3 —_———_?_2,‘/{ do®
av® av®
o (B vy LB
oY \oyop g Y _ocdvgyor
al ) - ‘agw Cl.y + 2 aw ay aizg d:l: dy > 0 . (3)
il gv?

Now follows from :

@z G
Gz G GRLE),

G)=-

(Fy ey
ov oz = Qv? cl:vp) -

and from :

follows

1) For a binary system the derivation of the coudition of stabilily is given Cont.IT
p. 8. Before that time in Théor. Mol. Arch. Néerl. XXIV.
%) See Arch, Néerl. Série II Tome II page 73.

-16 -
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Hence
ey \2
('(.3_25 a‘*’w ('8787)
92? )p.l"/ 3-7:2 aew
0t

In the same way we find

)
(B_/ )pTz By - ?_22{
dv?

and
%p o

(3% _ O drdudyods
drdy/pr  Owdy 0%y
0v?

So we ean write (3) also under the following form:

1 gazwdv+ P s aﬂw gﬂ L Zx+§2§d 9+2

dmdy)O

@lé}? d 9o
ov?
or
13y P % g2 1 ‘azg e
ol “ T me® Tun® i YT uf+
ov? s
aZg 2
8% (m)
8 = Y
0%

In order to satisfy this last equation for every arbitrary value of
dv, dz and dy, the following equation must be satisfied:

b] 9
o PP g, ou a—-§->o and 8 25
o®

32 azg 32 \2
3 <3w33/) >0

The form sub. 3@ or

Oy Pu Py Py )2
9z0y01? 07 0vdy 0!

(Puy_(Suyh vy By
132 3 \ge oo/ 19 9 \ggau/ § T
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can be brought under the form:

Py Py W
00  Qrdv dyov

azw azw azw azw
W X (33 32 0y >0. . . .. 4
¥y oy Py
dydv dxdy dy®

And we know from the theory of the quadric surfaces that if
a relation exists between the coefficients as is indicated by the
equation (4), such a surface is an ellipsoid. Coexisting phases being
stable phases, the surface is a real ellipsoid, if C is positive.

If we bring through the line connecting the coexisting phases
a plane cutting the tangent plane at the v, y-surface along a
straight line and the surface of stability along an ellipse, then the
directions of the nodal line and the before-mentioned straight line
are conjugate directions for those elliptic sections. In the same way
conjugate directions are the projection of these two lines on an
arbitrary plane for the elliptic projection on that plane. If we give
to the plane such a position that:

0%y o2y oy
\ — ——de G ——dy =10
=3 dv - 5o ds de 4- 5y dv dy

or what is the same p = constant, then the factor of vy—uv, is equal
to zero, and we get after having eliminated dv, :

_eyi 8% L, (% , o 3%,
(ro—e) 55 0 o { +O5—0) [, 5ot g0 {=00)

The projectior on the .ry-plane of the line connecting the coexisting
phases, is therefore conjugate to the projection on that plane of
the section of the tangent plane, indicated by p= constans, with
respect to the elliptic projection of the section of the surface of
stability. This is the theorem which has been proved under another
form Arch. Néerl. p. 76.

By giving such a position to the plame that

Y

82 v

Py Fw o
dv-l—wd-b—*—w y—O
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or ?ai”,-_—_ constant, we might derive an equation analogous to (5) for
o

the y,v-surface; also for the s,v-surface by choosing the plane in
such a way that:

32‘/] 824,

0%y
d”+aya d’:v—l—a Sdy =10

dy dv
L7

or — =18 constant.
9y

It we take volumes lying within the limits of the «,v, y-surface
under consideration, which we shall henceforth call surface of coexis-
tence, then the homogeneous phase thought in such a volume, will
be stable, as long as

(Pey oLy
N R N S
RN R T W T

kr 32®
In proportion as we move further from the sides of the surface
)
of coexistence, we approach the volumes, for whlchg— %—l:’—:—- 0.
2
The surface, for which Pv_ =0, will for a ternary system take
¥

the place of the curve which we have represented by CKC' for a
binary mixture in fig. 2 (previous communication).
But the stability will have ceased long before we have reached
2 2
the volumes for which 2—3_‘/.}: 0. For such volumes a—g = — o,
30 3

whereas the condition of the stability is that this quantity be
Cagy

?®y  \Qydv

"
ES

for such volumes, whereas the condition of stability is not only

that this quantity be positive, but even that it have a valus such
that:

2
positive. Also g—y%, which is equal to ould be —oo

0y® 0u? Ba'ay) )

The conditions for stability increase therefore with the number
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of components. For a simple substance a phasis is stable as long as

%y
ag >0

For a binary mixture the following condition must be satisfied :

oy (%)2

R

Or?

for a ternary mixture the following condition must be satisfied:

‘ Pw 9 32
% <§%§)2 oty (%)2 2y amg:) aytgv 2 (8;{;;)2

@ o | foR T TRy \TeE T e (| P dw
a? P 070y 22 oy?

The transition of the stable and unstable phases takes therefore
place at

| (e (B
d*y oy 0w ov > Py \dydv >0
9o "ot O ' 30 F278

o W

and
82w 82w azw

—_— ——

® ' Qedv’ dydv

w Py Py
= J T
i 0vde ' d2? ’ Jyde 0 ©)
; RXw By Py

ovdy ' 0xdy’ 0y®

‘What the spinodal curve is for the binary mixture (see fig. 2
the curve CZPE'C") the surface represented by (6) is for the ternary
mixfure, viz. the limit between the stable and unstable phases. In
the sides of the prism described on the triangle ozy, this surface
must therefore pass through the spinodal curves of the pairs of
which the ternary system is composed. So we find from equation (6)
which may be written:

317
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é@?*ﬁ&_@(aﬂ azwazw) ?&Lf(agw)ﬁ_

dv? 92 oy  0v® \gady 022 \Qydv 2\ 9z gv
Pw Py Py
+2 20y dedv dydv =0,
. o%w . . ]
putting = as it must be in the ovy coordinate plane:

o %®  \oyoe

But just as the spinodal curve for a binary mixture (fig. 7 and
9

s : 0
fig. 8) can have points in common with the curve 5—? = 0, so it
v

can also happen that the two surfaces corresponding to these curves
have points in common for a ternary system. First of all they
touch if Py and &y are both equal to zero — and in the second
dv g« du dy

place they have points in common in the edges of the prism, so for
the gimple substances. And finally just as the spinodal curve and
the connodal curve can have a point in common (the plaitpoint) for
a binary system, in the same way the corresponding surfaces can
have points in common for the ternary system, and touch each
other in these points. For if for the second phasis we have:

vy = vy + dvy @y == 1y +-dey and yp =y, -+ diy
the equation (1) becomes:

2w

0? d
wdvlz'i' 12+3 2d12+2 dﬂ1¢”1+

vy

oy %y
e ————dvd 2 ——de =
+ avl ayl V1 &Y + alvl ayl d‘t’l d!,/ 1 0

or
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‘azw aﬁlp 82 t"
130 P oo T T e
*y i
ooy?
| asw )2—— — a.‘Zalp a2w —_ 2
0% \Quy Oy oy L Py O dyy 0y, 0y
dr2 dw ! ory dy; i’y 4
L 5—5‘ — 8012
+ : T +
azlp_ 0z avl)
i
av19
- oy %y 2
5 8201 _ avlaa’l av]ayl
[ ( 0w )2 —_ aﬁlayl —_’__—W
W ¥ _Nndns | L o
Tt g P oy 2 0
_ an? L a”l)
35”12 321,0
8012
<y . 0%y :
dy, being 1 o — 4 d th
To dvy + —— 5o o, dey 4 o—— Bvl'c) " v, being equal to p, and the

numerator of the second term being equal to d (g—-i)p, and as p and

o must be equally great for coexisting phases, the above equation

0z

cannot be satisfled without the factor of dy,® being 0. As we saw
before, we reduce this factor to the criterion for the limit of
the unstable and stable phases; and the surface of coexistence
and the spinodal surface have therefore an element in common.

As a rule these two surfaces will not only touch each other in
one point, but we shall be able to give a continuous series of points
of contact, so a curve along which the surface of coexistence
envelopes the spinodal surface. The latter case has already been
discussed in our former communication, when at equal temperature
and variable pressure every time another mixture was in plaitpoint
circumstance. The case that they touch each other only in ome
point occurs when we can form a mixture of the three components

37
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for which T, is a minimum. But it may be advisable to wait with
the discussion of this and similar cases till an experimental inves-
tigation has brought them to light.

If by increase of temperature the surface of coexistence has so
far contracted that it no longer covers the whole triangle oy, a
tangent cylindre may be drawn normal to the wy-surface. All the
points, in which the tangent cylindre and the surface of coexistence
touch, represent mixtures which are in critical tangent-point cir-
cumstance. A plaitpoint can never lie on this apparent circumference
of the surface of coexistence, except in some special cases. For as
the generatrices of this tangent cylindre are parallel to the volume-
axis and p must have the same value for the pair of phases coin-
ciding in a plaitpoint, we have

G
ov?
for such a special case. In order not to have ¥ or & negative
’ . 07,° oy’ 8 ’
oy oy . .
—— and —— must be equal to 0. Such a mixture behaves asa
oz dv dy dv

simple substance even under critical circumstances. See for a similar
circumstance with a binary system Cont. II page 116. So the
plaitpoints lie either on the liquid sheet, or on the vapour sheet of
the surface of coexistence. In the first case all mixtures, indicated
by points of the ay-surface, lying between the section of the tangent
cylindre and the projection of the curve on which the plaitpoints
are situated, have retograde condensation of the first kind. If the
plaitpoints lie on the vapour sheet, then such mixtures have r. c. II.
(To be continued).

Physics. — “On the asymmelry of the electro-capillary-curve.” By
Dr. J. J. vaAN LAAR (communicated by Prof, VAN DER WAALS).

I. We may suppose, that it is well known, that the new theory
of the so called Capillary-Electrometer of LIPPMANN may be described
as follows.

Two mercury surfaces, one large (4), the other small (B) — this latter
in the so called capillary — are separated by a conductive liquid
C, diluted Hy S0y, a solution of K Cl, or any other solution. In all
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