Mathematics. - A complex of Conics. By Prof. Jan de Vries.
(Communicated at the meeting of Januari 29, 1927).
The conics k^{2} cutting the fixed conic α^{2} in the plane α twice and resting on the lines b_{1}, b_{2}, b_{3}, form a complex, Γ.

1. Pairs of lines in Γ. (a.) Any transversal t_{123} of the lines b forms a k^{2} with any line r cutting it in the plane α; to any r there correspond two t_{123}.
(b.) Any transversal t_{12} of b_{1}, b_{2} and α^{2} forms a k^{2} with any line t that rests on t_{12}, b_{3} and α^{2}. The lines t_{12} form a scroll of the fourth degree; the lines r belong to a congruence [2,2]; any r defines three t_{12}.
(c.) Each of the four transversals a of $a^{2}, b_{1}, b_{2}, b_{3}$, is completed to a k^{2} by any ray r of the congruence [1,2] that has a and a^{2} as directrices.
(d.) The line a_{12} lying in α and resting on b_{1} and b_{2} forms a k^{2} with any line r, that cuts a_{12} and b_{3}.
(e.) Any line t_{12} resting on b_{1} and b_{2} is completed to a k^{2} by the line r in α that cuts t_{12} and b_{3}.

Evidently each of $(b),(d)$ and (e) represent three different systems.
2. Conics through a given point. The k^{2} through a point C form a surface Ψ; in order to determine the degree we shall investigate the intersection with the plane α.

Any plane through C and a point A of a^{2} contains a k^{2}; these k^{2} form a dimonoid of the fourth degree which has five points A^{\star} outside A in common with α^{2}, hence α^{2} is a fivefold curve on Ψ. Through C there passes a transversal r of $a_{k l}$ and b_{m}; accordingly Ψ contains the lines a_{12}, a_{23}, a_{31}. The transversal of b_{k} and b_{l} through C yields a line of α that cuts it and b_{m}.

The intersection of Ψ and α consists, therefore, of the five-fold a^{2} and six straight lines; consequently the surface is of the degree 16.

Its intersection with the plane $C b_{1}$ consists of the following figures. In the first place a k^{2} cutting b_{1} twice, which must, therefore, be counted double. Through C there pass two lines r cutting b_{1} and α^{2} each of which defines three lines t_{23} and is, accordingly, a triple line of Ψ. Further $C b_{1}$ contrains three lines as component parts of pairs of lines of which one line lies in α ($\S 1, d$ and e). And now it appears that b_{1} must be a triple line.

This may be confirmed in the following way. The conics through C
and a point of b_{1} which cut a^{2} twice and rest on b_{2}, form a cubic dimonoid; this contains, therefore, three k^{2} that also cut b_{3}.

Now the intersection with $C b_{k}$ shows that C is an eleven-fold point of Ψ^{16}.
Ψ contains the four transversals of $\alpha^{2}, b_{1}, b_{2}, b_{3}$, and the corresponding lines r through C. Further the 18 lines $t_{k l}$ corresponding to the 6 above mentioned triple lines r.
3. Surface of the k^{2} that cut a given line l twice. The k^{2} that cut l in the point L, form a Ψ^{16} with an 11 -fold point L; hence there are $5 k^{2}$ which cut l in another point L^{\star}. As each plane through l contains one k^{2}, the said surface is of the degree seven.

Its intersection with α consists of α^{2} and five lines three of which rest on l and a line b whereas the other two cut l and a transversal of l and the three lines b_{k}. The lines b are single on Φ^{7}.

There are ten k^{2} that touch the line l.
4. Surface of the k^{2} that cut the lines b in projective point ranges. The planes of these k^{2} osculate a twisted cubic; a^{2} is, therefore, a triple conic of this surface Ω. The intersection of b_{k} and α defines a pair of lines of which one lies in a and the other one rests on b_{l} and b_{m}. Consequently the degree of Ω is nine.

The scroll defined by two of the point ranges cuts a^{2} four times; hence Ω^{9} contains twelve pairs of lines of which one of the lines rests on two b_{k}, the other one on the third line b.
5. Surface Λ of the k^{2} that cut two more lines, b_{4} and b_{5}. The k^{2} of Γ that cut b_{4} in a point B_{4}, form a surface of the degree 16 (§ 2); accordingly there are $16 k^{2}$ which also rest on b_{5}. Hence on the surface Λ the 5 lines b are 16 -fold.
a contains two lines that cut a line b and one of the two transversals of the other four lines b. Further a contains the lines which each cut two lines b and rest on a transversal of the other three lines b and which are, accordingly, double lines. Consequently in all 10 lines and 10 double lines of Λ lie in α.
: The k^{2} through a point A of α^{2} resting on the 5 lines b, form a surface Φ of the degree $18\left(P v^{6}=18\right)$. Its intersection with the plane $A b_{5}$ consists of a k^{2} that cuts b_{5} twice and is, accordingly, a double curve, the quadruple line $b_{5}\left(P^{2} \nu^{4}=4\right)$, two lines through A that cut a transversal of b_{1}, b_{2}, b_{3} and b_{4}, and four double lines through A each of which cuts one of the lines b and two transversals of the other three. Accordingly a straight line through A in $A b_{5}$, has 6 points outside A in common with Φ^{18}. As this is also the case in each of the other planes $A b_{k}, A$ is a 12 -fold point of Φ; hence a^{2} and Φ^{18} have 24 points outside A in common and a^{2} is a 24 -fold curve of Λ.

Finally α contains the k^{2} which cuts the 5 lines b and which apparently must be counted six times. The entire intersection of Λ and α is, therefore, of the order $10+20+48+12$; hence Λ is a surface of the degree 90.

On Λ there lie $10 \times 4 \times 3$ pairs of lines $\left(r, r^{\prime}\right)$, of which r rests on a^{2} and $3 b_{k}, r^{\prime}$ on α^{2}, r, and the other $2 b$.

The surface Φ^{7} of the k^{2} of Γ that have b_{4} as chord, has 7 points in common with b_{5}. Hence A has besides $5 \times 7=35$ double curves k^{2} the planes of which pass through one of the lines b.
6. Consequently there are 90 conics that cut a given conic twice and that rest on six given lines.

If we use the symbol k to indicate that a conic rests on a given conic, we may express the result found above by $k^{2} v^{6}=90$. This number (and other ones containing k) can be found in the following way by applying the principle of the conservation of the number.

In order to determine $P^{2} k^{2} v^{2}$ we place one of the lines, b_{1}, in the plane of the given conic α^{2}. The plane through the points P_{1}, P_{2} and one of the points of intersection of b_{1} and α^{2} contains one k^{2} which satisfies the conditions. The same also holds good for the configuration of $P_{1} P_{2}$ and the line of α resting on it and on b_{2}. Hence $P^{2} k^{2} v^{2}=3$ (cf. § 2).

In order to determine $P k^{2} \nu^{4}$ we choose three lines b_{1}, b_{2}, b_{3} in a plane φ^{1}). In this case there satisfy in the first place the 3×3 figures k^{2} through P and one of the points $b_{1} b_{2}, b_{1} b_{3}, b_{2} b_{3}$ which rest twice on a^{2} and also on b_{4}. Further 7 pairs of lines $\left(r, r^{\prime}\right)$ of which r lies in φ and is a chord of α^{2} or rests on α^{2} and b_{4} or cuts α^{2} and a transversal r^{\prime} of α^{2} and b_{4}. Consequently $P k^{2} v^{4}=16$ (cf. § 2).

In order to find $k^{2} v^{6}$ we again choose b_{1}, b_{2}, b_{3} in φ. In this case there satisfy in the first place the $3 \times 16 k^{2}$ through one of the points $b_{1} b_{2}, b_{1} b_{3}$ or $b_{2} b_{3}$, which rest on the other four b_{k} and cut α^{2} twice. Further the k^{2} in φ that cuts α^{2} twice and rests on b_{4}, b_{5}, b_{6}; evidently this must be counted eight times.

There are three chords of a^{2} each of which is completed to a k^{2} by a line of φ which cuts one of the lines b_{4}, b_{5}, b_{6} and three chords of α^{2} to which there belongs a transversal in φ of two of these lines b.

Each of the six lines r of φ that rest on a^{2} and one of the lines b_{4}, b_{5}, b_{6} is completed to pairs of lines by three transversals of r, a^{2} and the other two of these lines b. The chord of a^{2} in φ belongs to two pairs of lines. Finally each of the four transversals of $a^{2}, b_{4}, b_{5}, b_{6}$ forms a pair of lines with the line that joins its intersection with φ to one of the intersection with α^{2}.

[^0]Consequently we find in all $48+8+3+3+18+2+8=90$ figures; hence $k^{2} v^{6}=90$.
7. A plane ϱ through b_{1} has also a curve of the order 74 in common with the surface Λ^{90}. This cuts b_{1} in the first place in the 7×2 points of intersection with the k^{2}, that have b_{1} as chord. In each of the remaining 60 points of intersection the plane ϱ is touched by a k^{2} of Γ. Hence the locus of the points of contact of conics k^{2} with ϱ is a curve of the order 60 and the tangent k^{2} form a surface of the $120^{\text {nd }}$ degree. Hence $k^{2} v^{5} \varrho=120$.

Applying a similar reasoning to the surface Ψ^{16} (§2) we find the number $P k^{2} \nu^{3} \varrho=22$.

Also these results are easily verified by the method of § 6 .
In the first place we find $P^{2} k^{2} \nu \varrho=4$ by remarking that any plane through $P_{1} P_{2}$ contains two conics which cut a^{2} twice, touch the plane ϱ and pass through P_{1} and P_{2}.

In order to arrive at $P k^{2} \nu^{3} \varrho$ we again choose the three lines b in a plane φ. In this case there satisfy $3 \times 4 k^{2}$ through P and a point $b_{k} b_{l}$. Further the chord of α^{2} in φ belongs to a pair of lines that must be counted twice. Finally there are four pairs of lines $\left(r, r^{\prime}\right)$ to be counted twice, with a double point on $\varphi \varrho$ of which r passes through P and r^{\prime} lies in φ. Hence $P k^{2} \nu^{3} \varrho=22$.

The number $k^{2} \nu^{5} \varrho$ is found in the following way. φ contains two conics each of which must be counted eight times. Through each point $b_{k} b_{l}$ in φ there pass $22 k^{2}$. The chord of α^{2} in φ belongs to a pair of lines with double point on $\varphi \varrho$. There are eight pairs (r, r^{\prime}) of which r lies in φ and rests on α^{2} and b_{4} or b_{5} and the double point lies on $\varphi \varrho$, Further there are eight pairs of which r^{\prime} rests on α^{2}, b_{4}, b_{5} and $\varphi \varrho$ and r lies in φ. Finally the two pairs (r, r^{\prime}) satisfy of which r^{\prime} is a chord of α^{2} and cuts the lines $b_{4}\left(b_{5}\right)$ and $\varphi \varrho$. Accordingly $16+66+2+16+$ $+16+4=120$.

[^0]: ${ }^{1}$) In this way I have again determined some time ago the known numbers $P \nu^{\boldsymbol{\gamma}}=18$ and $\nu^{8}=92$. (These Proceedings, 4, 181).

