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d ¢ =>5. Their angle 2V is small or very small, sometimes these
iphiboles are mnearly uniaxial and are connected with the distinctly
ixial ones in zonal crystals. )

These amphiboles sometimes are intergrown with biotite or aegi-
ie and also with a bluish green amphibole, in which the plane of
tic axes is also normal to the plane of symmetry, if they have
y same crystallographic orientation as the brownish green amphi-
les. In sections parallel to (100) of the latter omes, the prism axis
parallel to the fast ray in the bluish green ampbiboles, whilst in
itions parallel to (010) it is nearly parallel to the slow ray.
From the facts, which have been mentioned above, it is evident,
it amphiboles, in which the plane of optic axes lies in the plane
symmetry, very probably occur at the same ocality.

tronomy. — “On canonical elements” By Prof. W. pe SITTER.

In the developments of the planetary theory each of the three
omalies has been used as independent variable: the mean anomaly
Lacraner, the excentric anomaly by Haxsen and the true anomaly
GyupEn. All systems of canonical elements, however, which have
en in use up to the present time, are only modifications of the
stem of Drraunay, which is based on the use of the mean anomaly.
Recently ') Luvi-Civita has proposed a new system of elements, in
iich the ezcentric anomaly appears. instead of the mean anomaly,
most simultaneously *) Hirr, has called attention to another system
which the #ue anomaly appears as one of the variables. The
thod by which HirL arrived at his system is, however, very
ferent from that by which the systems of DrrauNay and Levi-Crvira
3 developed. The object of the present paper is to show how these
ee systems, as well as others, can be derived from the same
ndamental principle.

. dw
Let &, be the co-ordinates of a body P, and y‘:mE‘I the com-

nents of its momentum (¢1=1,2,3). The equations of motion
y then

de;  OH dy; 0H

—_—— = = SO X
d 0y, ' dt da, ' )
) T. LEvi-Crvita. Nuove sistema canonico di elementi ellittici. Annali di Mate-

tica, Ser. Ill, Tom. XX, p. 1538 (Aprile 1913).

) G. W. Hizr. Motion of a system of material points under the action of
avitation. Astrouomical Journal, Vol. XXVII, Nr. 646— 647, p. 171 (1918 April 28).
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where .
H=17T-- K,

T vepresenting the kinetic energy and K the force-function. In the

problem of planetary motion we have  _

k
K=—— 15,
»

where S is the perturbative function. According to a theorem dis-_

covered by Jacosr, any new system of canonical variables p,, ¢, can

be derived from an arbitvary function @ (z,,q) of 2, and ¢,, by

putting

D D

%;I—l:yz ) g‘qd?:??z (2)

If then, by means of (2), we replace x, and ¥, in H by », and ¢,
the equations for the new variables are

dpZ 0H dq, 0H
T T 5 3)

7 P2
JacoB’s method of integration, which has led to the system of
canonical elements introduced into astronomical practice by DELAUNAY,
consists in so choosing @ that the equations (3) are of a much simpler
form than (1). For this purpose Jacosr chooses for @ an integral
of the partial differential equation, which bears his name, and
which is constructed as follows. In the function H(a,y:) replace

0P , L
1, by 5 , then Jacosr's equation is

ﬂ/z
H (.1'1 , E) =8
0z,

The constant % is the energy of the motion.
If we take S=0, and, instead of ,,¥, introduce polar coordinates

. dr ds
r, s, w, and the corresponding momenta » = m = = mrggt,
, dw . .
w’ = m? cos* §— the energy function becomes
H=_ B
° T om 7% c0s° s - D

Then Jacosr’s equation adrmts the mtegml

s r
U 2k G?
D, = Ow +fl/G2—cos”s ds —i—fl/Z]un —}-—m—_— dr,
0 - 7o

where @ and (¢ are conslants of integration. Jacosr now takes
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® =&, and for the variables ¢, he takes ©, G and .. In order
to get a more general point of departure I take for the function
@ which serves to define the new variables

-~ ¢ r
(D:@w—{—-des—}—fRd?', R ()
0 7o
where
@9
Q* =G — _ I
c0s® 8
(6)
2 2 2
R‘_—_m(—— 2+£——2)‘
r 7 ,
We have thus
, 0P . 0D , 0D
7'_5-_}3 s s__—as—_Q, y W=o—=0,
and therefore
a? (- G? 1
_H_—:_.2_+B _|_(__y’)—9—8 N ()
P m 27

I will now for two of the variables ¢, take © and G, for the
third I take either a, § or y, or afunction of one of these parameters.
We have thus 1n all cases

B}
0P 0Q
ﬂ_w__w— %ds . €)
0
If now we introduce the auxiliary angle &' by
~d
—w— 9= -a—g ds,

0

and then construct the right-angled spherical triangle of which the
sides next to the right angle are § and s, it ic easily seen that in

o _aq
this triangle we shall have =~ 36 if we put
6 = & cos 1,

wheve 1 is the angle opposite the side s. Consequently ¢ and 9 are
the inclination and node of the instantaneous orbital plane, i.e. the
plane which contains the origin of co-ordinates and the velocity of
the body P. Introduging now the argumeni of the latitude § i.e.
the angle between the line of nodes and the radius-vector, or the
side opposite the right angle in the above mentioned triangle, we
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s -
find from simple geometrical considerations &' cosz -+ f % ds =15,
0
and consequently -

~

cp:@3+G§+ffdr. N ¢

Next calling the values of » for which R vanishes a (1 —e¢) and
a (Le) respectively, we find '

=2 ea-e=1,. (10)
a [»4
9 2 (]—g?
R = a*m [—— 1+ —G-M:I
7 r
I now introduce a new parameter ¢ by
G
= — 11
"= m (11)
We have then
_de_ R .
g a—"G—..—- -“/-—m ‘W 7. . . . . ( )

Putting now

we find from (12) and (10)

dr 7R / r 3
@ =|/ — + ... (13)
af yvm a*(l—e*)  a(l—¢é)

This is the differential equation of an ellipse of which a is the
semi major axis and ¢ the excentricity. If the constant of integration
is so chosen that »,=a (1 —¢), then f is the true anomaly. We
have then

a(l—e*) esinf
= — , R=
" 1+ecos f «V'm Vie
We can now in this ellipse introduce by definition the excentrie
anomaly & and the mean anomaly M. We find

(14)

. ae sin E
r = a (1—e cos &) , R=aym ——-——‘,
7
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a OR
g = ——— — dr; 15
, 28/m 33 %)
= E in B dM = « aRd (16
M= — ¢ 8N I prm —m%— 7 . P )

In all these formulas a and ¢ are written as abbreviations for
certain functions of «, 8, v defined by (10).

All this is independent of the choice of the third pair of canonical
elements. We must now specialize the values of the parameters
«, B, d, which were so far left entirely indeterminate. Now we can
distinguish three cases. In each case two of these paramelers are
constant, while the third is variable, and a function of it is taken
as the element g¢,.

Case 1. B =B, = const. , = d, = const.
The third linear element is a function of a and will be called L.
Therefore the conjugated variable / is given Ly

:9(—1)::9(—1)—d—a_—_-—‘—‘li —a-I—%d’l': _ 502 Vmi?— di.
- 0L Oa dLL 4L J de e’ dbL
Thus, if we wish to get
! =y = mean anomaly,
we must take
aL 3, Vm
da = o
from which
L:%/ﬁ:ﬁot/m. Ve . . . . . . (17

Since R, and m are constants, the semi major axis @ is variable.
We find at once from (10)

LV1-¢=G+dym . . . . . . (18

Case [I. «=a,=const., ¢=d,= const.
The third linear variable U is a function of 3. Therefore the con-
jugated variable is
0d dB [oR 28y/m df
U= = | — dr = —— — |dx.
oU  art) o8 . a, aU
Thus in order fo get
u = E = excentric anomaly,
we must take
aUu _ 28y'm
B e
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and consequently

0=PY" ovmoa ... ... (9)

aO
Here again «, and m being constant, @ is variable. We find further
UV1i—€e=G+dym . . . . . . (20)

Case 111. «=a,const., B=243, const.
The third linear element V is now a function of d. Therefore

o dd oD dd BR dad
BN e q
=T v —av) o v devff
Consequently, if we wish to have
v = f == true anomaly

we must take

av
%-‘ - ‘/ma

and therefore
V="V,—dym.

Now we can introduce a new variable » by
dV'm= %‘f (V'm—w).

Putting then D )

Vo=m=ﬁol/m-|/a=aol/m~a, Coee . (2D)

we find
V:gﬂ’zﬂovl/aiaova R 14

0

In this case, ¢, and 3, being constant a is also constant, by (10),
and v is variable. We have now

VVI—e=G+dym=G+V,—V. . . . (23)

The energy H is in the three cases:
4 Pk 2G \ 1
. og=_btm b —do(—,—+do)2—r2—s.

2L* r V'm
a, 2G v 1
LI, H_—————{-( U—k)——d(%—l—do)g:,—s. (24)
5 .
111 H__—gg_ } (V-V)(2G+V,— V). 1»——8.
2 r m 2r®

Here r must be understood to be written for brevity’s sake instead
of its expression in function of the elements.
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In the cases I and II it is advantageous to take d,=0.

In the cases Il and III the value of «, is of course immaterial,
the first term of H may as well be omitted. As to the value of g,
in the cases I and III, it is cnstomary in classical celestial mechanics
(case J) to take g, =V k. This however is not at all necessary, and

-k
the term Bk can be taken advantage of by an appropriate choice
ql

of B, to cancel a term in S. This is also advocated by Hiut in the
paper already quoted. Though Hinn does not say so (and doubtlessly
does not intend to say), a casual reader may easily be led to assume
that rthe possibility of this device is one of the advantages of the
system of elements of case IIL. It is fherefore well to point out that
it does not depend on the choice of elements, and can as well be
applied in case .
By each of the three sets of elements

L G 6 U, G,@%
L, g9 9 u gy O '

vV, G 6
v, g <

the motion of the body P is described as a Keplerian motion
in an ellipse with varying parameters. In the cases I and Il the
variable instantaneous ellipse has a point of contact with the true
orbit, and can therefore be called an osculating ellipse. But the
definition of this osculating ellipse is different in each case. In fact at
every point of the orbit there is an infinity of ellipses having that point
and the tangent at that point in common with the orbit and all having
one and the same given point as a focus. In case I we choose from this
family of ellipses that ellipse that would be deseribed by a body
of wmass m starting from the given point with the given velocity

. \ B, .
nnder the action of a central force —‘; emanating from the common
r

focus. The constant B,* here has a prescribed value, the same for
all points of the orbit. The elements thus derived are those of
Devaunay. They ave called by Luvi-Civira wodynamic elements.

In the second case we choose that ellipse in which the energy of
a Keplerian motion of a body of mass m starting with the given
velocity from the given point has a prescribed fixed value 4, = —}a,®.
The elements which we then get are those of Levi-Civira, and arve
by him called ¢soenergetic .elements.

In the third case the ellipse has a prescribed semi major axis

2

a—_-g“—,. There is no osculation, the tangent of the ellipse in the
¢
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common point being different from the tangent of the orbit. *) If a
name analogous to those coined by LEvi-Crvita for the other two
systems were required, we might call these elements isoprotometric
elements, since the quantity @, which here remains constant, is called
the protometer by GyYLDEN, who was the first to nse a system of
elements belonging to this class.

If at a given point of the true orbit, i.e. for given values of
dr ds dw
de’ dt’de’
in the taree cases, the method of procedure is as follows. First we
determine geometrically the inclination z, and node # of the plane
containing the origin of coordinates and the velocily of the body P.

7, S, W, we wish to delermine the instantaneous elements

d
With the aid of these we find § and ;l—f Then
dg

G = m»® 7
For the determination of the third linear element we require the
living force, or kinetic energy:
2T =m (ﬁ)z—l— mr® (%.Y
dt dt )
We have then in the three cases (taking d, =0 for the cases
I and II):

O = Gcost.

2 4’ v
I. oq — 2B _ s
P r*
2a, U .
II. P A A .
ry'm %o « (25)
2 1 V—V)RG+V,—V
fn areg (____) Nl A
» a mr !

From these formulas we find L,U, V. Next a and ¢ are determined
by (17), (18), (19), (20), (21), (23) and then the ordinary elliptic
formulae give » and the frue, excentric or mean anomaly. Finally
we have

. g=8—u.

The differential equations for the elements are given below for

~

the three cases. In the cases I and II I take d,=0, or y=
m

and in the cases I and III I put

1) Hiw le. p. 176, slates that the ellipse has a point of contact wilh the orbit.
This, however, is an oversight.
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—f2
§ =g P8
”
I d_ B'm 3 aL 38’

e~ L' oL - dat ol

dg 08 aG 38 0

= T =8 | 29)

a9 o8 do a8’

a0 T 09

k
II. Pul v=""1 av
¢«
r:a—o—%(l—ecosu) |—/1—eﬂ_—_?—]

di_k  AUQ-¢) 05 AU_ AU . 38
& O T e OFT 30 7RI M W
dg AUV 1I=¢ 0S8 a@ 08 l
== e —— oS U — — —— (27)
dt mrt e 0G dt  Og
a8 a0 08
dt 00 dt 99

If at t=0 we start with AU=0, and if S=0, then the
motion is Keplerian: U, G, 0, g, % are constants. In the general case,
when S differs from zero, AU is of the order of .S, i. e. of the

order of the perturbing masses.

III. Put V=V, 44V
e 2 —
_ a(l—e?) VI — G—-AV
14ecosv o
& G—AV AVEG-AV) VI—e 3 08 \
- mt mr® ' eV, % oV
av . Fa\ V(2 G—NA V) esin v oS’
at my “a(l—e?) ' Ov
— (28)
dg AV - AV2G—-AV) Vi—e o 08 d@ o8
dt  met mr? ’ eV, de  0G E.—@
ay 0S' a0 08
dt 00 e 09

AV again is of the order of the perturbing masses. For §* =0
the motion is Keplerian and V, G, 0, g, & are constants.
In all cases the choice of the original variables @, y., is of course

N

-10 -
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entively free. It only affects the form of the perturbative function -
S, which plays no part in the definition of the elements. We can
either use ordinary relalive co-ordinates (S being in that case different
for each planet), or we can introduce canonical relative co-ordinates,
either by the method of JacoBi-Rapau (“élimination des noeuds™) or
by Poivcari’s “transformation e’ (Acta Mathematica, Vol. XXI,
page 86). [In these last two cases the body P of course is not the
true planet, but a fictitious planet, different according to the choice
of co-ordinates]. Luvi-Civita uses PoiNcarf’s co-ordinates, but this is
not material: the isoenergetic elements may as well be used with
any other system of relative co-ordinates.

Also it is hardly necessary to point out that in all three cases we
can introduce new elements by canonical transformations and thus
derive from the isoenergetic or the isoprotomefric elements the same
modifications which have been derived from DrraunaY’s elements.
Thus e.g. we have the three corresponding transformations:

A=1L O=L—6G ¥=G-—0
A=l4+g4+d a=—9g—9% ¥T=—9

(where we have I=L(1—V1—¢) , ¥=2Gsin®}1)

H=U I=U0—G W%=G-0

N=u+gH4 * a=—9—% P=—=—3I
I=UQ—V1—¢) , W=2Gzsin*}1)
W=V n=v - @& V=0G—06
III. ) ¢
w=v+g+d a=—9—9% P=——I

A=V,1—=V1—¢) , W=2Gsin*}i),
from which again we can derive the elements of PoiNcaRE-HARZER:

h=V2Mcos n p=V2Wcosw
k= V2Msinx q=V2Wsiny.

If in case 1II we make the transformation
F=V -G Z=0G@
f=v E=v-+g

we find the elements used by Hmn. We have indeed F'==m .,
Z=m.v, §=u (where 7, U and uw are ihe symbols used by
HiLr), and the letter f is used by HiLi with the same meaning as
in the present paper.

Thesc clements can also be derived directly from the function .
The condition (11) must then be omitted : B must be assumed not
to contain G.

-11 -
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If then we write Z for @, we find at once
oD

57 ? g
The element F now is a function of y, and consequently
O(I) a—Rdr:—— Vo—ﬁ@— df.
—F dF oy dF
Therefore
dr
CTY— - l/”l,

from which
F = const. — yVm =V,—y Vm.

Now, by (10) we have y:ﬁ—" 1/1—e¢?, therefore, with the value

0

(21) of V,, we tind

F_.@“_V_mu VI—é).

ao

To -the elements I corresponds the classical development of the
perturbative function according to the sines and cosines of multiples
of the mean anomalies. The development of Saccording to excentric
anomalies, which is required for the elements II, has been given
by Nuwcoms in Vol III of the Astron. Papers of the Am. Eph. For
the development in function of true anomalies, which is needed
when using the elements III, the foundations have been laid down
by Hiin in the paper already quoted.

Case IV. a=a,=const., B=2p, =const., d=4d,=0.

The third linear element is a funection of x. It will be called M.

We have
0P oR B, dx
b=y =) 'Y T ,,Zﬂfd“‘
Jonsequently we must take
aM 130

dx a,
from which

3 .
M= 6°”:ﬂox|/a=auxa. R 1))
o
The semi major axis a is constant, as it was in case III, and x
is variable. The meaning of % is however dlffewnt from that of v
in formula (22). From (10) we find

MVI-¢=G. . . . . . . . (33)
19

Proceedings Royal Acad. Amsterdam, Vol. XVL

-12 -
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Here again the motion is described as a Keplerian motion in an-
ellipse with varying elements. The ellipse has a point of contact with
the true orbit, and therefore belongs to the family of ellipses mentioned
above. The body P in its orbit, and the fictitious planet in its ellipse,
however, have not the same velocity, but the same momentum. Since
they have different masses, they have also different velocities, agreeing
only in direction.

The energy is now

M2 M? 1
1lV. H=—= — + ——k) -S. . . . (34
2ma® ma P

M? /2 1
2mT=——(———). e e e .. (39)
a \ 7 a

If we put M =M, + LM,
BV
“0

then the differential equations become

and the living force

M, = Vv'm,

dp M (2 l) AMQ@RM,+AM) or 0S8

de am ¢ amp? oM oM
CUV[ AM(@2M,+ AM)or a_S .
F R amr® au op |
dg _ AMQM, LM ¥ 38 dG_aS’ %)
d amr? 0G oG dt og |
@ — 9§ d@ _ 08
dt ~ 00 ‘ a{} .

In the same way as the systems I, II, and III, we can of course
derive other systems of elements. A system -in which, as in III, the
semi major axis is constant, buot with osculation, is obtained as
follows. We {ake the same function @, given by (5) or (9), but

now we put
2 2 b
Rz_—_x’(— o’ +_ﬁ__}’_)
" 7 r? i

The function R thus now confains four parameters, The elements
[ I[ III are derived as above by assigning.to the fourth pammetel
a constant value % = », == V/m.

The equation (11) now becomes

-13 -
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G
“{:7—{- d. . . . . . . . (29)

We have now, remembering that finally we will put d=0.
R R GOR 1/ AR\ 1/ 3R  _OR
e = (e )= g
By the aid of (10) and (14) to (16) we find easily
2 2
- a—Rdr:B_(sz ———(Zl\[)::id.u N 1)
0% a a

Here an angle g has been introduced, of which the geometrical
meaning is easily seen. If we take polar co-ordinates ¢ and ¢ with
the second (empty) focus as origin, then u bears the same relation
to ¢ as the mean bears to the true anomaly. Therefore, since

7 df = a* V'1—¢® d,
the equation connecting ¢ and g is similarly
o’ dp=2a’ V' 1—e® du.

We have the formulas

ge==¢ -+ esing
Qcos p = a{cosE -+ ¢) o=a(l +ecos®m . (31)
1 —¢?
psingp=a ' 1—¢*sinE Q:E(—e—).
l—ecos @

The angle w is easily seen to he proportional to the “action”, if
for the mass we take x*. In that case the components of the momen-

dz
tum become y;= x* d_;’ and

f2TdM = a’n

I now take the fourth parameter » as variable. We then have

Here » = 2a — ¢ must be expressed as a function of the elements
by (31).

AM is of the order of the perturbing masses. If S=0 the motion
is Keplerian: M, G, 0, g, 9 are constants.

For use with the elements IV, for which I will not try to coin
a name. a development of the perturbative function S according to
the trigonometric functions of multiples of u would be required.
This can be derived from the well known development in function
of the mean anomaly Ly substituting ¢ for », ¢ for v, —e for ¢ =
and ¢ for /.

19%
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