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Mathematics. — “On the necessary and sufficient conditions for
the erpansion of a function in a Binominl Series”. By Dr.
H. B. A. Bockwinker. (Communicated by Prof. H. A. LorunTz).

(Communicated in the meeting of May 3, 1919)

Pincrerrk has given a necessary and sufficient condition for the
expansion of a function in a binomial series (Binomialkoeffizienten-
rethe) V). 1t runs thus: )

The mecessary and sufficient condition that an analytic function
o(z) may be expanded in a series of the form

- —1
w(m):E cn(an) I )]

0
1 that o) be coefficient-funciron (fonction coefficiente) of
another analytic funtion (1), which s reqular and zero ai infinity
and whose singularities lie all within the circle (1,1), with centret=1
and radius r=1, or on the circumference of it, provided that, in
the latter case, the order of @(f) on the circumference, taken in the
sense defined by Hapamarp, be finite or negnative wnfinite ).

By a coefficientfunction w(x) of an analytic function ¢(#) of the
kind mentioned PincHERLEF means a funetion which can be deduced
from ¢(f) in a more or less simple manner, according to the order
of «¢(¢). The relation between the two functions is, however, always
such that conversely «(f), called by PixcHERLE the generating function
(fonction génératrice) of w(z), follows from w(z) by the equation

il + 1 '
cp(t):hw(;_}_l—), B )

0

This means: the coefficienis of the series of negative integral
powers of # in which ¢(f) may be expanded in a neighbourhood
of t—= o, are equal to the values of w(z) for positive integral values
of x; the name cogfficientfunction for o(z) is due to this circam-
stance. w

The question now arises, how it must be discriminated if a given
function may ne expanded in a binomial series. This question is not

1) S. PincHERLE, “Sur les fonclions déterminantes”, Annal. de I'Ecole Normale, 1905.
%) A circle wilh centre « and radius r will be denoted by (e, 7).
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answered by the theorem of PincHErLE, at least not in a simple
manner, as will appear from what follows. In order to investigate
the qnestion we should commence to deduce the series (2) from
the given function w(r). Next we should examine whether the fune-
tion ¢(¢) represented by it has the required properties: to be regular
without the circle (1,1), and on the circumference of it of finite
order. For this we should try to transform the above series into
another according to negative integral powers of ¢—-1 "’
” i
- ¢(t):2:x‘&——_—ff3;l—_ﬁ.......(3)
0
The 7velation between the coefficients of the two series is given
by the equations

%:wm+4%—G)wm%+~~+FM“MD=AWwMT)~ (4)
and
w(1z—}—1)=co—|—(7;)cl—l—...—1—cn N €Y

By means of (4) we must see if the series (3) converges without
the eirele (1,1), and forther if the characteristic ¥ of the coefficients

Cn, defined by
p=m el
n=w logmn
is not positive infinite;_the latter being the condition that ¢(f) shall
be of non-positive infinite order on the circle (1,1).

But the relation (4) is rather intricate and so it may be very
difficult, if not impossible, to perform the just mentioned research.
Suppose this, however, possible, and let 2' differ from -~ co. Then
we have to examine whether the given function w(z) is really the
coefficientfunction of ¢(f). For there are a great many functions ()
giving rise to the same generating function ¢(¢), viz. all those
contained in the equation

L) =ow @) + F (2)
where F'(2) is a function that vanishes for positive integral values
of x. It is therefore necessary to consult the definition of the coef-
ficient-function given by PincurrLe and to apply it to the obtained
@ (f) in order to see if the original function w (¢) is the result. But
this is again not very easy. If the characteristic 2’ defined by (5)
is less than —1, then ¢ (¥) is finite and continuous along the circum-

1) This symbol denotes the x-th difference of » (2) at z =1, the increase Az
of the argument z being equal to unity.

2*
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ference of the cirele (1,1). The coefficient-function is then defined
by the integral

) :
— |e@rtat . ..o @
(L1)
taken round the just mentioned cirele, and this integral is easily
seen (0 be equal to the binomial series (1) in the half-plane of z
on the right of the imaginary axis, provided definite agreements as
to the value of ! be made. It may, however, be difficult to
investigate whether the integral (6) is equal fo the given function
w (z). And in any case the investigation is intricate if 2” > — 1,
especially when the difference between 2’ and —1 is rather great.
For the coefficient-function of ¢ () is then brought into relation with
that of another generating function, with 2’ < — 1, by means of a
polynomial consisting of a very large number of terms.

The question therefore naturally suggests itself, if it is possible,
to find simpler tests which are sufficient for a function to be
expanded in a binomial series. This is, indeed, the case, and we
may, moreover, say that the obtained properlies are about necessary *).
For we can prove the following theorem:

If a function o () s reqular in the finite part of the half-plane
R(&)>v?) (y =vreal), and if, in that domain, it satisfies the inequality

lo@) |<<M|@-+bla—r], .-. . . . (D
where M is a positive and [ and b are real numbers, the latter such
that b+ v >0, further a a complex number on the circumference
of the circle (1,1), variable with the argument ¢ of s—y, the argu-
ment « of a being equal to — so that

a=2csWe=H . . . . . . . . (8
then, in the domain (B ==real > ¥).
R@>1+8~"% . . . . . . . . (9

1) For the sake of comparison we observe that for the expansion of a function
in a series of faclorials -

[oe]

Z n.’ an

fn

- z(@4+1)...(@+n

there is a necessary and sufficient condition, stated by Nirrsen and simplified by

Pixcuerie, which has some similavity with the above condition for binomial series.

But it is not possible fo find simple tests for the expansion of a function in a

series of factorials. The only simple sufficient condition which may be given in

this case, is that a funclion can be expanded in a series of factorials, 1If it is

regular ond of zero value at infinity. But this condition is far from necessary.
9 R (x) means the real part of z.
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. J ' . '
the function o (z) can be expanded as o binomial series

r

o@=13 (”;ﬁ)l) R e 1)
0

if 14 8—4%3>7v, and otherwise the expansion is possible in the domain
R(z)> .

The special value -— of the argument ¢ of a is such that the
expression a7, 2—y being given, has the greatest modulus com-
pared to those for other values of a on the circumference of the
circle (1,1). If the wnequality (7) holds for fized a-value on the circle
(1,1), then expansion of w (x)in the series (10) is possible in the domain

R@>l1+8—1, . . . . . . . 9
if [+ 8—1>7y, and otherwise in the domain R(z)> y.

The sufficient condition for the expansion of a function in a
binomial-series contained in the above theorem seems, indeed, very
simple. If a function w (z) can be represented by the equality

w@) =@+ brerp@ . . . . . . (11
where ¢ is a fixed number within the circle (1,1) and u (#) a function
remaining within finite limits in R (z) >> v, then it satisfies the ine-
quality (7) for a value of [ differing arbitrarily little from — oo,
and therefore it can be expanded in a binomial-series in the domain
R(#)>y. For ¢=—1 formula (l1) gives an expression which shows
that all functions regular in the finite part of the half-plane R (2)> y
and vanishing at infinity may be expanded as a binomial-series in
that domain; further all functions becoming infinitely large at
infinity of an order lower than a certain finite power of #; so all
irrational and logarithmic expressions.

The way in which we have arrived at our theorem is substanti-
ally the same as that followed in the ordinary theory of functions
of a complex variable, in order to obtain the expansion of a function
in & power-series; it is founded upon- the fundamental theorem of
Caucry. According to this we have
1 o (z)dz

21 22—
w

\

o (2) . (12)

where the integral is taken round a closed curve W, within and
upon which o(#) is regular, and which contains the point z =
in its interior. If we wish to deduce from this integral an expansion
according to positive integral powers of #—a, a being a number

) This series is taken instead of.(1) for the sake of generality.
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within W, then we stavt from the Znown expansion with Anown
remainder of 1:(z—a) in such a series. In the same way -we may
reach our present purpose, if we use the known expansion with
known remainder of the just mentioned elementary function in a
binomial series, viz.

n——1

_z (x—8 (z—B—m--1) _(a,—ﬁ) (e—B—n+1) 1
z—x (z—ﬁ) (z2—p—m) (z—B). .(z—B—n+1) z—z

Substlf_utmg {his expression for 1l/z—a in the integral (12) and
choosing the path of integration so as to include, besides the point
z—u, the points =28, 34+ 1,...,8+ n—1, we find?)

n—-1

w (m) = m (w -71—1, ﬁ) A (B) + Rn e e s (13)
0

where

(@—p) ... (x—3—n+1) de
. .. (18
j = )( 2~—B)...(z—p—n-+1) z2—u (1)

Formula (13) is the mdmaly formula of interpolation of NewroN
with a remainder added to it and valid for all complex a-values
lying within W,

If all points z=2§8, §+1,...,8-+n—1, are to lie within the
integration-curve W, this curve will in general have to be modified
with increasing n. It is required to choose IV as fit as possible, that
is to say: so that the vemainder (13") tends to zero with indefinite
increase of n, and that yet the aggregate of functions w(z) for which
this takes place, 15 as extensive as possible. If, now, the form (7)
is taken as majorant-value of these functions, where the number a
is, as yet, left undetermined and the number y, in order to have a
definite case, is chosen zero (so that @ > 0), it is found after a
rather long but principally not difficult inquirement: 1. that the
most favourable integration-curve is a circle with z=n as centre
and n as radius so that it passes through the ovigin; 2. that for a
a complex number may be taken lying on the circumference of the
circle (1,1), with the specifications concerning the domains of validity
already mentioned in the Statement of the above theorem.

We wmay further observe that, in case the number ¢ in formula

) If a few points B, S+1,.., are excluded from the closed curve W, we
obtain an expression the further examination of which leads to the so-called zero-
expansions, which are trealed in"an elementary way by PiNcmgrin (Rendic. d.
R. Accad. d Lincei, 1902, 2¢ Sem.)
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(11) is real and not greater than 1, a fived integration-path W for
the remaining integral may be cliosen, as soon as the number n
attains a certain magnitude, and for this we may take the imaginary
axis in this case. The proof that fim R, = 0 for n = o is then very
simple, so that the above mentioned particular cases in which a
function can be expanded in a binomial series, may be derived in
a short manner from CaucHY's integral.

As further regards the question, how far the inequality (7) is
necessary for the expansion of a function in a binomial series, the
way in which the sufficien! condition has been obtained gives us the
conviction that the aggregate of functions determined by the latter
condition is as large as possible. In order to come to certainty
concerning this it is necessary to investigate how a function represented
by a binomial series behaves in the domain of convergence of that
series. This investigation may be effected by means of the statement,
contained in the theorem of PincrerRLe, that a binomial series
necessarily represents a coefficientfunction, at least in the domain of
absolute convergence of that series, for to this only the proposition
of PincRERLE applies.

For simplicity we assume for the binomial series the original form
(1), which is the one considered by PincmeriE. If the characteristic
A" of the coefficients ¢, is less than —1, then, as already mentioned,
the binomal series can be represented by the infegral (6) in the
half-plane R(x) >0 It can now be proved that this integral satisfies,
in, the domain mentioned, the condition (7), with y = 0, the exponent
[ being subject to the inequality

< —3+d . . . .. ... (1Y

where d ig an arbitrarily small positive number. This condition can
further be specified by eatending a certain property of the operation
I by means of which, according to the view of PincHERLE, the gene-
rating function ¢(f) passes into the coefficient-funcrion w(z); we
mean the property expressed by the equation
(1@,
I'(x—r)
This "equation is given by Pmcarrue (l.c. p. 30) for the case » is
a positive integer. If » is replaced by — e and ¢ (2) by @(0): (—1),
the formula passes into

e PO 1 T o (t)
1l WMJ_HMMI&—W]' - (09

The last equation appears indeed to be true for arditrary positive

1 [¢® @] = (=9 @],
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values of ), if for the derivative of any negative order the defini-
tion of RiemanN is adopled, which in the present case, a neigh-
bourhood of infinity being regarded, can be expressed by the identity

o) 1 (lu—ty
0 T @) @1y

(—1) D o @du. . . (16)

Simnce as domain of ¢ and w the part of the plane outside a
certain circle with centre (1) is considered, it will be convenient to
assume for path of integration between uw—1¢ and u = o the half-
line which has the same direction as the vector from u=1 to
u=2¢. The quantities ¥ —¢ and v —1 then have the same argu-
ments and (v — #)*: (u—1)* is real. With these agreements we
have the expansion

@ (1) I (n+1) e
1D “(t_1)a:E Toritae—1pH - - &9
0

so that the derivative of negative order — a of the expression
p(t): ¢t — 1) is, as ¢ () itself, regular and zero at infinity. The
characteristic of the derivative is, however, o less and this makes
it possible, by means of (15), to express the coefficientfunction w (z)
of a generating function ¢ (¢) with characteristic ' < —1 in terms
of another generating funetion ¢, () whose characteristic is any small
amount less than —1. The function ¢, () is constructed in such a
way that the given function ¢(f) is the derivative of a certain
negative order —ea of ¢, ({): (t — 1) and the number « is selected
from an aggregate of positive values, whose upper limit is equal
to the difference between i' and — 1. In other words, if ¢ () is
given by (3), we take

% (t) 31 1)7z+1

where the meaning of ¢, is given by
I'(nd-1)¢,
"7 I'(n+140) )
with
a:—l'—')-’—dl . - L . . . . (18)
d, being any small positive number. Then, according to (17)
@ ()
0@ =(—1)D « 22
pO=(—1yD = 2o
) [ have communicated the proof of this truth in the Proceedings of the meeting
of September 27, 1919.
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and hence by (15)
(@)= I [p )] = —— & I{t“(p‘(t)} T

T(wta) | —1)
Not only ¢, (¢), but also the function
- o, (t)
lp (t) — ([ _l)a

has the property that the operation [ applied to it gives a coefficient-
function satisfying the condition (7), the inequality (14) for [ being
left unaltered. We only have in this case y = — «, instead of
v =20, and the domain of validity 1s determined by & (#) > — «,
or, according to (18), by B
R@>2+d, . - . . . . . . (20
where
A=A F1. . .. @)

That is: the domain of validity of (7) is the domain of absolufe
convergence of the series (1) (for d, is arbitrarily small).
For the whole right-hand member of (19), that is for w (z) we
therefore have the inequality
lo@) | << M@+ blex—CF0|, | . | . (22)
where /, now, satisfies the condition

l<a—%t4+d+d. . . . . . . (23
If, at last, the characteristic 2’ of ¢ () is greater than — 1 or
equal to —1, then, after PincrprLE, the coefficientfunction can be

expressed in terms of that of another generating function ¢, (f),
with a characteristic less than — 1. First, let
—12 20,
then PINCHERLE considers the additional function
20 (t):_Dul(;f"__(fi)')1
having a charactervistic A'— 1, which, therefore, is less than —1,
so that the corresponding coefticient-function , (z) satisfies, in the
domain K (z) > A—1 -+ d,, the inequality
lo, (@) | << M|(z - b) av—0G—=144d) ]|
with
I<A—34d,+4d
The coefficientfunction o (2) of ¢ (f) is connected with the latter
by the formula')
w@=A4—1o,@—1)]

1) PINCHERLE, L. c., p. 64,
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from which it follows that o (2), precisely in the domain (20), satisfies
the inequality (22) with, for /, the inequality (23). In this manner
we may prove the same inequality for the intervals (0,1), (1,2)...
of 2 in succession. -

If w(2) satisfies the inequality (22) for a certain value of /, then,
evidently, for all greater values. Thus there is a lower limit [, for
all such values, but this may possibly not be substituted for [ in
(22). Instead of this we may however wrile ‘

(@) ~ @+ dbar—0C+4) . . . . . (24)
with the meaning that (22) holds for any /> /; we may call (24)
an equation of equivalence and say that w (2) is equivalent to the
right-hand member of this equation. The exponent /, satisfies the
condition
e <A—%. . . . . . . . . (2D)
since 0 and J, were arbilrarily small. The proposition relating to
the mecessary condition for a function to be expanded in a bimomial-
series may thus be expressed in the following manner:

A binomial sertes of the form (1) represents in any half-plane
R(z) > 2 + d, differing arbitrarily lLttle from its domain R (¥)>3,0f
absolute convergence, a function w (), which satisfies the equation of
equivalence (24); the exponent [, satisfies the inequality (25).

If, now, this proposition is compared with that relating to the
sufficient condition, then, to begin with, we find a complete accord
between the majorant valaes (7) and (22). These majorant-values are,
therefore, both mnecessary and suffictent. Further, as regards the
domains of validity, the inequality (9) here becomes R(z) >[4 4,
since we had =1, or we may also write

Bla) >, + 4
if [, is again the lower limit of the /-values which may be taken
for the given function. From (25) the same inequality follows with
regard to the domain of absolute convergence. Since the domain of
possibly conditional convergence extends at most over a strip of
unity-breadth on the left of the domain of absolute convergence, the
investigation performed by us leaves room for the possibility that a
binomial series sometimes represents a function satisfying the con-
dition (24) also in a strip determined by

lo_"%<R(m)<lo+l2‘

or in a certain part of it. In order to come to certainty con-
cerning this point, we should have to examine how a function repre-
sented by a binomial series behaves in the domain of conditional
convergence of that series. To such an investigation we have as yet

-10 -
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not arrived; but we may already perceive that the result could not
fill up the gap which, as regards the domains of validity, exists as
yet between the necessary and the sufficient condition. First: if a
function o (#) satisfles the equation of equivalence (24) for a fized
value of a on the circle (1,1) and for a certain minimum-exponent
[,, then, on account of what has been remarked on the expression
a7, immediately after formula (10), that function satisties the same
inequality, when the number a wvaries, in the specified mode, together
with the argument ¥ of ». The index [, cannot, however, be dimi-
nished, because it must at all events be taken for ¢ — —w, if ais
the argument of the original fized number a. The statement belonging
to the inequality (9) informs us, however, that m this case expan-
sion of w(#) 1n a binomial series is possible for R (z) >, The
function

2x=é (m—;l),
0

for which we have a =2, [, = 0, affords an illustration of this fact,
for the expansion is really valid for R (#) >0, and it is conditionally
convergent for R (¢) <1. Therefore we can never find R (2} >/, 43
as a necessary condition whereas our theorem concerning the sufficient
condition only says that expansion is posstble in the domain defined
by the lasi inequality.

Secondly the last condition only holds in case w(2) has no singu-
larities in the finite part of the domain E(z) > [, -+ }; for otherwise
for the latter domain the one must be substituted where w(z) is
regular and that was defined by the inequality R (2) > 7.

Thus the proposition regarding the necessary condition states that
for points in the domain of absolute convergence of the given
binomial series we have K () > [, 4, but conversely it is not
frue that in the domain determined by this inequalily there is
certainly absolute couvergence. A simple example is furnished by
the function

o (@) = —
- &
For this function [, = — o, and yet the function can only in the
domain of regularity R (2) >0 be expanded in a_binomial series of
the form (1).
From these remarks it will be clear that in order to fill up the
gap existing as yet between the necessary and sufficient conditions
we must give more specitied propositions for both conditions. In

-11 -
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other words we should have to succeed in dividing the functional aggre-
gate of all functions satisfying the equation (24) by special charac-
terising properties; and so also the aggregate of binomial series, in
such a4 way that between the two kinds of sub-aggregates there
existed a complete correspondence, such that functions of some sub-
aggregate X could only be expanded in binomial series belonging
to the sub-aggregate XK and in no others. But the problem to find
suchlike characterising properties will perhaps be very difficult, since
it is required for it to derive the character of a function from that
of the coefficients of the series representing it; a problem which
already causes the greatest difficulties when it regards the more
known power-series.

-12 -



