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Physics. — “On the Efective Temperature of the Sun”. Some
remarks in connection with an article by Derant: ““ Dijffusion
und Absorption in der Sonnenatmosphdre.”” By H. Groor.
(Communicated by Prof. W. H. Jurius).

(Communicated in the meeting of March 29, '1919).

In a paper “Ueber Diffusion und Absorption in der Sonnenatmos-
phare” (Sitz. Ber. d. Berl. Akad. 1914) ScuwarzscHILD treated the
problem of the radiation of a plain layer, which must be imagined
as an absolutely black body, and above which there is an absorbing
and dispersive atmosphere. When on a layer (see figure 1) bounded
by the planes # =0 and 2 = A radiation of intensity S, starting
from the black body ZZ’ falls from all directions, ScuwarzscHILD
denotes by 0&(z,7) the radiation which passes through the plane
in the same sense as the vadiation S, and at an angle ¢ with the
normal to the boundary layers, and then tries to find a formula

for 5(0,).
Fig. 1.7
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. Black body.

Accordingly 6(0,¢) is the total intensity of light that passes out at
an angle- ¢+ at the boundary of the atmosphere, and is built up of
direct light and light that is dispersed once, twice etec. k

ScrwarzscBILD succeeds in solving this problem for two special

cases, and finds:
a. Limiting case of exclusive absorption (o = 0):

(1___(e_kHseci) oo (D -

- bcost

L boi)=a+ —
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b. Limiting case of exclusive dispersion (£ = O):
0.5-4cost  0G.5—cosv
14+-0H 14+0H

Here k= coefficient of absorption, 6 = coeff. of diffusion, A = height
of the asmosphere, @ and b are two numerical constants.

In his article: “Diffusion und Absorption in der Sonnenatmosphére”
(Sitz. Ber. d. K. Akad. zu Wien, Abh. Iln. Bnd. 125 (1914)). A.
Derant by the aid of data which he derives from ABBot’s observa-
tions on the decrease of the intensity of radiation on the sun’s disc
from the centre towards the limb (Annals of the Astr. Observ. of
Smithsonian Inst. Vol. 1II, Washington 1913, p. 158), tries to decide
which of the two causes, absorption or dispersion, appears to be
most active on the sun.

By means of a kind of “trial and error” wmethod he succeeds in
deriving a formula:

b(0,3) = e—cHseci . . (2)

0.54cosi-4e—0 0405)_43665(0 5 —cos 7)—0.3804 40 8136 cos ¢ 3
14-0.0405 A+ - @
which is bhalfway belween (1) and (2) and yields numerically
accurate values. This seemns to point to this that the diffusion effect
by far preponderates, but is yet influenced by a slight absorption.
In how far the considerations through which he arrives at for-
mula (3), are of value, must Le left undecided here. It is certain
that the numerical values are pretty accurate, as table I shows
convincingly.

b(0,%) =

TABLE 1.
2=0433 x A=0.604 A=1031 g
cos i
~ |B(0,5)| Obser- b(0,i)| Obser- b (07)| Obser-
6(0,6) ved | 0(0.9) ved | 0(0.4) ved
355 value X315 value X111 value

1.0 | 1.2752 | 453 456 1.0643 | 399 399 | 0.9486 | 111 11
0.9 | 1.1906 | 423 419 1.0164 | 381 380 ] 0.9175 | 107 107
0.811.0996 | 390 384 0.9656 | 361 360 | 0.8828 | 103 105
0.7 ] 1.0006 | 355 348 0.9097 | 341 337 10.8491 | 99.4] 100
0.6 )0.8932§ 3117 309 0.84716 | 318 313 ] 0.8137) 95.2] 95.8
0.5 | 0.7764 | 276 277 0.7764 | 291 28 10.7765 1 90.9 90.0
0.4 | 0.6506 | 23l 238 0.6917 | 259 265 |0.7366 | 86.2! 86.2
0.3 | 0.5180 | 184 192 0.5863 | 220°| 230 |0.6912 | 80.9] 80.9
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- Explanation of table I:

In this table 5(0,i} calculated for the values of cosi is given in the first column
for three different values of A by the aid of (3). In column 3 the found values of
b(0,{) have been multiplied by a factor in order to render a comparison with

ABBOT’s values, recorded in the fourth column, possible.
By the aid of (3) and AmBor’s values, which 1 subjoin, Drraxt
tries to draw a conclusion on the effective temperature of the sun.

N Wavelength in x Radiaii;;: Sitflln’t:ed i<;ecr.1tre of

0.323 144
0.386 338
0.433 456
0.456 515
0.481 \B11
0.501 480
0.534 463
0.604 300
0.670 233
0.699 307
0.866 174
1.031 "
1.225 7.6
1.655 30.5

q 2.007 o0

T (ABBOT’s values).

His reasoning is as follows: i
For ¢ = 0 we obtain 5(0,0) i.e. formula (3) then gives for every wave-
length 2 the intensity of radiation passing out in the centre of the sun’s
dise, when that of the area of the photosphere for this 2 is put equal
to 1. What we measure is, however, not the quantity 5(0,0), but
the radiation 75, actually passing out, which is in relation with 5(0,0)

through the formula:

- i
=w5 - (4)
in which /) is the intensity of radiation in the spectrum of the
photosphere (considered as absolutely black body) for the wavelengih 2.
By the aid of (3) and (4) and ABBoT's values the following table
can, therefore, be calculated fov I, (table II). According to our
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supposition the photosphere radiates as an absolutely black bo
that PLanck’s formula may be applied, according to which'):

I

7.211<10°

l“(lo

21563 X 2890

—

The quantities I, from the table are expressed in an unknown 1

When we consider this unity and 7’ as unknown quantities,

T can be solved from two values of I, (for 2, and 4, e.g.).
If our basis is correct, we must find the same temperature

all combinations wm pairs of I
Derant calculates 7" from the combinations

h,=105 I,="700
a:=o.9 Ii—_.-180 §T=89°°°
and
Ayl anborl ES L
and considers the agreement “geniigend”. (loc. cit. p. 517),
- TABLE IL
Wavelength A | 1 4 0.0405 A—~4 b(0,0) i 5L
0.323 4.721 0.299 144 481.8
0.386 2.824 0.479 338 705.7
0.433 2.152 0.593 456 769.5
0.456 1.937 0.644 515 799.8
0.481 [.757 0.682 511 748.9
0.501 1.646 0.710 489 688.7
0.534 1.498 0.737 463 628.1
0.604 1.304 0.816 399 500.2
0.670 1.201 0.853 333 390.5
0.699 1.170 0.864 307 355.2
0.866 1.072 0.903 14 192.8
1.031 1.036 0.918 111 120,9
1.225 1.018 0.926 716 83.8
1.655 1.005, 0.931 39.5 42.4
2.097 1.002, 0.932 14.0 15.0

) The constants are those used by DEFANT.
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Unfortunately, however, a fatal errov has slipped in. Forto 2 =0.6
does not correspond [, == 350, but — (interpolating graphically) —
1) =506, which yields 7= 6600° instead of 8700°, so that agreement
is out of the question.

A serious objection to the whole method seems perfectly obvious
to me, namely this:

The assumption that all kinds of light come” to us from one
photospheric surface, in other words that light of various wavelengths
should come from the same depth of the sun, appears more and
more untenable in the light of recent researches (see e.g. the thesis
for the doctorate of J. SpisxrrBogr ‘‘Verstrooiing van licht en intensi-
teitsverdeeling over de zonneschijf” (1917) (Dispersion of light and
Distribution of Intensity over the Sun’s Disc)). If, however, in reality
light of different wavelengths originates from different parts of the
sun, it becomes very questionable whether we shall be allowed to
apply Pranck’s formula, as we saw Drrant do. For this would mean
that we supposed every kind of light to have, as it were, a kind
of “photosphere of its own”, which radiates as a black body, the
photosphere for the greater wavelengths lying deeper than that for the
smaller. It might then be expected that the temperature determined
with PrLanck’s formula, becomes a function of 2, i.e. T would be
the greater as 1 increases. )

In this latter remark we have a means to investigate whether
the hypothesis that the photospheres overlap each other like scales
can find a semblance of justification.

By graphical interpolation from the values of table II I construed
table III:

TABLE IIL

A I A I A b A I
0.40 709 0.70 342 1.00 134 1.60 | 46
0.45 191 0.75 284 1.10 104 1.70 39
0.50 714 0.80 239 1.20 87 1.80 32
0.55 604 0.85 201 1.30 74 1.90 25
0.60 506 0.90 174 1.40 64 2.00 19
0.65 418, 0.95 153 1.50 | 55

As we do not know the unity in which /; is expressed, we
require, as was already remarked before, always two values of I,
(a, and @,) to find 7.
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The calculation comes to this:

Let 4 be="7.210 X 108, 3=2.1563 X 2890, «, and e, the values
of /[, corresponding to 4, and 2,, f an unknown factor dependent
on the unities in which /) has been measured Then the following
equations hold:

A A
a,f=————— and o,f=

£ L '
;15(1 0’*’1’—1) 2,5(1 02! _1)

When we choose the values of 2 so that A, = 24,, and when
8

we put 10"" =2, we easily get:

)

The root x =1 yields 7'= w0, has therefore no physical meaning,
so that we find 7" from:

(6)

(8)

In this way I found:

A= 08109|10]l1.171.2}13|1.4|1.5}1.6]1.7;1.8]1.9]2.0
T = 7200 {8800 |8900 ;8500 {7900 {7200 |6300 5800 (5500 (5100 5000'5200 5700

hence on an average a decrease of T with increase of 4 (see diagram ).
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Nor is this manner entirely satisfactory; for now we do not know
to what 2 the tound 7 should properly speaking belong, because
the two values of 2(?, and 4,), which are required, can lie pretty
far apart in this way of calenlation. Does for (2, = 0.9, 2, = 1.8)
T e.g. belong to 2,, to 2,, or to a value lying somewhere between
2, and 2,7

When we want to avoid this difficulty, we may treat the equa-
tions (6) as follows:

Let 7,:2, be ==n:m or

)

we find easily :

o=\ %
o=@ 6 e
1007 — 2 (%an”-)s:c ... ..Qay

then (10) passes into:
em—Cen + (C—=1)=0 . ., , . . . (12)

When we take cave that m is —=n -1, the shape becomes some-
what more suitable for numerical approximation, namely :
Mz—C) + (C—1)=0 . . . . . . (120
When 2z "has been sufficiently closely approximated, 7" follows
from :

Put:

B
elgz’
In this way 2, and i, can be brought close enough together to
exclude indefiniteness in the choice of the A to which 7' belongs.
Thus we found:

T=

(18)

A 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5 1.8
Aq 0.5 0.6 0.7 0.8 1.0 1.2 1.5 1.8 2.0

7. | (6400) 9000 | 10.000 | 9600 8000 5500 3800 5400 —
so that on an average:

A =10.5—-0.7 T =9500
0.7—1.2 6000
1.2—-1.28 4600
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hence a similar result as for the first method. (See 'diagram” II),
The deviations inter se are now much larger, as was, indeed, to be
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%}4 expected, as on the small intervals 2,—i, the inevitable errors in
] -I; (an experimental quantity!) make themselves very greatly felt.
l =18 i
fi Thus ;‘ —9 Oi give an imaginary value for 7, but when for
b i B
ij(" by = 2,0 Iy = 22 is taken instead of I, = 19, then 7" would
! become "= 18000°. o
| In this manner particularly the smaller values of I, are unfa-
| vourable, hence the values for 24, = 1,5 and 2, == 1.8 are not much
to be trusted.
The values of I; for 2<C 0,5 are strictly speaking also unreliable,
because the graphical interpolation — as indeed every other too —
becomes very inaccurate here. i
" When we leave all these doubtful values of 7 out of conside-

ration we come to the result that particularly in the region of the
reliable values of 7’ (the full line in the diagram) there ¢s an un.
mistakable tendency of T to decrease on the tncrease of i, hence
ezactly the rveverse of what we thought we might expect a priort.
In a following paper I propose to discuss the question to what
this unexpected result is to be attributed. 3
Utrecht, March 1919.




