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Mathematics. — “On a certain point concerning the generating
Junctions of Laprsce.” By Dr. H. B. A. Bockwmken. (Com-
municated by Prof. H. A. Lorentz).

(Communicated in the meeting of May 31, 1919).

1. The following remarkable proposition of the integral f e~ g(r)dr,
0

or of the integral

1 .
a@=[roFa . ..

) 0
derived from the former by the substitution r = —/log ¢, has been

proved by LurcH?):

If the determining jfunction «(x) vanishes jfor an arithmetical

progression of values of x with positive common difference

&= § + um, w=290,1,2,..) . . . . . (9
then it vanishes for all values of x, and the generating function f (2)
also vanishes.

Lercr uses for the proof a theorem of WuyrgrsTrass, according to
which any function which is continuous in a closed interval can be
represented by a uniformly converging series of rational integral
functions. Since the theorem, which is also mentioned by PINCHERLE *)
and by Niersen’®), has a great many interesting consequences, it
seems not unuseful to prove it in a manner which is independent
of WeirsTrass’s theorem. The reasoning we give in the next pages
makes use of the theorem of Fourikr.

2. The following suppositions are sufficient for the purpose:
1. The function f(2) is continuous in the interval of integration,
with possible exception as to the value ¢ =0.

1) Acta mathem. 27, 1908.

%) “Sur les fonctions déterminantes”, Ann. de I'Ec. Norm. 22, 1905. PivcrerLe
calls F(t) “fonction génératrice” and « (x) “fonction déterminante”, whereas Lerch
does the reverse. We have followed the nomeneclature of PincurrLE in the text.

%) “Handbuch der Gammafunktion™, p. 118.
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2. The integral (1) exists for a certain value 2 =¢ of x.
We put

ga):ff(u)ucdu. . ®
0

Then, by 2, ¢g(f is continuous in the closed interval (0,1), and
zero for ¢ =10. Further, by 1, g{t) is differentiable at all points of
that interval, except, possibly, at t=0, and we have

gR=f@e. . . . ... .. 4

Hence, if ¢ >0, we may write
1

1 1
j} () =dt = fg' () t=—< dt =g (t) tz—c]; ~(z—0) g (t)t+—c—1 dt
7 s s

If, now, # is a complex number with real part R (z) greater than
¢, the number ¢ in this equation may be made to approach to zero,
and thus we find

1

' .
ﬂ(r) edt=g(l)—(z—0¢) |g (&) "1 dt R ()]
0

0

From this it follows. If the integral (1) exists for a certain value
x=c of =z, it exists in the whole half-plane defined by E(+) > R(c)*).
Further it follows from (5) that the inlegral in the left-hand
member represents a confinwous function of @ in any domain S
lying wholly in the finite part of the half-plane R (c) + J, where
(0>0). In the same manner as above it is found that the integral

1
ﬁ () £ log ¢ dt O ()]
0

exists for R (z) > R (c) and represents the dervivative of «(z) at any
point of this half-plane, so that «(x) is also an analytic function.
These consequences, too, are mentioned by PINCHERLE.

The proof Lmurce gives of his theorem equally starts from the
equation (3). In the following reasouning, however, we shall use an

1) This theorem is fundamental in the theory of generaling functions. After
Pincupaie dilferent authors have proved it, though often under less general
suppositions. The reasoning in (be text is due to LuroH. This reasoning is founded
upon the conlinuily of f(f), which, presumably, is forgotten by LERCH, when, at
the end stating his theorem, he says that f(7) may be as well discontinuous.
(Of course we do not mean lo say that generalization is 1mpossible).
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equation derived from (5) by repeating once more the process which
leads to the latter equation. So we put
1
hy=Jgwydu . . . . . . . . (7)
0 -
Then, again, A(f) is continuous and differentiable in (0,1) and
we have
VO =g9@ . . . . . « .« . . (8
The principal point, however, is that the laiter equation is also
valid at ¢t =0. Thus the derivative of A() 15 a limited function in
the closed interval (0,1). Fuarther, observing that
lim [k () :t]==A"(0) =g (0) =0,

t=20
we find on integrating by parts, for R(z) > E(c)
1 1
fg @ te—e—tdt =h (1) — (—c—1) | A () =——2dt. . . (9)
0 0
and hence
1
a(@)=g(1)—(e—h (1) + (z—0)(x—c—1) JR ) 24t (10)
0

3. The preceding statements are valid independently of any
further hypothesis as to the character of f(f). Now, suppose that
a(z) becomes zero for the arithmetical progression of values

x=§ 4+ u, (u=0,1,2,. . ). . . . . (11)

Choosing the number ¢ in the preceding eqnations equal to § we

find ¢(1)=0 and the integral in the right-hand member of (5)
vanishes for

e=§+1+u, tt=0,1,2,.. . . . . (12

From this it follows that £(1) = 0, and, in connection with the

latter cesult, from (10)
1

fh (t) t# dt = 0, (e=0,1,2,..) . . . (13)
0
Now we saw that the derivative of A(f) is &mifed. According to
a well-known proposition /i(f) can therefore be expanded in a series
of Fourikr. We have
h(t) = E (an cos 27t nt - by sin 2 mt) . . . . (14)
0

—
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where
1
ay = |A(t)dt
0

and, for n=1,2,3,... .

1 1

a, — Zﬁz (t) cos 2 nt dt, b, = Zﬁz (t) sin 27t nt dt
0 0

Now the functions cos 27 nt and sin 2 nt are for any value of n
expansible in power-series

o] [
cos 2 nt — E,u Ay tr, sin 2 nt = E,‘Bﬂtﬂ,
0 0

converging uniformly in the interval (0,1). Since A(f) is limited
in that interval we may use the following reduction

1 1 w w 1
. p p) t—= A0S, datrdt = N2 A, | R (@)
jz(t)cos wntd l()}-/uA#t d s ,‘f() dt
0 0 0 0 0
and in a similar manner we find
1 © 1
j‘h (¢) sin 27 nt dt — }:/: Bﬂ‘ﬁz (#) t= dt
0 0 o

Hence by (13) all coetficients in the expansion of Fourier are
zero, and therefore /i (f) is identically zero in the interval (0,l).
Since, further, g () = /' (f), the same thing holds for ¢ (), and since
F() =g (f) (except at ¢ = 0), the generating fnnction f(¢) uself is
zero in the interval (0,1). This is the second part of LikrcB’s theorem.
Since the first part follows immediately from the second, the theorem
has been proved in the particular case that the arithmetical progres-
sion of zeros of a(z) has 1 for its common difference.

If this difference 1s equal to the positive number 3 and if, therefore,
the zeros are given by formula (2), we substitute

" —=s, x = ny, §=e

by which the integral passes into

e B
_ff(s s dszﬁo(s)suds. L)
N Bl 0 0
1 1y L .
The function — f (s 2 ).S'vz =@ (s) has the properties 1 and 2
L

of § 2, so that the foregoing arguments may be applied to it. The
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integral (15) vanishes for the sequence of values (11), hence ¢ (s),
and therefore also f(s), identically vanishes in the mterval (0,1).
The theorem of Lrcm has thus been proved completely.

4. The first part of the theorem, that «(x) becomes identically
zero, it this is the case for an arithmetical progression of z-values,
may be proved in a direct manner, without first proving the second
part; and 1t is an 1mmediate consequence of the proposition :

4 functon «(x) defined by an integral of the form (1) ean, under
the suppositions 1 and 2 mentioned at the beginning of § 2, be
expanded in o binomial series

a(m)_—_i%(‘”;ﬁ). R )

where 8 is a number lying in the domain of convergence of the integral.

Suppose, for a moment, this proposition to be true. If, then, « (z)
becomes zero for the sequence of values (11), we take g = ¢ in the
equation (16). Substitnting for 2 the values § § 41,54 2,... in
succession, we find that all coefficients ¢, of the binomial expansion
vanish and therefore that « (z) vanishes identically.

The first part of Lurcr’s theorem is very easily proved in this
manner and it would therefore be desirable that we might derive
from it the second part in a short manner. But as yet we are not
in a position to do this. The above demonstration is, after all, rather
short, bnt besides, on grounds that, with a view to conciseness, we
prefer not to state, we do not think it likely that the identical vanishing
of a(z) is more effective for the purpose than the vanishing for an
arithmetical progression of values of the argument. )

Nevertheless the first part of Lerca’s theorem has an interest in
itself, because remarkable consequences may be inferred from it.
Among these LercE mentions the truth that simple functions such as

2
sin ICJU, cos ]C-’U, H—-—_]ca;—), (k > 0)

cannot be the determining functions of generating functions, in other
words that they cannot be represented by integrals of the form (1),
neither can products of these functions with others whicli remain
within finite limits in the finite part of a certain halfplane R(z) > c.

The proposition econcerning -the expansion of the integral (1) in a
binomial series may be proved in different manners. In the first
place integrals of that form Dbelong to the general category of
functions of which I showed, 1n an earlier communication in these
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Proceedings (Vol. XXII, N°. 1) that they are expansible in series
of the form (16). Consider a domain R(a)>c - J, take a positive
number d, < d and substitute 2 = ¢ - d, -} ¥ in the second integral
_of the right-hand member of (5), then R(y) >'d—d, and thus positive,

so that we have
z j tB(y)

1
‘ fr—c—l g(t) de 0

where the latier integral exists, since g(f) is a limited function in
the- interval (0,1). Hence «a(x) is in the whole domain considered
of the form

1

th—lg(e)| dt < |th—1|g (8] dt,

a (z) = (z—b) u (2)
where p(z) is a function wremaining within finite limits and 6 a
number lying without the domain. Suchlike functions, however, can
always be expanded in series of the form in question.
A second, more direct proof, is obtained by substiluting = 1—u
in the same integral as considered before, and using the following
reduction

o0 w—ﬁ
e gyr—e—1 — (] . \B—c—1(] — —f— (] —y)B—c—1 m(— 1y ?
(1—u) =(l ~u) (1—up—F=(1—u) EO (= 1) ( m )u"
where the series for R () > R (3) converges uniformly in the

interval 0 € » < 1. Since, for R (3) > R(c) the integral
1

fq (1—u) (1 —w)B—c—1 du
0
converges absolulely (on account of the continuity of ¢(l—u)), we
may, after performing the substitution in question, integrate term
by term, and then we find (replacing again 1—wu by ¢ in the partial
integrals)
1 © 1

Ofg(t)cx-c—l dt:E(——l)M(w;ﬁ) Oﬁl-t)mtﬁ—c—l g@dt . (17)

0

This expansion is, therefore, valid for R(a) > R(8) > R(c). Since
the product of this series with x-—c¢ can be transformed into a
series of the same form, the required proposition has been proved
again ).

1) In NIBLSEN'S book1 (l.e. p. 125) we find an analogous proof ofthe proposition
in question; this, however, does not part from the inlegral in the second member
of (), but from the original inlegral, so that the hypothesis must be made that

the latter converges ubsolulely for limi¢=0. The reduction (8) makes this
hypothesis superfluous.
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A third proof has the advantage of showing that expansion of (1)
according to factorials of z—c is possible when the integral only
exists for @ = ¢, even when the straight line R(z) = E(c) were the
limit between the domains of convergence and divergence in the
x-plane, and when the integral did not exist at all points of that
line. The proof consists in repeating the process which led to the
theorem of LERCH an infinite number of times. We write

g () _—:fu"‘f(u) du, g O=h(t) :fg (u) du,
o 0 . . (18)

g9, O= 2»{9!1 (W) du, . .. gn(t) = nfgn_1 (u) du,... .
0 0

Then formula (10) may be genéra]ized in the following manner:

w =) — 0 =+ 0.0 ) —a @ (757) + o

1

+ (= 1)t gu—r (1) (::16) + (1) (m;c) f gn()E—c—ndt. ...
0 i

The remainder has zero as a limit for RE(z) > R(c), for if G is
the maximum modulus of the limited function g (#) in the interval
(0,1}, we have in succession

. (19)

lg, (1) | < G lg, () [ <Gt I‘gn(t)|<th,,,,
hence 1 1
. l ! ' () 7= dt ‘ - x n J ot (t) 5o dc‘
- 1

. <n QR @—c)—1 d¢

0

voor R (x—c) > 0.

nG
L,
R (x—0)
2— . —Riz—c)—1
Now (7 c) is for n —a equivalent to n o) , and thus the
n

modulus of the remainder in formula (19) is for all n-values less

than
___HE_—_—_E)___ o _ . (20)
R(z—c)nR (xi:;) ’
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where H is a certain positive number greater than . For R () >
R (¢) the remainder has therefore zero as a limit as » increases
indefinitely. Moreover the majorant-value (20) shews that on the
half-line going from & =c in the direction of the positive part of
the real axis, the binomial series converges uniformly; for R (z—c) =
2—¢ on this line. PiNcRERLE has observed (l.c.) that a similar state-
ment, which is analogous to a known theorem of ABE1 on power
series, holds for the integral .(1), and that it follows from the
equation (5), which has been found by means of integration by
parts. In the same manner the just mentioned proposition may be
proved generally by means of summation by parts, both for series
of integral factorials (the binomial series treated of in this note) and
the series of factorials in the more restrictive sense of the word,
which proceed according to inverse factorials. For the latter seriesI
have shown this in a communication on those series*). The expansion
of the integral (1) in such a series is, however, as appears from
inyestigations of NieLsex*) and PiNcRErLE®), only possible under
restricting conditions for f(#), viz. if it is an analytic function, whose
circle of convergence for the point {=1 passes through ¢ =0, and
whose order on this circle is different from - oo,

1) Proceedings XXII, No. 1.

%) Handbuch, p. 244.

8 Sulla sviluppabilitd di una [funzione in serie di faiiorali, Rendic. d. R.
Acc. d. Lincei 1903 (2e Semestre).

Proceedings Royal Acad. Amsterdam. Vol. XXII.
12



