Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Bockwinkel, H.B.A., On a remarkable functional relation in the theory of coefficientfunctions, in: KNAW, Proceedings, 22 I, 1919-1920, Amsterdam, 1919, pp. 313-317

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. — "On a remarkable functional relation in the theory of coefficient functions". By Dr. H. B. A. BOCKWINKEL. (Communicated by Prof. H. A. LORENTZ).

(Communicated in the meeting of September 27, 1919).

1. Let $\varphi(t)$ be a function having no singular points without the circle (1,1), i.e. the circle with centre t = 1, and radius 1. Let $\varphi(\infty)$ be zero and the order g of $\varphi(t)$ on the circumference of the circle (1,1) be different from $+\infty$. Then in the series

$$\varphi(t) = \sum_{0}^{\infty} \frac{g_n}{t^{n+1}} , \ldots \ldots (1)$$

the characteristic $k = \overline{\lim_{n \to \infty} [\log |g_n| : \log n]}$ of the coefficients g_n is also different from $+\infty$, in virtue of the known relation k=g-1. If g < 0, then the integral

taken along the circumference of the circle (1,1) exists for R(x) > 0, because in that case the series (1) converges along that circumference; the value of $t^{\iota-1}$ in it is so defined that the argument of t lies continually between $-\frac{\pi}{2} + d$ and $\frac{\pi}{2} - d$, d being a positive quantity with zero limit. The function $\omega(x)$ is called *coefficient function* by PINCHERLE¹), owing to the relation $g_n = \omega(n+1)$. Conversely $\varphi(t)$ is called the generating function of $\omega(x)$. PINCHERLE considers the relation between these functions especially from the point of view of the functional calculus. If we write

I is an *additive functional operation*, which satisfies a certain number of simple functional relations; these relations may be used in order to define the coefficient-function in those cases in which the integral (2) does not exist. Thus we find easily

 $I[t \varphi(t)] = \omega(x + 1)$, and $I \varphi'(t) = -(x-1)\omega(x-1)$...(4) and by combining these two equations

$$I[\varphi'(t)] = -(x-1) I[t^{-1}\varphi(t)],$$

1) Sur les Fonctions Déterminantes, Ann. de l'Ec. Norm. (22) 1905, (Ch. IV).

314

which, by iteration, passes into

$$I\left[\varphi^{(r)}(t)\right] = (-1)^{r} \frac{\Gamma(v)}{\Gamma(v-r)} I\left[t^{-r},\varphi(t)\right]$$

It is easy to see that the latter equality is also valid for *negative* integral values of r. It is, however, remarkable that the same equality holds for not-integral values of r. This property I have made use of in the investigation of a function represented¹) by a binomial series $\sum c_n \binom{x-1}{n}$, the most typical series in which a coefficient function can be expanded. The object of this note is to give a proof of the general validity of the equality in question.

2. We substitute $-\alpha$ for r and replace $\varphi(t)$ by the expression $\varphi(t): (t-1)^{\varphi}$, in order to have always to deal with functions which are regular for $t = \infty$. In accordance with RIEMANN's³) definition of the derivative of negative order $-\alpha$ of a function we assume as such the following one

$$(-1)^{\alpha} D^{-\alpha} \frac{\varphi(t)}{(t-1)^{\alpha}} = \frac{1}{\Gamma(\alpha)} \int_{t}^{\infty} \frac{(u-t)^{\alpha-1} \varphi(u)}{(u-1)^{\alpha}} du \quad . \quad . \quad (5)$$

In this we take as path of integration the half-line beginning at u = t, whose prolonged part passes through u = 1; and we assign the same arguments. lying between $-\pi + \delta$ and $+\pi - \delta$, to u - 1 and u - t. Then the so-defined derivative is also regular without the circle (1, 1) and zero for $t = \infty$; and by the substitution u - 1 = (t - 1): s we find after a slight reduction the expansion

$$(-1)^{\alpha} D^{-\nu} \frac{\varphi(t)}{(t-1)^{\alpha}} = \sum_{0}^{\infty} \frac{\Gamma(n+1)g_{n}}{\Gamma(n+1+\alpha)(t-1)^{n+1}}, \quad . \quad . \quad (6)$$

which, therefore, is related in a simple manner to the expansion for $\varphi(t)$ itself. The order of this derivative, as will appear immediately from this series, is α less than that of $\varphi(t)$, and therefore negative together with the latter order. On this supposition we may apply the operation I to it in the form (1), so that by this the *existence* of the first member of the equation to be proved, viz.

$$I\left[(-1)^{\alpha} D^{-\alpha} \frac{\varphi(t)}{(t-1)^{\alpha}}\right] = \frac{\Gamma(x)}{\Gamma(x+\alpha)} I\left[\frac{t^{\alpha}\varphi(t)}{(t-1)^{\alpha}}\right] \quad . \quad . \quad (7)$$

) These Proceedings Vol. XXII, Nº. 1. Nieuw Archief v. Wisk. XIII, 2e stuk (1920).

²) See BOREL, Lecons sur les séries à termes positifs, p. 74. The constant a occurring there is taken equal to ∞ here, in connection with the regularity of $\varphi(t)$ for $t = \infty$.

has been laid down. Passing to the second member we write

$$\frac{\Gamma(x)}{\Gamma(x+\alpha)} = \frac{1}{\Gamma(\alpha)} \int_0^1 s^{x-1} (1-s)^{\alpha-1} ds,$$

where the argument of s and of 1 - s is zero. Further

$$I\left[\frac{t^{\alpha}\varphi(t)}{(t-1)^{\alpha}}\right] = \frac{1}{2\pi i} \int_{(1,1)}^{t^{\alpha}+x-1} \varphi(t) dt,$$

so that the second member in question is equal to

$$\frac{1}{2\pi i \Gamma(\alpha)} \int_{(1,1)} \frac{t^{\alpha+x-1}q(t)}{(t-1)^{\alpha}} \left[\int_{0}^{1} s^{x-1} (1-s)^{\alpha-1} ds \right] dt.$$

If we substitute in the second integral s = u : t, this expression passes into

$$\frac{1}{2\pi i \Gamma(\alpha)} \int_{\substack{(1,1)\\(1,1)}} \frac{\varphi(t)}{(t-1)^{\alpha}} \left[\int_{0}^{t} u^{\tau-1} (t-u)^{\alpha-1} du \right] dt.$$

Since the argument of s was zero, the argument of u is equal to that of t; thus the variable under the sign of integration goes along the straight line from u = 0 to u = t in the u-plane. But it may go as well from $u = -i\delta$, on the circumference of the circle (1, 1), along that circumference in the positive direction to the point u = t. On this supposition we consider the system of two integrations, to be performed in succession, as a double integral. Then in the corresponding aggregate (u, t) a definite value u_1 of u has to be associated with all those values of t lying, in the t-plane, on the circumference of the circle (1, 1) between $t = u_1$ and the end-point $t = + i\delta$ of that circle. Hence the double integral may be replaced by the pair of two successive integrations denoted in the expression

$$\frac{1}{2\pi i \Gamma(\alpha)} \int_{(1,1)}^{0} u^{\nu-1} \left[\int_{u}^{0} \frac{(t-u)^{\alpha-1} \varphi(t)}{(t-1)^{\alpha}} dt \right] du ,$$

where the integration according to t has to be performed in the *positive* direction from t = u to $t = +id^{-1}$. On account of the properties of $\varphi(t)$ the latter integration may be replaced by an integration

Proceedings Royal Acad. Amsterdam. Vol. XXII.

21

¹) The here given argument is strong, in so far it is based upon known truths, if the functions under consideration are *finite* in the whole domain of integration. This is the case for R(x) > 1 and $R(\alpha) > 1$, but, since both *end* forms are *analytic* functions of x (and of α for R(x) > 0 and $R(\alpha) > 0$, they must also be equal for the latter values.

from t = u to $t = \infty$, and one from $t = \infty$ to t = 0. The latter gives an amount which is *independent* of u, and this amount gives zero for the *final* integration. Therefore, after changing the letters u and t, we may write for the preceding expression

$$\frac{1}{2\pi i}\int_{(1,1)}t^{\alpha-1}\left[\frac{1}{\Gamma(\alpha)}\int_{t}^{\infty}\frac{(u-t)^{\alpha-1}\varphi(u)}{(u-1)^{\alpha}}du\right]dt,$$

The second s

and this, if we take (2) and (5) into account, is just equal to the first member of (7). The latter equation thus has been proved in case g < 0.

If $g \ge 0$ and, to begin with, $0 \ge g \le 1$, PINCHERLE defines the coefficient function of $\varphi(t)$ by means of an auxiliary function

$$\varphi_1(t) = -D^{-1} \frac{\varphi_1(t)}{t-1} = \sum_{0}^{\infty} \frac{g_n}{(n+1)(t-1)^{n+1}}$$
 . . (8)

The order of $\varphi_1(t)$ is lower by unity than that of $\varphi(t)$ and thus negative, so that $\omega_1(x) = I \varphi_1(t)$ is defined by (2). By (4) we have

 $I\varphi(t) = -I(t-1)\varphi'_1(t) = xI\varphi_1(t) - \theta^{-1}xI\varphi_1(t);$ (9) if θ be the operation defined by $\theta f(x) = f(x+1)$. If we denote by $\varphi_{\alpha}(t)$ the result of the operation $(\alpha) = (-1)^{\alpha} D^{-\alpha} \frac{1}{(t-1)^{\alpha}}$ applied to $\varphi(t)$, and by $\varphi_{1\alpha}(t)$, the result of the operation $(1) = -D^{-1}\frac{1}{t-1}$, applied to $\varphi_{\alpha}(t)$, we derive from the preceding equation

Now, the operation (a) is commutative, as will appear in the simplest manner from the expansion (6). Hence $\varphi_{1\alpha} = \varphi_{\alpha 1}$, if by the latter expression the result is denoted, which is obtained, if first the operation (1) and then (a) is applied. But $\varphi_1(t)$ is a function for which the equality (7) has already been proved; if this is taken into account, we may infer from (10), using the identity $\Gamma(y+1) = y \Gamma(y)$,

$$I\varphi_{a} = \frac{\Gamma(x)}{\Gamma(x+\alpha)} \left[xI \frac{t^{\alpha}\varphi_{1}(t)}{(t-1)^{\alpha}} - (x+\alpha-1)I \frac{t^{\alpha-1}\varphi_{1}(t)}{(t-1)^{\alpha}} \right]. \quad (11)$$

Using again the relation (9) we may write

$$x I \frac{t^{\alpha} \varphi_{1}}{(t-1)^{\alpha}} - (x-1) I \frac{t^{\alpha-1} \varphi_{1}}{(t-1)^{\alpha}} = -I \left[(t-1) D \frac{t^{\alpha} \varphi_{1}}{(t-1)^{\alpha}} \right] .$$
(12)

Further, in connection with (8)

$$-(t-1) D \frac{t^{\alpha} \varphi_1}{(t-1)^{\alpha}} = \frac{t^{\alpha} \varphi}{(t-1)^{\alpha}} + \frac{\alpha t^{\alpha-1} \varphi_1}{(t-1)^{\alpha}} \quad . \quad . \quad (13)$$

By means of (12) and (13) the equation (11) finally passes into the required identity (7).

The above argument may further be used to prove the same identity for $h \ge g < h + 1$, if it has already been established for g < h, h being a positive integral number. The general validity has therefore been proved.

ł

١