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Chemistry. — “Pressure- and temperature-coefficients, volume- and
heat-effects in  bivariant systems.” By P. H. J. Hoenen, S.J.
(Communicated by Prof. SCHREINEMAKERS.)

(Communicated at the meeting of Sept. 27, 1919).

In a previous communication') we developed a general law (of
which the so-called Bravn’s law is a particular case) giving a relation
between the pressure- and temperature-coefficients of the solubility
of several solid substances, with which a solvent is saturated, and
the heat of solution and volume increase accompanying the solution
of these substances. In the present communication we shall attempt
to find a similar relation for arbitrary bivariant syslems.

[. Heterogeneous Equilibria.

1. With n components we have a bivariant system in the usnal
sense of the term, when there are n coexisting phases. In this case
there are two independent variables, e.g., pressure and temperature.
We can, however, even when there are fewer than n phases present,
retain only these two as independent variables, if we subject all
variations in the system to the condition that the composition of
the whole remains constant. Then, no matter how many phases we
have, provided the number is not more than n, pressure and tem-
perature alone remain the independent variables.

There must thus be a relation among all the systems. Sach
systems differ greatly from bivariant systems in the ordinary sense
of the term, i.e. from systems with n phases, in that in the latter
case the composition of the phases is separately independent of the
composition of the system as a whole. This is not the case with the
systems which are only “bivariant with constant total composition.”

We shall illustrate the above by a consideration of the equilibrium
equations. We assume that we have » components in [/ phases.

Let the composition of the phases be as follows:

1st phase: @, ¥, 21, ....
20d &, Yay By e .

Zth 2 XY, Yy, Bles

1) See the preceding communication in these Proceedings.
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The composition of eacl phase is given in {erms of the absolute
quantity in mols of each component. Between these guantities the

following relations subsist:
1)

The number of equations in (1) is n The quantities X, 7, S. ..,
which determine the total composition, are to be considered ¢onstant.

If we represent the &-functions of the separate phases by Z,,7,....2;,
the equilibrium conditions are:

07, oz 0z, 92,_ . 07, 3z

— =0 ; 2—2=0 ;..... ——1=0;
oz, Oa, 0z, Oz, oz, Oa, 0
aZ’_a—Zl:O 92, oz, . 021 _0Z, _ 0. . ()
dy, Oy, "oy, 9y, U oy oy,

The number of equations (2) is n (I—1).

With regard to the form of these equations it may be noted that
the expressions on the left are homogeneous functions of degree 0 with
respect to the variables,, v,,. ..., and are thus only dependent on the
ratios of these variables to each other (e.g.,%, %, etc.) and not

Y1 M
on the absolute values. Besides p and 7" we have therefore only
{(n—1) unknowns or variables, since in each phase there are only
n—1 ratios which determine the composition.

If [=mn, we have n (n—1) equations (2) with n (n—1) unknowns
(besides p and T'). For given values of p and T the composition
is thus completely determined by these equations and is thus in-
dependent of the total composition X, ¥, .... Equations (1) serve
only for the calculation of the absolute values of x,, ete.

If I!<n, we have fewer equations (2) than unknowns which
determine the corﬁposition of each phase. In this case for the cal-
culation of the composition of the phases we must make use of the
equations (1), so that the composition of each.phase is dependent
on the total composition.

We have, however, always a sufficient number of equations for
the calculation of the composition of each phase for a given value
of p and T, for we have n 4 n(l—1)=nl equations in n/ unknown
quantities 2,,¥,,... &, ¥, ... in which p and 7 can be considered

as the independent variables.
35%
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We bave !iar.n-c:l'(f;-:-_ independently of the.number of phases, provided

[ <n, a “bivarign: scetem with constant total composition”.
i . R "r‘

9. We shall’ now investigate for a bivariant system consisting of
n components in /[ phases (/Zn) a relation between the pressure-
and temperature-coefficients for the transition. of the components from
one phase to another, and the heat effects and volume changes which
accompany this transition.

The composition of the different phases may be represented as
before. The {-function of the system is represented by Z, the entropy
by H, and the volume by V. For the separate phases these quan-
tities are represented by Z,, H,, V,, ete.

We have then:

=27 +2Z,..... + Z

V=V, + V,.... + ¥

H=H +H,..... + H,
These quantities are given as functions of p and T and also of
XYy eeee s & Yy-..., ete. in which p and 7" are the only inde-

pendent variables. With regard to notation, the following may be
remarked. Partial differentiation with respect to one independent
variable, the other independent variable alone being kept constant,
(i.e., in a state of equilibrium), is indicated by a stroke above the
differential coefficient; partial differentiation with respect to one
variable, all other variables being considered constant, (in this case
heterogeneous equilibrium is not necessarily present) is indicated by
the absence of the stroke.

We can establish the desired relations by the method described
in a previous communication for an analogous case. We differentiate
the equations (2) partially, first with respect to p, and then with
vespect to 7. After multiplication by suitably chosen factors the
equations are added together. The following, however, is a shorter
and, in my opinion, a more elegant method.

We begin with the simple, purely analytical equation:

_ or—+—=0. . . . . . @

But -

a‘_V__aV AV /o, oV /dz, 0V /dy,\ 9V /0y, 4
ayw—ﬁJFé;:(é"f) 'E;:(ay'>"'+é'y_l(a7)+§gj(a_f)+“' @




and

0H 0H 0H (o, +g£1 a‘c,)+ 0H (Oy,\ OH /0y, "
=0 () e aap+Eﬁﬂ**)

Also

v aV v, v

0T +OT Jr"‘a_:r
and

0H _3H, 0H, dH,

o o o T op
As now for a given phase (%)

0V  OHy
Tk,
oT + 0p
since
d V],_- a’Zk 04 _ 072
) oT = oT bp dp — 0po?”
we have also
oV  oJ0H o
PR

If ‘'we add (4) and (5) and take (3) into consideration, we have
as & result:

AV (o 73w\ OV 3z . OH (35N
5, (ar)*'av (ap)*a?(ﬁ)*a(%%

0V [0y, dH [y, GV(ay) 0H [dy, _
5. ()45, ) 3 o7 +6y‘,(‘a‘za‘)+-"—°5

From equations (1) we have also

W Oe, Om o

0T~ 0T or "~ oT
a_a-’? ‘ _a;"-a 6-'1'—.; aml

(6)

Similar expressions may be deduced for the quantities y,, etc
On substituting these expressions in (6) we obtain:

3V aV)aw 0H JH\ Oz,
3, 3a, )3T 6Z‘EJ$+“’
oV 0V\dy, [(O0H 0H\Jy, -
—_— —— | —— — |2 . =0
* (ay, »au)al’+(aJ, ayl) %
oV v L '
In this equation the expression Y (whlch is the same as
1 ml

oV, dvV, . : :

- — | represents the volume increment associated with the
oz, O,
¢
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transition of one mol of the component (z) from an infinitely large
quantity of the first phase into an infinitely large quantity of the second
phase, the variables p, T, and the other components remaining constant.
This volume increase may be denoted by Vs The expression

0H oH .
i represents the heat absorbed in the same operation divided
w, @,

by 7. This heat effect may be denoted by Q2. For the correspond-
ing differences for the other phases and components analogous
symbols:may be used. We have now:

T +....

T TR

Oy, | Qua Oy,
+,.-.Vy126—§-{+7—$ . .

()
= 0.

This is one of the relations which it was our object to establish.
From (6) other /—1 similar relations may be derived, in which the
pressure and temperature coefficients of the components of one of
the [—1 other phases do not occur. We obtain other less symme-
trical relations, when we eliminate for the one component the coef-
ficients for one of the phases,” for a second component its coefficients
for another phase. If a component is absent in one of the phases,
the corresponding coefficients vanish.

Note 1. If one of the phases consists of all the components, and
the other phases are all pure components, then we have the case
for which in the previous communication the *‘generalised Braun’s
law” was established. If these conditions are introduced into equa-
tion (6), an expression of this law results. The verification of this
may be left to the reader.

Note I, If there are n components in »n phases, the heat effects
and the volume increments occurring in (7) have values which are
independent of the total composition. When the number of phases
is less than n, that is, when the equilibrium is merely *‘bivariant
with constant total composition” then the values are functions of the
total composition. .

Note [1l. In our discussion we have nowhere made use of any
explicit relation connecting Z with the composition. The results are
therefore valid also in the case of reacting components.

Note IV. The line of argument adopled leads to a similar
formula in the case of homogeneous equilibria. This will be discussed
in a future communication.

Katwijk a. d. Rin, August 1919.



