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Chemistry. - "Jn-, 111ono- and div(t1'iont equilió1'ia". XX. By 
Prof. SCHREINEl\1AKERS. 

(Communicated at the meeting of November 29, 1919). 
, 

EquilibJ'i'l of n compvnents in n '{JlLa.~es, in w/ticlt the q1lantity of 
one of t!te comlJOnents appJ'oaches to zero,. tlte injluence of a 

new substance on an invilriant (P 01' '1') eqllilib1'iu1n. 

In the communications XVI, XVII and XVIII we have seen 
that a region is two-Ieafed in the vicinity of a tummg-line and 
one-Ieafed in tbe virinity of a limit-line [e.g. curve ab or cd in 
fig. 1 (XVI)]. We shall considel' the latlel' case mOl'e in detail. 

We take the eqllilibl"Ïum E = Fl + li's ... + li'1I of n components 
in n phases lUIder constant pressure. This eqnilibl'ium is (Oomm. 
XVII) monovadant (P); ,viz. it has one fI'eedom nnder constant pressm'e. 

The equations (2) and (3) (XVII) at'e true fol' this equilibrium; 
on change of one of the variables e.g'. of ,1:1 this equiJibdum traces 
in the P, 'P-diagram a stl'aight lille parallel to 1 he 1'-axis. 

In the viclfIity of a limit-line of a I'egioll e.g. iu the viciuity of 
C\ll've ab or cd in fig. 1 (XVI), the qnantity of one of the com­
ponents approaches. to zero. When this is the case with the 
component X, viz. witb that component, the quantities of which 
are indicated in the diffet'en t phases by a:1 x, ... tC'l> then in (2) and 
(3) (XVII): 

alV] 3IV, • alV'l 
become in Ilnitely hu'ge, viz in ZI tbe term Xl 10,g ''Cl is found, in' Z2 
the tel'm x, 10g.1:', etc. 

Now we write: 

Zl = Z/ + RT .'lJ l loy.'lJl Z2 = Z2' + RT 1V 2 log IV, 

Herein Zt' Z/ ... and theil' diffel'ential quotients l'emain 
finite also for Xl = 0, ,'1:2 = 0 . .. It follows from (1): 

-a, = î-;- + Rl II + lO,9 ·'lJ l ) 
aZI. az/ l' I 

dil um1 

az, az:" \ -a =-a, + Rl \1 + log IV,) 
a:~ lV~ I 

etc. The n equations (2) (XVII) now pass into: 

. " (1) 

always 

(2) 
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az' az' 
Z ' Rl' 1 1 "I - lIJ I - il1 1 ~ -YI-~- • 

VlIJ I VYI 

az' az' z' - RT ilJ - lIJ -' - Y -' , "A ':::I 
VlIJ, vy, 

\ 

.' .=K 

. '-' 
. . (3) 

etc. The fil'st series of the equations (3) (X VII) passes into: 

az' az' 
~ + RTlof/{1J1 =~ + Rl' log 111, = ..... =Kx -Rl' . (4) 
VIII I VIII, 

The following series of the equations (3) (XVII) become ~ 

az' az' I I --=-a-= ..... 
0YI Y2 

oz,/ 
= 0Yn =Ky . (5) 

etc. It follows from (4): 

. . . . . . (6) 

or 
.'I1a = ~8 iIJ I • • ••• ·'I1n = (ln .'IJ\. • • (7) 

in which ~, (.la • " are defined by (6). 

For "alues infinitely small of Xl ,'V, • •• the ratios bet ween 
XI ,'IJ, ••• lIIn are eonsequently defined by (7). 

Now we give the incl'ements: dT. :VI X, •.• dYI . " dy, etc., to 
the val'iables T XI X, ... YI y, . .. etc., in which we put XI = 0 
x,=O ... 

Now it follows from (3): 

oZ' 
. Hl dl' + Rl' 1111 + YI d ~ + ..... = - dK 

, . VYI 

az' 
B2dl'+RT.'I1'+Yld~+ ..... =-dK 

vy, 

. . (8) 

etc. in which the sign d indicates that we have to diffel'entiate 
according to all variables. 

Now we add the n equations (8) aftel' having muItiplied the 
fil'St by I. t , Jhe second by 1., etc. Tlten we obtain, when we 
use the l'elations which follow from (5): 

(aZ') 2 (i. B) dJ' + RT 2 (i. 111) + 2 (). y) d oY: + ... = - 2 (~) dK (9) 

Now we define 1.1 À, • " in such a way that they ·satisfy the 
n-1 eqllations (10) 

36* 
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:2 (J,) = l1 + A, + . 
~ (.J. y) = )'1 Yl + AS y, + 
:2 (J. z) = )'\ Zl + 12 Z, + 

+ln=O 1" ..... + ),,. yn = 0 

..... + ÀII Zn = 0 

(10) 

etc. By this the n-1 ratios between the coefficients )'1 )., ••• are defined. 
As 

:2 (l x) = II lUL + l2 I!:, + ..... + ln ''!:n 

:2 (AH) = ).,1111 + )"H, + ..... + l,. Hn 
I \ . . (11) 

the ratio 1J ( l ,v) : l; ().H) is also defined. Now it follows from (9) I) : 

RT:2 (l IV) 
(dT)p = - ~ (J. H) ...... (12) 

The value of dT in (12) depends on 1J (IIV), consequentlyon the 
n increments XI X, •.• 3',.. We may expl'ess them, however, in one 
of those increments e.g. in ;1;1' Wilh Ihe aid of (7) we obtain then: 

, RT IV I :2 (I. fl) 
(d1)p =- .. 

~ (l H) 
(13) 

whel'ein: 
:2 (l (1) = ~I ('1 -I- l, (1, + ..... l,. fln . . . . (14) 

When we take the equilibrium E = Fl + F, + ... + Fn of n 
components in n phases at constant tempemtnl'e, tIJen it is mono­
vat'iant (T). In tIJe same way as ltbove we find rlOW: 

(
dP) = NT ;E p. IV) = RT lUI JE (l fl) 

T ~ (l V) 2:' P V) 
. . (15) 

Herein II )'2 ••• have again the val lies, which at'e defined by (10) 
1J (lx) has also the same \ aille of (11) viz.: 

:E (). x) = )'1 ,e + I, ,'I), + + l,. x" 
whiIe . (16) 

:2 p. V) = )'1 VI + )'2 Tl, + 
1J(l(1) has again the same vaIue as in (IJ), 

In the pre\'Ïous ronsiderations it is a"snmed that the quantity 
of the component X in the eqllilibl'ium E = Ft + P, + ... + Fn 
of n components in 12 pbases is vel')' smal!, When, however, this 
quantity becomes zero, then E passes into an equilibl;ium of n-1 
components in n phases. This is monoval'iant and is l'epresented in 
the P, T-diagmm by a cnrve. U nder constant pressnre it is inva­
riant (P), at constant tempel'atul'e invRl'iant (T), In Ihis invariant 
(p Ot' T) equilibrium bet ween the phases FI'" Fn may occur a 

1) Fot' another dednclion see F. A. H. SCHREINEMAKERS, Die heterogenen Gleich 
gewIChle von H. W. BAKHUIS ROOZEBOOM. IlI. 289. 
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reaction; the qnantities À1 ••• In of the phases partiripatmg in this 
reaction are defined by (10). The change in entropy occlll'l'ing with 
this reaction 2(lH) is defined by (11), the change in volume 2(l V) 
is defined by (16). 

Some of the coefiicients l. I '" Àn al'e positi\'e, other ones are 
negative. As long as we do not assume for this a definite ru Ie, we 
may al'bitml'ily infel'change positive and negative. We aSSllme the 
following: The coefficients of the phases, which oceul' with areaction, 
are taken positl ve; the eoefficients of the phases which dlsappeal' 
with the rea_ction, are taken negati ve. 

Now 2(1.) is the algebl'aical surn of the qllautities of the phases 
which pal,ticipate in the l'eaction, of coul'se this is zero. 

"IJ(i,y) is the algebraical Sllm of the qllantity of the component Y 
which participates in the I'eartion; this is also zero. The same is 
tl'lIe for the olher eomponents. 

As the compo~lent X does not ocellr in the inval'iant (P or T) 
equilibrinm, 2(1 .. 1') has, therefol'e, another meaning. When we add, 
howevel', a ltttle of the component X to this eqllIlinriurn, then it is 
divided between the n phases; this didsioll is defined by (7), so 
that Xl ... Xn and consequently also I; (liV) are defined. 

Now we imagine a reaction in the invariant (P Ol' 1') eqnilibrium; 
1.1 ••• )'n represent, thm'efol'e, the quantities of the phases pal'tlcipating 
in the reaction. When those phases would contain the qnantities 
:V1 ' •• 'Xn of the new component, then 1,; (lx) would be the algebrail'al 
Sllm of the quantity of the component X, which pal'tieipates in this 
reaction. For this l'eason we shall call I; (liV) "the fictitious quantity 
of reaction of the component .x". 

Ii 
Now we take a point on the limit-cUl're of a region, e.g, point 

h on fhe limit-curve a b in fig. 1. lXVI). This limit-cUl've l'epresents 
an eqnilibl'ium of n-1 eomponents (viz. tbe components Y, Z, U . . ) 
in n phases, eonsequently a mOllOVRl'iant eql1ilibl'ium. In the point 
hitself PT YIY' .. Z1Z, •• etc. have definite values; the same is true 
fol' the ratios of )'1 ••• ln whirh are defined by (10) Now we add R 
Httle of the component X, this is divided over the n phases; this 
division is defined by (7). For a detinite valuè of e.g. XI the ratios 
];(lx) : 1:.(lH) nnd I; (lx) : I; (l V) al'e also defined. In aecol'dance with 
(12) and (15) we know conseqllently also (elT)p and (dP) T' 

When (dT)p is positive, then Ihe reg'ion E is bituated at the right 
of the point h; we enter then the region, just as in fig. 1 (XVI) starting 
fl'om l~ in the dll'eefion !tl. 

Wh en (dP)T is negative, then the region E is situaled below 
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point h; then we enter the region, just as in fig. 1 (XVI) stal'ling from 
h in the direction ltm. 

Oonsequently the region E is sltuated at the right and below the 
point h. 

The dil'ection of curve ab itself is defined in every point by: 

dP ~(I H) 

dl' ~ (). V) 
. . . . . . . (17) 

It follows from OUI' assnmption over tbe sign of (dT)p and (dP)r 
that wet have assl1med l1(J.x): l1(AH) to be negative and l1(lx): 

lJ (). V) also to be negative. Then it follows from (17) that curve 
ab must be a curve, l'ising with the temperatul'e, in the vicinity of 
point h, as is also drawn in fig. 1 (XVI). 

In fig. 3 (XVI) rtbchd l'epresents a limij-curve which has a maxi­
mum of pl'essure in hand a maximllm of tempel'atlll'e in e. It 
follows with the aid of (17) from the direction of branch ab that 
1: (J.H) and lJ (l V) have the same sign; we now choose the signs 
of ).1'" ln in such a way tbat both are positive. Then it follows 

. from the direction of the branches he and cd with the aid of (17), 
whirh signs lJ (J.H) and lJ (A. V) must haye on Ihose bl'anches. Then 
we have: 

on branch ab 1: (). H) > 0 l:(l V) > 0 

in b lJ(Ä H)= 0 2' (l TT) > 0 

on branch 6 e :IJ(ÀH)<O l1(Î. TT) > 0 

in e :IJ(l H) < 0 :IJ(À V)=O 

on bl'anch cd :IJ (l H) < 0 ~(l TT) < 0 

In each point of cUI've abchd lJ (lo11t:,has a definite sign; we are 
able to find this with the aid of (7) and (10). 

When we assume that lJ (lx) is negative in each point of the 
curve, then it follows from (12) and (15) that the region E mllst be 
situated entir'ely within the limit-curve abeel and consequently I1ot, 
as in fig. 3 (XVI). where the part ale is sitnated outside. 

Wilen in each point of the curve abeel lJ(lx) > 0, then it follows 
from (12) and ~15) that the l'egion must be situated at the left of 
and above branch ah, at the right of and above branch be, at the 
right of and below branch cd. Then we have fig. 5 (XVI). [As it is 
apparent from the position of the letters, the pl'inler has tUl'ned 
th is figllre; for tlds reaso!,! the reader has to place it in snch a way 
that the tangent is horizon lal in band vertieal again in e J. 

We may assu me also that :IJ Ox) is positi ve in the one part of 
the curve, negative in anothel' part. We aasume that 1: (lol') is 
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positiv~ in pad (lbJof cllrve abed fig"3 (XVI) andnegative 
in the part lcd, Then it follows from (12) and (15) tbat the l'egion 
mllst be sitnaled as is dl'awn in fig, 3 (XVI) viz, that a part af e 
of Ihis region must be situated olltside the limit-lille and that this 
region mnst have a tUl'ning line ef. 

lt appears from the following that this point f must be a point 
of the tlll'ning-line, In th is point 1; (),m) = 0, As in tltis point also 
the eqllation~ (10) are valid, a pIJase reaction I'IFI + .. , + 1./1 FII ,0 
may occur between the n phases of the equiliorium E = PI + '" + Fn, 
in which an infinitely srnall qua-;'tity of the component X oCCUJ'S 
now also, 

Conseqnently when in a definite point f of CUl've abc cl ~ (l,l}) = 0, 
then f is a common point of turning- and limit-line; later we 
shall see that i is a point of contact. When :f (J.x) changes in 
sig'n in i, then f is a tet'minaling point of the turning-line as in 
fig, 3 (XVI); w:hen however ~ (hu) does not change its sign in i, 
then I is not a terminating point, but the curve proceeds fUl'the}', 

Fl'om (12), (15) and (17) follows the relation: 

(dP)T : (dT)p = _ (dP) '..,. (t8) 
dT .1'=0 

The index x = 0 in the second part of (18) indicates that :~ 
is tl'ue fol' the limit-curve, in which the component X is missing, 

In Ol'der to compl'ehend Ihe meaning of (18), vve imagine the 
P, 'j'-cllrve of the limit-equilibrium, to be drawJl in which the com­
ponent X does not occur, thel'efol'e. FOI' this we take the curves 
a band e cl in the figUl'es 1, 2 and 4 (X VI) and curve abc d in 
the figlll'es3and5(XVI), [We have to place again the latte!' figul'e 
in the l'igh t posilion J. 

We ~h~ll call the bl'anches on which the pressnre inrreases with 
increase of T the "ascending" bt'anches, e,g. the bram'hes ab aJld 
e cl in the figmes 1, 2, 3, 4 and 5 (X Vl), A branch like' e,g, be in 
figs. 3 and 5 (XVI), on which the pl'esRllre decreases at inC'l'ease 
of 1', is called a "descelld ing" branch. 

On an ascending bl'anch (~~),~~ positive, then it follows fl'om (18) 

that (dP)T and (elT)p have opposite sig'ns, When (dT)p is positive 
and conseqnently (dP)'l' negalive, tllen Ihe l'egion is silnaled .ü lhe 
l'ight and below the bmnch; this is lhe case wilh I'espect· to bl'U,IICÎ1 
a b in the figs, 1, 2,alld 4: lXVI) and wilh respect 10 bl'anch cdin the 
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figs. 2, 4 and 5 (XVI). When (dT)pis negative and (dP)Tconsequently 
positive, then the region is situated at tbe left nnd above the 
bmnch; this is the case with respect to branrh a b in figs. 3 and 
5 (XVI), and with respect to branch e d in the figs. 1 and 3 (XVI). 

Consequently we find: A region is situated ~I ways at the right 
and below or at the left and above the ascending branch of its 
limit-curve. 

00 the desrending bl'aoch of a limIt-cut've (:~) _ is negative. Jt 
x-o . 

follows f,'om (18) that then (dP)T and (dT)p have the same sign. 
When both are positive, then the region is situated, thel'efore, at 
the l'ight and abo\'e the branch. When both are negali\'e, then it is 
situated at the left and below the branch. In fig. 5 (XVI) Ihe region 
is situated at tlle right and above branch be; in fig. 3 (XVI) the 
region is situated at the l'ight and above the part b /, and at the 
left and below the part fe of branch b e. 

Conseqnently we find: . 
a l'egion is sitnated at the right and below, or at the left and 

above the a&cenrling branch of its limit-curve; it is situateci at the 
right and above, Ol' at the left and below the descending branch of 
Hs limit-curve. 

In Communication XI on: Eqllilibl'Îa in ternal'y systems, we 
have alr'eady deduced this same pl'operts for a special case viz. for 
the ternary reg ion F + L + G. in which F rep,'esents a bina,'y 
compound, with respect to its binary limit curve F+L+G. 

Now it appears th at this is true in general fol' each al'bitrary 
region with respect to all its limit-curves. 

We may express the l'esuLts obtained above also in anothel' 
way. The equilibrium E= FI + ... + Fn ofn-1 components in 
n phases is monovariant or invariant (P or T). When we add a 
little ofa new substance X, then a new equilibrium E' =F'I + ... +F'n 

may al'i::le. Hel'ein the invariabIe phases have the same composition 
as in E; \ tge val'Ïable phases (which of course not all need to 
contain the new substance X) diffel' still only very little fl'om 
those in E. 

We now may put the qllestion: 
how mus! the tempel'ature change unde!' constant P Ol': how 

must the pressul'e change at constant T in order that in both cases 
the equilibl'Îum E passes into E'. 

lt is clear that both questions are only another form of the 
questions, tl'eated above: how must the tempel'atnre be changed 
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Ilnder constant Pand the pl'eSSUl'e at ronstant T in order to 
pass fl'om a limit-curve into the cOlTesponding region, 

We take the eqllihbrium E= L + F, + F. +'" of 11,-1 com­
ponents in 11, phases (Ol' of 11, components in 11, + 1 phases), Berein 
F. F • .. , represent ~olid slIbstances of inval'iable composition ano 
L a liquid. On addition of a new substance X this occurs then 
only in the liquid. 

When in this equilibrium E at constant Tand under constant P 
there occurs the reaction: ' 

).1 L + ).2 F 2 + ).. F. + . , . , , = 0 , ,(19) 

th en ~ (À x) = ).1 ,v, when viz, :v repl'esents the concenll'ation of the 
new snbstance in the liqnid, 

When we put ÀI = 1, then ~ () H) and ~ (). V) are the inrreases 
of entl'opy and volume, wben one qllanlity of liquid is fornJed at 
tlle phase-l'eaClion. We represent them by l:::.H and l:::. V. 

(12) and (15) pass now into: 
RT:v RT:v 

(dT)p = - l:::.H and (l:::.P)T = l:::. V' ",20) 

When we repl'esent by l:::. W the qllantity of heat which is to be 
added in order to form wilh the reaction one quantity of Iiquid, 
then (20) passes into: 

RT'3! RT.'IJ 
(dT)p = - LW and (l:::.P)T= l:::. V (21) 

Reaction (19) may represellt the ('ommon melting of the solid 
substances . F, p • ... ; this is the case w hen tbe reaction is of the form : 

)'.F. + ÀB F. + ' . , , ,;!:.L , ,,(22) 

and when ).. À. are positive. 
When the reaction is of the form: 

À2 F, + À. PB + . , , , , ;!:. L + Àp F p + ' ' , , .' . (23) 

in which we take also positive all coeffieients, then it repl'esellts the 
conversion of the liquids F2 F'B ... into Fp ••• wh en simllltaneously 
liquid is lOl'med. 

Now we aBSllme that heat is to be added at the formation of 
liquid from Rolid substances, consequently at melting in accOl'rlance 
with (22) and at conversion in accordance with (23); tIJen l:::. W is 
positive; the change in volume at melting Ol' ('onvel'sion may be as 
wel! positive as npgative. Now it follows fl'om (21): 

The common melting- Ol' (,oJlvel'sioJl tempemture of one or more 
substances is lowel'ed by addition of a new substance ; 

the common melting- or con\'cl'sion-pl'eSSllre of one or more sub­
stances is; 
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raised by a new snbstan~e, wlIen lhe volume incl'eases on 
mehillg or convel'sion; 

lowel'ed, when the volume decreases on melting Ol' com'el'sion, 
This incI'ease and decI'ease are at {iI'st approximation propOl'tional 

to the ql1antity of the new snbstance, 
When we apply those l'ules to the melling of a ~imple substance, 

th en follows the known rnle of the deel'ease of melting' Ol' freezing 
point; the fit'st fonnnia (21) is then the known formula of RAOUJ,T­
VAN 'T HOI!'F. 

We may apply the pl'evions deductions also when we substitute 
in (19) the lIqllid L by a gas G. In genel'al b. V is then positive 
and appl'oximately eqnal to the volume V of the gas; by th is we 
may gwe another form to the second fOl'mnla (2J) viz. 

(dP)T = Pm (24) 

We may deduce the pI'evious rnJes also in the following way. 
We take the equilibrium E= L+Fs+Pa+ ... , in which the new 
snbstance X is not yet pl'eRent nnder constant pl'esslll'e; then it is 
inval'Ïant (P) and it eonsists at a definite temperature, which we shall 
call To• Wben we assume that l'eaction (22) takes place from left 
to right at addition of heat, t hen it follows: 

F s + Fa + . . . . . ;: L b. H > 0 

(L) I (F~) (Fa)' . 
towards lower T towards higher T. 

Conseqnently the equilibrium (L) = F 2 + Fa + . .. consists at 
tempel'atlll'es lowel' than TD. When we add the new snbstanee X, 
then E passes into EI = LI + F~ + Fa + .. " in whieh Ll differs 
from L; this equilibl'iulll EI exists at a lemperallll'e 1'1 which differs 
from To• 

When we take away the liquid L' fl'om EI, then it passes into 
Fs + Fa + ... , consequently in the eqllilibl'Ïllm (L) discussed above; 
as this exists at Jower tempel'allHes than T., it follows 1" < 1'0' 
On addition of the new substance the eommon melling-point mllst 
fall, therefol'e. 

From reaetion (23) we find the same fOl' the common point of 
conversion. When we take at constant tempemture the equilibl'Ïllm 
E = L + .F~ + Fa + .. ,' in whieh the new snbstance is not yet 
present, it is inmt'Ïant (T); then it exisls nIldel' a defillile 
presslll'e Po' 
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When reaction (22) takes place with incl'ease of volume f!'Om 
left to I'ight, then follows ~ 

F, + FI + .. , .. ~ L b. r' > 0 

(L) _ I (F,) (F,) ..... 
towards higher P towards lowel' P 

The equilibrium (L) = F 2 + FI + ... , exists, therefore, under 
pl'essures, large!' than Po' Rence is follows tIJat the equilibrium E' 
occnrs also under a pressl1l'e hig'her than P" Consequently when 
at ('ommon melting increase of volume takes place, then the melting 
presslll'e rises. 

From reaction (23) the same follows for the common point of 
com·ersion. 

When we assume that b. V < 0, then it follows that on addition 
of the new substance the pressUI'e of meIling or convel'sion falls. 

Now we tàke the equilibrium: 

E = L 1 + L, + ..... -t F 1 + F, + . . . . . 
of n -1 (or n) components in n (or n + 1) phases. Again L 1 L 2 

repl'esent liquids, Fl F, solid phases of constant composition. Formerly 1) 
we have called the temperature at wbich this eqllilibrium ocr\l1'S 
under constant plessure the "Schichtungstemperatur"; we may call 
it also the sh·atification-tempel'atul'e. We write the reaction occul'l'iJlg 
in this equilibrium: 

,À,l L 1 + 1, L. --j- ••••• -j- f.Ll F 1 + fJ, F, -\- ..... = O. (25) 

We may distinguish at Ihis reaction the 2 main types: 

f.L 1 F\ + f.L, F, + .... ~ II L 1 + À, L, + .... + fJq Fq + . . . . (26) 

À\ JJ 1 + .... + (.11 F1 + f.L, F, + .... ;: I...p Lp + .... + (Jq Fq .. '. (27) 

in which we take all coefficients posith·e. In (26) the solid substances 
may be wanting on the l'ight side, in (27) on the right Ol' on the left 
side. Expel'imental examples of both types al'e known '). In order to 
express the difffwence bet ween the two reactions we shall say: in 
(26) all liquids are situated in reaction-con.iullction, in (27) two or 
more al'e sitnated in reaction-opposition I). 

1) ~'. A. H. SCHREIMAKERS, die heterogenen Gleiehgewiehte VOD H. W. BAKHUIS 

ROOZEBOOM II12 108. 
t) ~'. A. H. SCHREINEMAKERS ibid. lil! 106 -113, 193-203. 
3) In order to prel'ent eonfusion, see the following. In the hooks IlII and 1lI2 

mentioned above phases are many times spokt'n of whieh are situated in the diagram 
in conjunction or oppositio~. When we eaU th is situation diagram eonjunetion and 
diagram opposition, then il appears that reaetion-conjunetion corresponds with dia· 
gram opposition and l'eaetion-opposition with diagl'am·eonjunetion. 
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When we add a new substance, then this divides itself between 
the liquids; its concenh'ations 11\ X 2 ' , , "al'e detined by (7), [It is 
apparent that the l-"S in (7) have quite another meaning as in (25), 

(26) and (27)]. 
For reaetion (26) IJ (J.IV) = )'IX) + )",11, + ' , " in which occur only 

the ).'s, not the l-"S, As the ).'s are all positive, 2i()'x) is also positive, 
With this we assume that heat must be added, in ol'der that reaction 
(26) takes place from left to l'ight, so that also '1: (.I.. H) is positive. 
The sign of 1) (l V), howevel', is indefinite, [It is apparent that in 
2i(ÀH) and 2i(iV) the l-"S of (26) oceu!' also]. 

N ow i t follows from (12) and (15) 

(dT p < 0 and (dP)1' ~ 0, . . . . , (28) 

Rence it follows: when we have an inval'Îant (Por T) equilibrium 
with 2 Ol' more liquids, which al'e situated all in reaction-conjunction 
and when we add a new substance, then: 

under constant P the stl'atiûcalion temperature is lowel'ed; . 
at constant l' the stratitication-pl'essul'e is l'aised when tbe volu!De 

increases at the formation of the liquids; 
lowered wben the volume decreases at the formation of liquids, 
For reartion (27) is 

::E (l IV) = Àp IVp + .. , ' , - l) .'1: 1 - )., i1J 2 - ••• 

90 th at 1) (llV) may be as wel! posith'e as negative, This depenrls 
on the pal,tition of tbe new sub~tance X'between the diffel:ent liquids, 

In order to illustmte Ihis further we consider a definite case, 
viz, the equil1brium 

E=Ll + L, + Z+ U + ' , , , . +'N, ' . , (29) 

betweE'n the n components Y Z, , , N, Consequently in this eqllili­
brium ,all components, excepted Y, orCUI' as solid phases, As there 
ar'e, therefore, n-1 Rolid and 2 liquid phases, it is invariant (P Ol' 

T), Now we r'epresent the reaction by: 

),1 L1 + )., L, + )'1 Z + }.. D + ' , .. , + I'n+l N = 0 . (30) 

80 that 1) (À IV) = ),1 XI + l, IV" FOI' the definition of the reJatioJl 
between ).1 and l, we take fl'om (10) the equat,ion l; (j y) = 0, 
As the substanre Y occurs only in the two liquids, it follows: 

~()'Y)=).IYI+),2YI=O. ' .... (31) 

Hence it appears that 1. 1 and )" ha\'e opposite signs, so that 
l'eaction (30) belongs to type (27), We wl'ite it in the t'or'm: 

II Ll + À. Z + Ä. U + . . ... ;! L, . . . . (32) 

We have put, therefor'e .1.., = 1, consequently ).'1 is positive j of 

course one or more of the coetlicients,).""" may be n~gative" 
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Furthel' we aSSl1me that L, is the liql1id, which is formed on addition 
of heat. [When this should be the case with LIJ then we should 
have placed Ll in the reft part of (32) J. Now we have: 

;!; (l '!I) = Y~ - j'l Yl and ;!; (l x) = x, - Àl Xl' 

H ence it fo11ows: 

, (33) 

, , , , • (34) 

and 

RT XI (:' _ yz) 
(dP) = I Yt 

T l.lV 
, , (35) 

Hel'eiu l.l W is the heat, wanted for fOl'ming one quantity of the 
Jiqnid L,; l.l V is the in('.rease of volume oc('url'ing at this formation, 
which can be as weil positive as negative. 

Now we shall mean by partition-coefficient of a sllbstance: the 
concentl'ation of that sllbslance in the liqllid, which is fOl'med on 
addition of heat, dlvided by the concentration of that substance in 
the othel' liql1id, X,: XI is ('onseqnently the pal'tition-coefficient of Ihe 
nèw substance, y,:?h tlJat of the component, which does not OCCUl' 
as solid phase, 

Conseqnelltly we find: 
when in an invariant (P Ol' T) eqnilibl'illm with 2 liquids on]y 

components OCCUl' as solid phases, Uien both liquids are situated in 
l'eaction-opposition, The stl'atification-temperatnre nndel' constant P 
by addition of a new substance : 

is elevated (lowered) when the partition-coeffi.cient of the new 
snhstance is smallel' (largei') than tilat of the component which does 
not occur as solid phase 1), 

We may deduce from (35) similal' l'u)es for the influence of a 
new substance on the change in pl'essUI'e at constant tempel'ature, 

We mayalso give a more simple form to (34) and (35), We have 
viz, expl'essed the concentmtions of the components in the liquids 
in such a way that each liquid cOJltains in all one molecule, 
We may, howevel', also mean by concentl'ation the ql1antity of the 

. 1) For some exarnpJes of the influence of a third substance on binary equilibria 
see F, A, H. SCHREINFlMAKERS, Die heterogenen Gleichgewichte von H. W, BAKHUIS 

ROOZEBOOM Ill~ 160, 
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components when the IIquid contains one molecu1e of the component 
wbich does not ocellr as solid phase, consequentl)' in 0111' case of 
the romponent Y. As, therefore, Yl and y, become = 1, (34) and (35) 
pass into: 

RT2 (.1'2-1111) 
(dT)p = - !::. W 

Now we find: 

(36) 

rhe strati firation-tem pel'atllre is l'aised (lowel'ed) Ilnder constant 
P on addltion of a n~w sllbstance, when the concentration of Ihe 
new snbstance in the liqnid, which is formed on addition of heat, 
is smallel' (IaJ'gel') than its concentration in the othel' liqllid, 

The first forrnula (36) has been deduced fOl'merly fOl' eqnilibl'ia 
with two 1) and more ') components. 

To be continued, 
Leiden, InoW' Chem. Lab. 

1) F. A. H. SCHRETNEMAKERS. Zeit!'chr. f Phys. Chem. 25, 310 (1898). 
2) H. A. LORENTZ ibid. 25. 332 (18\18). 


