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Chemistry. — “In-, mono- and divariant equilibria”. XX. By
Prof. SCHREINEMAKERS. -

(Communicated at the meeting of November 29, 1919).

Equilibie of n components in n phases, in which the quantity of
one of the components approaches to zero; the influence of a
new substance on an invariant (P or T') equilibrium.

In the communications XVI, XVII and XVIII we have seen
that a region is two-leafed in the vicinity of a turmmng-line and
one-leafed in the vicinity of a limit-line [e.g. curve ab or ¢d in
fig. 1 (XVI)]. We shall consider the latler case more in detail.

We take the equilibrium E= F, + F, ...+ F, of n components
in n phases under constant pressure. This equilibrium is (Comm.
XVII) monovariant (P); viz. it has one freedom under constant pressure.

The equations (2) and (3) (XVII) are true for this equilibrium;
on change of one of the variables e.g. of @, this equilibrium traces
in the P,7T-diagram a straight line parallel to the T-axis.

In the vicinity of a limit-line of a region e.g. in the vicinity of
carve ab or cd in fig. 1 (XVI), the quantity of one of the com-
ponents approaches _to zero. When this is the case with the
component X, viz. with that component, the quantities of which
are indicated in the different phases by =z, #,...a,, then in (2) and
(3) (XVII):

0z, iz, 37
'a_'m_l‘ 1 B'Z . . » aw"

become infinitely large, viz in Z, the term =, log «, is found, in' Z,
the term z, log x, etec. .
Now we write:
Z,=Z"+ RT &, loy , Ly,=2,+ RT »,logz, . . (1)
Herein Z’ Z,’ ... and their differential quotienis remain always
finite also for z, =0, #, =0 ... It follows from (1):

%: 92, + RT (1 4 log @,)
0w, Ou,
| @)
0Z, 0Z, )
. = + RTY + log @,)
dz, Ow, )

etc. The n equations (2) (XVII) now pass into:
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0z, 0z, \
Z! —RT o, — %, — =y, =— « .. .. =K
0z, 0y, )
0Z,' 0z,
Z,’—RT.’I;"—;’U’O—“’:-—yz'a—y; . e r e =
etc. The first series of the equations (3) (XVII) passes into:
Z' WA
L+ RTlga, =—= 4+ RTloga, = . .. .. =K, — RT . (4)
0, ' 0,
The following series of the equations (3) (XVII) become :
VA 07,
a—-Z—l-: = ..., — :Ky e e (B
0y, Oy, 0n
etc. It follows from (4):
BT wz_aZ,' 0z,
Va8, om,
(6)
T @, 0Z' 0Z,
9% dm, Oa,
or
z2, =y, &, By ==y @) o v v v e Bp=Pp . . . (1)

in which g, g, ... are defined by (6).

For values infinitely small of &, 2,... the ratios between
) X, ... &, are consequently defined by (7).

Now we give the increments: d7 .z, a,... dy,... dy, ete., to

the variables T2, 2,...y,y,... ete, in which we put z =0
2, =0...
Now it follows from (3):
T aZl'
H AT+ RTw 4y dot 4 oo — —dK
LU 0y,
2z @)
H,dT+RTm,+y,dFi+ ..... = —dK
Ya

etc. in which the sign d indicates that we have to differentiate
according to all variables.

Now we add the n equations (8) after having multiplied the
first by 4, the second by 2, efc. Then we obtain, when we
use the relations which follow from (5):

= (2 H) dT+RTE(lm)—I—E().y)d(%")-{—...:—2‘(1) dK (9)

Now we define 2,4,... in such a way that they satisfy the

n—1 equations (10)
36*



SM=a 444 ... .. 42y =0 ‘
Ea=hy, +Xy.+ ..... + Ly, =0 1} . . (10)
@) =Az, + 22,4 .. ... 4+ A2, =0

etc. By this the n—1 ratios between the coefficients 2, 2, . . . are defined.
As -
Sle)=4 e, + x4+ .- F |

1

SOH) =AM, + L H A+ ... + 2, H, (1

the ratio T(Awx): T(2H) is also defined. Now it follows from (9)"):
RT 3 (2 )

dMNp —m — ————— 12

@np =— 5o 12

The value of dT in (12) depends on X (72), consequently on the
n increments a, ,...xr». We may express them, however, in one
of those increments e.g. in z,. With the aid of (7) we obtain then:

RT x, 2 (4 )

S (2 H) (19)

dT)p = —

wherein :

20w=Aupu +2,p,+ ..... b . . . . (14)

When we take the equilibrivm E=F + F,+ ...+ F, of n

components in n phases at constant temperature, then it is mono-

variant (7). In the same way as above we find now:
KT 2 (22) RT =z, Z(2p)

dP)r = = 15
@A =<4 SYTRG) (12)
Herein 2, 2,... have again the values, which are defined by (10)
X (&) has also the same value of (11) viz.:
2()..17):/11.0 +/z‘1:g+ ..... +Anﬂ7n '
while ‘ (16)
SOVy=4V, 4+ hV,+ ..... 4 Va

Z(2u) has again the same value as in (14).

In the previous considerations it is assumed that the quantity
of the component X in the eguilibviom E=F, -+ F,+ ...+ F
of » components in n phases is very small. When, however, this
quantity becomes zero, then [ passes into an equilibrium of n—1
components in n phases. This is monovariant and is represented in
the P,T-diagram by a curve. Under constant pressure it is inva-
riant ([’), at constant temperature invariant (7'). In this invariant
(£ or T) equilibrium between the phases F,...F, may occur a

) For another deduction see F. A. H. Scureemakers, Die heterogenen Gleich
gewichle von H. W. Baknuis Roozesoon. IlI. 289.
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reaction; the gquantities A,...2, of the phases participating in this
reaction are defined by (10). The change in entropy occurring with
this reaction =(2H) is defined by (11), the change in volume Z(2 F)
is defined by (16).

Some of the coefficients 2,...A, are positive, other ones are
negative. As long as we do not assume for this a definite rule, we
may arbitrarily interchange positive and negative. We assume the
following: The coefficients of the phases, which occur with a reaction,
are taken positive; the coefficients of the phases which disappear
with the reaction, are taken negative.

Now 3(J) is the algebraical sum of the quantities of the phases
which participate in the reaction, of course this is zero.

Z(2y) is the algebraical sum of the guantity of the component T
which participates in the reaction; this is also zero. The same is
true for the other components.

As the component X does not occur in the invariant (P or 7')
equilibrium, 2(4r) has, therefore, another meaning. When we add,
however, a little of the component X to this equilibrium, then it is
divided between the n phases; this division is defined by (7), so
that 2, ...2n and consequently also X (1z) are defined.

Now we imagine a reaction in the invariant (P or I") equilibrium;
A, ... A, represent, thevefore, the quantities of the phases participating
in the reaction. When {hose phases would contain the guantities
&, ...2, of the new component, then X (ir) would be the algebraical
sum of the quantity of the component X, which participates in this
reaction. For this reason we shall eall Z(2x) ‘“the fictitious quantity
of reaction of the component X ”.

Now we take a point o%: the limit-curve of a region, e.g. point
h on the limit-curve a b in fig. 1. (XVI). This limit-curve represents
an equilibrium of n—1 components (viz. the components ¥, Z, U..)
in n phases, consequently a monovariant equilibrium. In the point
b itself PTy,y, .. 22, ..etc. have definite values; the same is true
for the ratios of 4, ...4, which are defined by (10) Now we add a
little of the component X, this is divided over the n phases; this
division is defined by (7). For a definite value of e.g. x, the ratios
Z(ax): ZAH) and Z(dz): T (A V) are also defined. In accordance with
(12) and (15) we know consequently also (d1)p and (dP) 7.

When (dT')p is positive, then the region E is situated at the right
of the point &; we enter then the region, just as in fig. 1 (XVI) starting
from % in the direction Al

When (dP)7 is negative, then the region I is situated below
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point h; then we enter the region, justasin fig. 1 (XVI) starting from
h in the direction Am.
Consequently the region E is situated at the right and below the

point A.
The direction of curve ab itself is defined in every point by:
dP 2 (' H
o 2O an
T — = (A7)

It follows from our assanmption over the sign of (d7")p and (dP)r
that we' have assumed X (22): Z(+H) to be negative and = (2):
EZ(V) also to be negative. Then it follows from (17) that curve
ab must be a curve, rising with the temperature, in the vicinity of
point %, as is also drawn in fig. 1 (XVI).

In fig. 3 (XVI) abchd represents a limif-curve which has a maxi-
mum of pressure in & and a maximum of temperature in ¢. It
follows with the aid of (17) from the direction of branch ad that
T(H) and Z(27) have the same sign; we now choose the signs
of 2,...2, in such a way that both are positive. Then it foliows

from the direction of the branches bc and c¢d with the aid of (17),

which signs Z(2H) and Z (4 V') must have on those branches. Then
we have:

on branch adb T@QH) >0 Z@TV)y>0
in b ZrH)=0 ZAV)>0
on branch be¢ (A H)<O0 TGAV)>0
in ¢ ZaH)<O ShV)y=0
on branch ¢d X H)<0 (A V)< 0

" In each point of curve abchd Z(dz):has a definite sign; we are
able to find this with the aid of (7) and (10).

When we assume that X(4x) is negative in each point of the
curve, then it follows from (12) and (15) that the region £ must be
gituated entirely within the limit-curve abed and consequently not,
as in fig. 3 (XVI), where the part afe is situated outside.

When in each point of the curve abed 3 (Az) >0, then it follows
from (12) and (15) that the region must be situated at the left of
and above branch ab, at the right of and above branch &c, at the
right of and below branch ¢d. Then we bave fig. 5 (XVI). [As itis
apparent from the position of the letters, the printer has turned
this figure; for this reason the reader bas to place it in such a way
that the tangent is Lorizontal in & and vertical again in c].

We may assume also that X(iz) is positive in the one part of
the curve, negative in another part. We assume that X(%2) is
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positive in part abf of curve abed fig. 3 (XVI) and negative
in the part fcd. Then it follows from (12) and (15) that the region
must be situaled as is drawn in fig. 3 (XVI) viz. that a part a fe
of this region must be sitnated outside the limit-line and that this
" region must have a turning line ef.

It appears from the following that this point / must be a point
of the turning-line. In this point X (22) = 0. As in this point also
the equations (10) are valid, a phase reaction 2,1, 4-...4 2 £7,=0
may occur between the n phases of the equilibrium £ = F\ - ... + Fy,
in which an infinitely small quantity of the component X occurs
now also.

Consequently when in a definite point f of curve abcd = () =0,
then f is a common point of turning- and limit-line; later we
shall see that f is a point of contact. When X (2) changes in
sign in f, then f is a terminating point of the turning-line as in
fig. 3 (XVI); when however X(Jx) does not change its sign in f,
then f is not a terminating point, but the curve proceeds further.

From (12), (15) and (17) follows the relation:

ar
(dNp = — | — .. . . . ('8
@i a@ne =—(3) (19)
. . : 1 dP
The index 2 =0 in the second part of (18) indicates that 77

is true for the limit-curve, in which the component X is missing.

In order to comprehend the meaning of (18), we imagine the
P, T-curve of the limit-equilibrium, to be drawn in which the com-
ponent X does not occur, therefore. For this we take the curves
ab and cd in the figures 1, 2 and 4 (XVI) and curve abed in
the figures 3 and 5 (XVI). [We have to place again the latter fignre
in the right position].

We shall call the branches on which the pressure increases with
increase of 7 ihe ‘“ascending” branches, e.g. the branches a b and
cd in the figures 1, 2, 3, 4 and 5 (XVD. A branch like'e.g. bc in
figs. 3 and 5 (XVI), on which the pressnre decreases at increase
of T, is called a “descending” branch.

=0

>
On an ascending branch (%,) is positive, then it follows from (18)

that (dP)r and (dT)p have opposite signs. When (d7")p is positive
and consequently () negative, then the region is sitnated at the
right and below the branch; this is the case with respect to branch
ab in the figs. 1, 2 and 4 (XVI) and with respect 10 branch cd in the
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figs. 2, 4 and 5 (XVI). When (dT')p is negative and (£ P)r consequently
positive, then the region is situated at the left and above the
branch; this is the case with respect to branch a b in figs. 3 and
5 (XVI), and with respect to branch c¢d in the figs. 1 and 3 (XVI).

Consequently we find: A region is situated always at the right
and below or at the left and above the ascending branch of its
limit-curve.

P
On the descending branch of a limit-curve (Z_T) is negative. .It
=0 .

follows from (18) that then (dP)r and (dT)p have the same sign.
When both are positive, then the region is situated, therefore, at
the right and above the branch. When both are negative, then it is
situated at the left and below the branch. In fig. 5 (XVI)the region
is situated at the right and above branch bc¢; in fig. 3 (XVI) the
region is situated at the right and above the part b f, and at the
left and below the part fc¢ of branch & c.

Consequently we find:

a region is sitnated at the right and below, or at the left and
above the ascending branch of its limit-curve; it is situated at the
right and above, or at the left and below the descending branch of
its limit-curve.

In Communication XI on: Equilibria in ternary systems, we
have already deduced this same property for a special case viz. for
the ternary region F 4 L~ (), in which F represents a binary
compound, with respect to its binary limit curve F--L--G.

Now it appears that this is true in general for each arbitrary
region with respect to all its limit-curves.

We may express the results obtained above also in another
way. The equilibrium E=F, +...+ F,of n—1 components in
n phases is monovariant or invariant (P or 7I'). When we add a
little of a new substance X, then a new equilibrivm B'=F", 4-... 4 F'»
may arise. Herein the invariable phases have the same composition
as in Z; the variable phases (which of course not all need to
contain the new substance X) differ still only very little from
those in Z.

We now may put the question:

how must the temperature change under constant P or: how
must the pressure change at constant 7" in order that in both cases
the equilibrium % passes into E’.

It is clear that both questions are only another form of the
questions, treated above: how must the temperature be changed
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under constant P and the pressure at constant 7" in order to
pass from a limit-curve into the corresponding region.

We take the equilibrivm F=L 4+ F,+ F, 4 ... of n—1 com-
ponents in 7 phases {or of ncomponents in n - 1 phases). Herein
F,F,... represent solid substances of invariable composition and
L a liquid. On addition of a new substance X this occurs then
only in the liquid.

When in this equilibrium Z at constant 1" and under constant P
there occurs the reaction: )

AL+ 2,F, 4+, F,+ ..... =0 . . . . (19)
then X (Az)==2,~, when viz. « represents the concentration of the
new substance in the liquid.

When we put A, =1, then Z(?H) and X (L V) are the increases
of entropy and volume, when one quantity of liquid is formed at
the phase-reaction. We represent them by AH and AV.

(12) and (15) pass now into:

RT & RT &

@hr =— 757 AV

When we represent by &AW the quantity of heat which is to be
added in order to form with the reaction one quantity of liguid,
then (20) passes into:

(dT)p:—

and (AP)y = .20)

RT® RT &
AP)p = ..o (21
- and (AP)r=-r7 (21)
Reaction (19) may represent the common melting of the solid
substances F, F,...; this is the case when the reaction is of the form:
LZWF, + 3, F 4 ... .. 2L . .. . . (22
and when 2, 3, are positive.
When the reaction is of the form:

LE, A F ., 2L+, F 4 . ... . (28)
in which we take also positive all coefficients, then it represents the
conversion of the liquids F, F, ... into F,... when simultaneously

liquid is formed.

Now we assume that heat is to be added at the formation of
liguid from solid substances, consequently at melting in accordance
with (22) and at conversion in accordance with (23); then AW is
positive; the change in volume at melting or conversion may be as
well positive as negative. Now it follows from (21):

The common melting- or conversion temperature of one or more
substances is lowered by addition of a new substance;

the common melting- or conversion-pressure of one or more sub-
stances is;
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raised by a new snbstance, when the volume increases on
melting or conversion;

lowered, when the volume decreases on melting or conversion.

This increase and decrease are at first approximation proportional
to the quantity of the new substance.

When we apply those rules to the melting of a simple substance,
then follows the known rule of the decrease of melting or freezing
point; the first formula (21) is then the known formula of RaovLr-
vaN ’1 Horr.

We may apply the previous deductions also when we substitute
in (19) the hquid L by a gas (. In general AV is then positive
and approximately equal to the volume } of the gas; by this we
may gtve another form to the second formula (21) viz.

@P)yp=Px . . . . . . . . (29

We may deduce the previous rules also in the following way.
We take the equilibvium B = L4-F,+F,4 ..., in which the new
substance X is not yet present under constant pressure; then it is
invariant (£P) and it consists at a definite temperature, which we shall
call 7,. When we assume that reaction (22) takes place from left
to right at addition of heat, then it follows:

FoAF 4. .... 2L AH>0

(L) (F,) (F) -
towards lower 7' | towards higher 7.

Consequently the equilibrium (Ly=F, 4 F, -} ... consists at
temperatures lower than 7. When we add the new substance X,
then F passes into ' =L'+ F,+ F,+ ..., in which L, differs
from L; this equilibrium £’ exists at a temperature 7” which differs
from T.

When we take away the liquid Z’ from Z’, then it passes into
F,4 F,+ ..., consequently in the equilibrium (L) discussed above;
as this exists at lower temperatures than T, it follows 7" < 7.
On addition of the new substance the common melting-point must
fall, therefore.

From reaction (23) we find the same for the common point of
conversion. When we take at constant temperature the equilibrium
E=L+4 F,+ F,+..., in which the new substance is not yet
present, it is invarviant (Z'); then it exists under a definite
pressure [

-10 -
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When reaction (22) takes place with increase of volume from
left to right, then follows:

F,+F, +..... =L AT>0
@ ] EYE) ...
towards higher P | towards lower P
The equilibrium (L)=F, + F, +.... exists, therefore, under
pressures, larger than P,. Hence is follows that the equilibrium £’
occurs also under a pressure higher than P,. Consequently when
at common melting increase of volume takes place, then the melting
pressure rises.
From reaction (23) the same follows for the common point of
conversion.
When we assume that AV <0, then it follows that on addition
of the new substance the pressure of melting or conversion falls.

Now we take the equilibrium:
E=L+L,+ ..... + F,+F,+.....

of n—1 (or ») components in n (or n - 1) phases. Again L, L,
represent liquids, ', F, solid phases of constant composition. Formerly *)
we have called the temperature at which this equilibrium oceurs
under constant pressure the “Schichtungstemperatur’; we may call
it also the stratification-temperature. We write the reaction occurring
in this equilibrium:

AL A42,L,+ ..... +uw F,+u, Fy4 oo =0. (25)
We may distinguish at (his reaction the 2 main types:
wF A, o+ 2400, + AL+ .. g Fyg ... (26)

M+ oo+ Py, Py 200 o g Fy ol (27)
in which we take all coefficients positive. In (26) the solid substances
may be wanting on the right side, in (27) on the right or on the left
side. Experimental examples of both types are known?®). In orderto
express the difference between the two reactions we shall say: in
(26) all liquids are situated in reaction-conjunction, in (27) two or
more are situated in reaction-opposition *).

1) K, A. H. ScHREIMAKERS, die heterogenen Gleichgewichte vor H. W. BARwUIS
Roozesoom 1112 108.

3) . A. H. ScurriNEMAKERs ibid. 1112 106 —~113, 193—203.

3) In order to prevent confusion, see the following. In the books I1I* and [1I?
mentioned above phases are many times spoken of which are sitnated in the diagram
in conjunction or opposition. When we call this situation diagram conjunction and
diagram opposition, then il appears that reaction-conjunction corresponds with dia-
gram opposition and reaclion-opposition with diagram-conjunction.

-11 -
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When we add a new sabstance, then this divides itself between
the liguids; its concentrations »,z,....are defined by (7). [It is
apparent that the w’s in (7) have quite another meaning as in (25),
(26) and (27)). -

For reaction (26) X (J2) = 2@, + 4,4, + ..., in which occur only
the 4’s, not the w’s. As the X’s are all positive, Z(22) is also positive.
With this we assume that heat must be added, in order that reaction
(26) takes place from left to right, so that also X (2 H) is positive.
The sign of Z(aV), however, is indefinite. [It is apparent that in
Z(AH)and Z(AV) the u’s of (26) occur also].

Now it follows from (12) and (15)

@Tp<0 and @P)r20 . . . . . . (28

Hence it follows: when we have an invariant (Por 7') equilibrinm
with 2 or more liquids, which are situated all in reaction-conjunction
and when we add a new substance, then:

under constant P the strafification temperature is lowered ; -

at constant 1’ the stratification-pressure is raised when the volume
increases at the formation of the liquids;

lowered when the volume decreases at the formation of liquids.

For reaction (27) is

SRey=2% 2 + ..... — e, — A, — . ..
so that X(4x) may be as well positive as negative. This depends
on the partition of the new substance X between the different liquids.

In order to illustrate this further we consider a definite case,
viz. the equilibrium

E=L +L,+Z+ U+ ..... +N.. L. (29
between the n components ¥V Z... N. Consequently in this equili-
brium,all components, excepted Y, occur as solid phases. As there
are, therefore, n—1 solid and 2 liquid phases, it is invariant (P or
T). Now we represent the reaction by :

AL 42,0+, Z+4, 0+ .. ... F gt N=0 . (30)
so that Z(Az)=141, & 4 2,2, For the definition of the relation
between 2, and 4, we take from (10) the equation X (?y)=0.
As the substance Y occurs only in the two liquids, it follows:

202 =4y, +2,y,=0_, . . . . . (8])

Hence it appears that A, and 2, have opposite signs, so that
reaction (30) belongs to type (27). We write it in the form:

WL +23Z+4, 0+ .....2L . . . . (39

We have put, therefore 2, =1, consequently 2, is positive; of
course one or more of the coefficients 4,.... may be negative.

-12 -
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Further we assume that L, is the liquid, which is formed on addition
of heat. [When this should be the case with L,, then we should
have placed L, in the left part of (32)]. Now we have:

EAy)=y,— 4y, and @G s ==z, — A, x,.
Hence it follows:

Z(l.v);wl(%—z—:). C ... (39)

Now it follows from (12) and (15):

a2
i 1

NG

RT x, (fl - &)
Z, %
AV

Herein AW is the heat, wanted for forming one quantity of the
liguid L,; AV is the increase of volume occurring at this formation,
which can be as well positive as negative.

Now we shall mean by partition-coefficient of a snbstance: the
concentration of that substance in the liquid, which is formed on
addition of heat, divided by the concentration of that substance in
the other liquid. @, :x, is consequently the partition-coefficient of the
new substance, y,:7, that of the component, which does not occur
as solid phase.

Consequently we find:

when in an invariant (P or T) equilibrium with 2 liquids only
components occur as solid phases, then both lignids are situated in
reaction-opposition. The stratification-temperature under constant P
by addition of a new substance:

is elevated (lowered) when the partition-coefficient of the new
substance is smaller (larger) than that of the component which does
not occur as solid phase?).

We may deduce from (35) similar rules for the influence of a
new substance on the change in pressure at constant temperature.

We may also give a more simple form to (34) and (35). We have
viz. expressed the concentrations of the components in the liquids
in such a way that each liquid contains in all one molecule.
We may, however, also mean by concentration the quantity of the

@np =— (349

and

@P)r = (35)

1) For some examples of the influence of a third substance on binary equilibria
see F. A. H. ScureiNEMAKERS, Die heterogenen Gleichgewichte von H. W. Baguuis
Roozesoom 1112 160.

-13 -
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components when the liquid contains one molecule of the component

which does not oceur as solid phase, consequently in our case of

the coraponent Y. As, therefore, y, and y, become = 1, (34) and (35)

pass into:

RT? (r,~a,)
AW

RT (a, -
and (dP)Tz—(Z’]-”—l). . (36)

@Np =—

Now we find:

the stratification-temperature is raised (lowered) under constant
P on addition of a new substance, when the concentration of the
new substance in the liquid, which is formed on addition of heat,
is smaller (larger) than its concentration in the other liquid.

The first formula (36) has been deduced formerly for equilibria
with two') and more*) components.

To be continued.

Leiden, Inorg. Chem. Lab.

1) F. A. H. ScHREINEMAKERS. Zeitschr. f Phys. Chem. 25, 320 (1898).
%) H. A. LorenTz ibid. 25. 332 (1848).
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