Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)
Citation:
J. de Vries, A Congruence of Conics, in: KNAW, Proceedings, 22 II, 1920, Amsterdam, 1920, pp. 641-644
This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. — "A Congruence of Conics". By Prof. Jan de Vries.

(Communicated at the meeting of January 31, 1920).

- 1. We shall suppose, that a trilinear correspondence 1) exists between the ranges of points (A_1) , (A_2) , (A_3) lying on the crossing straight lines a_1 , a_2 , a_3 . Through each triplet of corresponding points A_1 , A_2 , A_3 , let a conic λ^2 be passed which intersects the fixed conic β^2 twice. The congruence $[\lambda^2]$, arising in this way, will be examined more closely; it passes into a congruence of circles, if β^2 becomes the imaginary circle at infinity.
- 2. Pairs of lines. In four different ways λ^2 can degenerate into a pair of straight lines.
- 1. One of the lines, g, rests on a_1 , a_2 , a_3 , the other, h, lies in the plane β of β^3 .

If we keep the point A_1 fixed, A_2 and A_3 describe projective ranges, so that $g_{13} \equiv A_1$, A_2 , describes a quadratic scroll. There are therefore two lines g_{23} resting on a_1 ; the two supporting points A'_1 will be associated to A_1 . Each point A'_1 belongs to one point A_1 ; for the transversal through A'_1 of a_2 and a_3 determines two points A_2 , A_3 , hence one point A_1 . Three times A_1 coincides with A'_1 ; there are therefore three lines g_{123} , each containing a group A_1 , A_2 , A_3 . Each line A_{123} in β , intersecting g_{123} , forms together with this line a pair of lines belonging to the congruence. To group 1 belong accordingly three systems, each consisting of a fixed straight line and a ray of a plane pencil.

- 2. One of the lines, g_{23} , rests on a_2 and a_3 , the other lies in β . To the intersection A_1^* of a_1 with β a scroll (g_{23}^*) is associated, which intersects β in a conic γ_{23}^2 . Each ray of the plane pencil (A_1^*, β) intersects on γ_{23}^2 two lines g_{23} , and forms with each of them a pair of lines. Group 2 contains therefore three systems, each consisting of a ray of a plane pencil and a straight line of a quadratic scroll.
- 3. Let us denote the point of a_s associated to A_2^* , A_1^* , by A_1^{**} . Each line through A_1^{**} resting on $A_2^*A_1^*$, forms with the latter a

¹⁾ R. STURM, Die Lehre von den geometrischen Verwandtschaften, I, 320.

pair of lines. Also here we find three systems, each consisting of a fixed line and a ray of a plane pencil.

4. The line g rests on a_2 , a_3 and β^2 ; the line h cuts a_1 and β^3 . Through the point B of β^2 passes one transversal $g_{23} \equiv A_2 A_3$; the corresponding point A_1 determines the plane of λ^2 and in this way the point B' of β^2 ; $h_1 \equiv A$, B' forms with g_{23} the pair of lines. We find therefore three systems of pairs of lines in group 4.

Let us consider the correspondence (B, B'). Any ray h_1 of the plane pencil $(B'A_1)$ is cut by two rays g_{23} of the scroll corresponding to A_1 ; the transversal through B' of a_2 and a_3 is associated to a definite point of a_1 , and intersects the corresponding ray h_1 in B'. Hence the ruled surface of the pairs of lines g_{23} which we have associated to the rays h_1 , intersects the plane $(B'a_1)$ along a cubic passing through B'. But in this plane lies a line g_{23} connecting the points A_2, A_3 in $(B'a_1)$. The ruled surface (g_{23}) is therefore of order four; it intersects β^2 besides in B' in seven points B, which in the correspondence in question are associated to B'. Each of the eight coincidences is the double point D_1 of a pair of lines; the locus of D_1 is for this reason a twisted curve of order eight, g_1^8 .

The lines g_{22} form a ruled surface of order four with nodal lines a_2 , a_3 and directrix β^2 . To each point A_1 are associated four points D_1 , while to a point D_1 there corresponds one point A_1 . From this follows, that the order of the ruled surface (h_1) with director lines a_1 and d_1^8 , is twelve.

3. Order and class. With a view to defining the order of the congruence, we consider the conics λ^2 through a point P in β . To them belong in the first place the three pairs of lines of group 1, each formed by one of the lines g_{123} together with the line through P and the point (g_{123}, β) . Further the six pairs of lines of group 2, defined by the three rays PA_k^* . As each of these three rays belongs to two pairs, we come to the conclusion, that the order of $[\lambda^2]$ is nine.

A plane through an arbitrary line k intersects a_1 and a_2 in the points A_1 , A_2 , and a_3 in a point A'_3 , which we associate to the point A_4 corresponding to A_1 , A_2 . Of the scroll (g_{12}) defined by A_3 , two lines rest on k; hence two points A'_3 are associated to A_3 . As A'_3 coincides three times with A_3 , three planes $A_1A_2A_3$ pass through k, which is consequently a chord of three conics λ^2 . The class of $[\lambda^2]$ is therefore three.

4. Singular chords. According to a well known property of the

trilinear correspondence there are two neutral pairs A_1^n , A_2^n , which form a group with any point A_1 . The line $A_1^n A_2^n$ is therefore a singular chord.

One of the conics λ^2 consists of this chord and the line in β resting on it and on α_s . From this follows, that the locus of the λ^2 which pass through A_1^n and A_2^n , is a *cubic dimonoid*, containing α_s .

The conical points of the six dimonoids can be indicated by A_1^n , nA_2 , A_2^n , nA_1 , A_2^n , nA_3 ; in this order the six neutral chords are each time defined by two successive symbols. They form a hexagon, inscribed in a_1 , a_2 , a_3 .

To the singular chords belong apparently also the three lines g_{123} and the three lines $A_k^* A_l^*$ in β .

Also the three lines a_k are singular. For each plane through a_1 contains the conic determined by the intersections with a_2 and a_3 . Let us consider the intersection of the surface \mathfrak{A}_1 , formed by these conics, with the plane β . To this belongs the conic β^2 ; the rest consists of straight lines. On a_1 rest two lines a_2 ; their intersections with a_2 determine together with the point a_1 two straight lines belonging to a_1 .

The line $A_1 * A_2 *$ is cut by a line $A_1 A_3$ of the scroll corresponding to $A_2 *$; it lies; therefore on \mathfrak{A}_1 , as well as the line $A_1 * A_3 *$. Each of the three lines g_{123} forms a pair of lines with a straight line in β through $A_1 *$. The intersection of \mathfrak{A}_1 with β is therefore of order *nine*.

The locus of the conics λ^2 which intersect a_1 twice, is accordingly a surface \mathfrak{A}_1^9 with a sevenfold line a_1 , containing the lines a_2 , a_3 and the conic β^2 .

5. Singular points. All points A_k of the lines a_k are singular. A straight line k through a point A_1 is intersected by two lines g_{2k} , is therefore a chord of two λ^2 passing through A_1 . The planes of the λ^2 through A_1 envelop consequently a quadratic cone; from this follows, that through any point of β^2 two of these λ^2 pass. Hence the locus of the λ^2 through A_1 is a surface $(A_1)^4$ with double curve β^2 , and conical point A_1 .

Also the points B of β^2 are singular. Through two points B, B' pass three λ^2 ; hence β^2 counts three times in the locus \mathfrak{B} of the λ^2 through B. Moreover β and \mathfrak{B} have in common the three lines through B meeting the lines g_{123} , and the lines joining B and the points A_k^* , which have to be counted twice. We conclude from this, that \mathfrak{B} is a surface of order fifteen with threefold curve β^2 and three nodal lines a_k ; the point B is twelvefold.

6. Surface of the conics resting on a given line l. Let us consider the intersection of this surface with the plane β . To this β^2 belongs fifteen times. Further three rays h_{123} which intersect l and each of which forms with one of the straight lines g_{123} a λ^2 . Also the three lines joining the points A_k^* with the point (l,β) and each belonging to two pairs of lines. Then the two rays of the plane pencil (A_k^*,β) , each forming a λ^2 with a straight line A_lA_m resting on l; in all six rays. Finally the three lines $A_k^*A_l^*$, each of which belongs to a λ^2 of which the second component is the ray through A_m^{**} intersecting l. The complete intersection is therefore of order 48.

The surface in question is accordingly a A^{48} with fourfold lines a_1, a_2, a_3 , fifteenfold curve β^2 and three double conics λ^2 ; these are the conics which have l for a chord and therefore intersect it twice.

Besides the lines mentioned lying in the plane β , A contains the three lines g_{128} , two lines g_{12} , two lines g_{12} , and two lines g_{12} , all crossing the line l; further two lines g_{12} , two lines g_{23} and two lines g_{13} , intersecting l; then three lines resting on l, successively directed to the three points A_k^{**} ; finally 3×16 pairs of lines, the components of which each contain one point of β^2 ; in 3×4 of them the line g_{kl} and in 3×12 the line h rests on l.