Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Haalmeyer, B.P., Note on linear homogeneous sets of points, in:
KNAW, Proceedings, 22 II, 1920, Amsterdam, 1920, pp. 681-683

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "Note on linear homogeneous sets of points". By Dr. B. P. Haflmeljer. (Communicated by Prof. L. E. J. Brovwer).
(Communicated at the meeting of October 25, 1919).
We shall call a linear set of points \boldsymbol{x} homogeneous in the interval $A B$, if its subset, interior to an arbitrary sub-interval, allows of a uniformly continuous one-one representation on the subset of π interior to $A B^{2}$).

If the set $\boldsymbol{\pi}$ is everywhere dense in the interval $A B^{2}$), each of these representations determines a continuous one-one correspondence between the entire linesegments. As will be shown, we may in this case, assume the correspondences, postulated for a homogeneous set of points, to leave relations of order unaltered.

Let $C D$ be a sub-interval of $A B$ (possibly identical to $A B$) and E a point between C and D. We consider the following possibilities:

1. For every system of points C, D, and E the representation of the interval $C D$ on $C E$ leaves relations of order unaltered.
2. This is not the case.
first case. Suppose a representation of $A B$ on $F H$ has to be effected (order from left to right A, F, H, B). According to the assumption both $A B$ and $F H$ can be represented on $A H$ with unaltered relations of order, hence $A B$ on $F P H$ in the same way.

Second case. The assumption postulates the existence of an interval $C D$ which can be represented on its sub-interval $C E$ with inverted relations of order. Considering this representation is a continuous one-one correspondence between enture linesegments, it follows from the Drdekind axiom that a point P exists (not necessanily belonging to the set π), which corresponds to itself. This however establishes the possibility of representing the part of π interior to $C D$ on itself with inversion of order-relations. It follows that the part of π interior to an arbitrary sub-interval of $A B$, possesses this same

[^0]Proceedings Royal Acad. Amsterdam. Vol. XXII.
property, hence all correspondences, postulated for the homogeneous set π, can be effected in such a way as to leave relations of order unaltered.

We now formulate the following theorem: The linear continuum cannot be composed of two homogeneous sets of points, possessing the same geometric type.

Our demonstration is to be an indirect one. Let the open linesegment $A B$ consist of two sets of points π and π^{\prime} of the kind mentioned. These sets π and π^{\prime} possess the same geometric type, that is there exists uniformly continuous one-one correspondence between them. Evidently π and π^{\prime} are both everywhere dense on $A B$.

To begin with, we assume that this correspondence inverts relations of order. Then π can be divided into two subsets $\pi_{1}{ }^{\prime}$ and π_{2} such that every point of π_{1} is sitnated on the left, and every point of π_{2} on the right of the corresponding point of π^{\prime}. Besides, every point of π_{1} lies on the left of every point of π_{3}. Hence, as $\pi_{1}+\pi_{3}$ is everywhere dense, the Dedwind axiom postulates the existence of a separating point R. This point R however can belong to neither π_{1} nor π_{2}. For instance let us assume R to be a point of π_{1}, then it is situated on the left of the corresponding point of π^{\prime} and the continuity of the correspondence makes that this is also the case for all points of \boldsymbol{x} inside a certain finite neighbourhood of R, which means a contradiction. Hence R belongs to π^{\prime}, but this also leads to a contradiction as the fact that R is situated either on the left or on the right of its corresponding point cannot be made to agree with the circumstance that all points of $\boldsymbol{\pi}^{\prime}$ on the left (right) of R are also situated on the left (right) of their corresponding points.

We now come to the second possibility, namely that the correspondence between π and π^{\prime} leaves relations of order unaltered. We distinguish two cases:

1. The set π contains both points situated on the left, and points situated on the right of the corresponding points or π^{\prime}.
2. All points of π lie on the same side of the corresponding points.

First case. Let the point P_{1} of \boldsymbol{x} be situated on the left of 1 ts corresponding point P_{1}^{\prime} and P_{1} on the right of P_{2}^{\prime}. The subset of π between P_{1} and P_{2}, including the endpoints shall be called π_{1}. Let ${ }_{1} \pi_{1}$ be the subset of π_{1} consisting of those points, which, together with all points of π_{1} situated more to the left, precede their corres-
ponding points ${ }^{1}$), and let R be the last limiting point of ${ }_{2} \pi_{1}$ on the right hand side. Then the assumption that R precedes its corresponding point, as well as the assumption according to which R follows on its corresponding point, leads immediately to a contradiction (we here consider the transformation of the entire segment $A B$ in itself, which is determined by the correspondence between π and π^{\prime}). Hence the point R must correspond to itself, but this is out of the question, both if R belongs to π or to π '.

Second case. All points of π lie on the left of the corresponding points. Let the points P_{1}^{\prime} and P_{2}^{\prime} of π^{\prime} correspond to P_{1} and P_{3} of π respectively and let the order from left to right be $P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}$. Of course, such a system of points can always be found.

We choose a point C of π^{\prime} on the left of P_{1} and we subject π^{\prime} to a uniformly continuous one-one transformation in itself, such that P_{1}^{\prime} passes into C and P_{2}^{\prime} remains in its place. A transformation of this kind can certainly be found as π^{\prime} is homogeneous. Let $\pi^{\prime \prime}$ be the transformed set, then a uniformly continuous one-one correspondence exists between $\pi^{\prime \prime}$ and π, such that $\boldsymbol{\pi}^{\prime \prime}$ contains both points preceding and points coming after the corresponding points, and the reasoning used for the first case can now be applied.

To Prof. L. E J. Brouwer I am indebted for several remarks turned to advantage in the preceding note.

1) "Precede" here stands for "are situated on the left of".

[^0]: ${ }^{1}$) An analogous definition has been given by HaUSDORFF for ordered sets, Grundz. der Mengenlehie p. 173. For linear sets of points Brouwrer has introduced the following more extensive definition: a linear set of points π is homogeneous in the interval $A B$ if for each couple $P Q$ of its points interior to $A B$, there exists a continuous one-one transformation of the interval $A B$ in itself, such that π passes into itself and the point P into the point Q. These Proceedings XX, p. 1194. ${ }^{2}$) Which obviously is the case if π has any points inside $A B$.

