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Mathematics. — “On n-uple orthogonal systems of n—1-dimensional
manifolds in a general manifold of n dimensions.” By Prof.
J. A. Scpoureny and D. J. Srruk. (Communicated by Prof.

J. CARDINAAL).

(Communicated at the meeting of October 25, 1919).

IL -

7. DupIN’s theorem and an inversion. From theorem I we conclude
that Dupin’s theorem also holds for a general manifold:

The V.1 of an n-uple orthogonal system intersect along the lines
of curvature.

This theorem may be inverted in the following way:

When n—1 mutually orthogonal V,—i-systems, determined by the
congruences iy, . . ., in—1 perpendicular to them, intersect along a con-
gruence i,, and when we can choose the arrangement of the first
congruences in suchawaythat the congruence i, in each Vg1 L iy, . ., ip—1
is a congruence of lines of curvature for the V. _i being the inter-
section of this Vi with the Vi Liy, k=1,....,n—1, then
i, is perpendicular to a V.—i-system, orthogonal to the n—1 given
systems, and i, ..., 1, are the congruences of the lines of curvature

for each of the n systems.
Proof. When the fundamental tensor ’g of the V, is writlen:

s—aa=bb=..., . . . . . . (72)
then the ideal factor a can be decomposed as follows: '
a—a+4a, . . . . . . . . (73
in which a' contains but ig,...,is, a" but i,,..., iz—1.
‘g'=—a/a = bb' =.... is the fundamental tensor of the V,_p41 L
i,...,ig—1 and the geodesic differentiation of a vector v, which is

wholly situated in this V,_p44, is determined by the equation:
Viy=1vV@.va. ... ... (7149
Hence for iz we have:
il Vie=ih 1 V(iz.a)a=i,? V(ir.a)a +1,! V(iz.a)a" =

. (75
= lnl V' ir + in]: v (ik.a’) a'. ( )
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. According to the supposition i is a congruence of lines of curvature
for the V,_; being Lir in the considered Va—i+1, so that according
o (38): )

#in ! Vig=0kin, . . . . . . . (76)
in which ¢ is a still unknown coefficient. Hence we conclude
from (76):

1o, k—1
“inl.Viszkin-l— 2 Briig, . . . . . (77)
J
in which pz; are still unknown coefficients. So it is supposed that
it must be possible to arrange i,,...,1,1 in such a way that the
equation (77) is satisfied in the same time for all values £=1, ... ,n—1.
Since

ip.it=20, ElI=1,....,n, k==l . . . (78)
we find by application of i,.V:
UL Vir= — 2V . . . . . . (79)
For £ <! we have thus from (77), (78), and (79):
i1 Vir=0, I=1,....,n—1, . . . (80)
hence :
ur; =0 E=1,....,n—1 81)

j=1,....,n—2)°
By this the equations (77) pass into:
2ip! Vi =orin, k=1,....,n—1 . . . (82)
which can geometrically be interpreted in such a way that i, is a
congruence of lines of curvature in each of the n—1 given V,_;-
systems. :
By application of ir.V we conclude from (78):
WiE? Vip=—1 2 Vi k&i=1,....,2—1, . . (83)
Now i; is Fn—y-normal, hence Vi, is symmetrical in £ and =, so
that we have from (80) and (83):
i1iz2 Vi.= 0, Ri=1,,...,n=1, . .+ . (84)
hence i, i Vy—s-normal and i,...,i,—; are the congruences of the
lines of curvature of the V,_; I i,.
Since 1i,,...,in—1 ave Va_g-normal and matually perpendicular,
we have also from (87):
iz Vig=0, hll=1,....,n—1. , . . (83)
so that i,...,i» are the congruences of the lines of curvature
for each of the n systems [ 1i,,...,idn
For a V; the proved theorem can be expressed in this way:
When two mutually orthogonal systems of surfaces intersect along
a congruence of curves, which are the lines of curvature of one of
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%| the two systems of surfaces, then there exists a system of surfaces ortho-
5 gonal to the two given systems and the three systems intersect along
their lines of curvature.
|

-

For the R, this theorem has been first deduced by Darsoux’).

8. LiLenTEAL's conditions. We will now connect different shapes,
in which the conditions occur in literature, for the case that i, is
V,_i-normal, and inquire how far they remain valid, when more
general manifolds are admitted.

In the same way as *h the tensor *p gets a simple significance
when 1, is V,_i-normal. Since on account of {19) and (42):

)
J
{ V~ip=— %127{(&. Vgl e ep + i~y .+ . (86)
the contravariantcharacneri:tic number of x(ix . V)V ~ ix is:
% e,g.ea? (n V)(V~in) =—}epea? i‘ ()€ (in - V) g¥ +
| + { (in - 'V) €5 €u}(in. V) 9] + epea? un =
’ =40 V) ¢t et TV 12 eien i V)l epee? =

= —§(in-V)? g2~ 2 (V—in) ? erepfe’se’n 2 (in. V)ege,] I-gea? tplty=—
Iy

‘A :-—*é(in -V)gg“ﬁ-l‘i(vvin) % ele,a{e’Ae’,az. ((Vin) 1 e{iea+ e[;‘(vin) 1 eu);‘*" . (87)

n + egex? =

! v =3 (. V)P Sel (V—i)leenl (Vinles +
-

+ ex! (V Viﬂ) L M (V in)l. €z -+ eﬁ% (V‘-’in)l iyt (V i;;)l. € =—
l} ==} 0n. V)9 + 262 T'(V <=in) ! Viny j
| from which in connection with (59) we conclude:

, +2;e,91 (Vvin)l.eze’xl.(Vin)l.eu-i—

p— %e'a epin. V) gt = €s(in. V)8 . . (88)

|

) Hence the condition that *h and *p have the same principal
| | directions, for the case n =3, can be written in coordinales:

[J

7

gaa gab gbb
' I (in . V) g (in. V) g“b (i . V) gt =0, (C:)
! | (- V) 922 (in. V) 990 (in . V)" gbb

| - =
Ll }) G. DarBoux, Sur les surfaces orthogonales. Annales sc. de I'Ecole Normale
3 (66) 97—141, p. 110.

i
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and this is exactly the equation given for the first time for R, by
LitieNtaaL '), and to which lately, also for R,, WieriNGA ?) hasagain
drawn the attention. So this condition is a special case from Riccr's
first. It remains also valid for an arbitrary linear element, and
also for n >> 3, then however it is no longer the only condition.

9. Ricer’s conditions. Be i, again V,_j-normal. Then we can choose
an original variable y» and vectors s, and &, so that:]

1
in=0OnSn=—s . . . . . . . (89)
On

By means of this equation we can eliminate i, from (C) and (D)
and substitute 8, for it. -
Since :
(v VYV i) =(n- V)6, Vsu + 1 (V 6)su+ £5.Van},- (90)
we have:
4 . 4
gn? (in, V)(V ~—in) =822 {(in -V 62) V 82 + Onin? VV su

BERCH
+ 3 (Von)inl Vsa+ 4 (int Vsn) V 6nly

or, since:

V On="V (#8n . n)~% = — #6n" (Vsn)} Sn ==—0nlln 4 2%6n 5n 1 (V0n) su, (92)
also:

4 4

gr2(in. V) (V—in) = g2 { (in. V0n) VSn + u? 0l UV 50— 2y 11}, (93)
Since on account of (31) and (69):
ijiz2 (22T (V=i Vis}=§ k2 mu, . . . (94)
the condition (C") gets the shape.

| = k&
lijik? {“Gnn SnlVV S —2umun}=20 3)9 j’:':: 1,2,....,n—1, (C,)
Since : ‘
1 1
vsn-‘-'——"—Vin—}-(V“—)in, e e e (95)
On On
we further have, in connection with (30) and (33):

ijig2Vsn=0, . . . . . . . . (96)
from which by application of (ix.V) may be concluded:

1 1
0'— i1 Vi) 1 (Vin)tix+ 6_—' (it Vig) 1 (Vin)! ij4ijigic 8 VVs=0. (97)
n n

1) R. v. LinientHAL, Ueber die Bedingung, unter der eine Flichenschar einem
dreifach orthogonalen Flichensystem angehort. Math. Annalen 44 (94), 449—457.

) W. G. L. WigriNgA, Over drievoudig orthogonale oppervlakkensystemen. Diss.
Groningen, (18) 59 pp., see p. 13.

8) See note 1) of next page.
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(Vi) i con‘ta,ining but i; and i, on account of (38), we find in
connection with (67):
DR TV s =0, j# b jE L bEL RI=12.n = 1Y) (D)

This equation (D,) can be decomposed into:

i3 (V= s=0,. . . . . . (DY

or:
Lipi3 (V= V) Upr=0, . . . . . . (98)

and :
Lig3(V~V)s=0 . . . . . . (99

4
When K is the Rismans-CHristorrer-affinor of Fa, (99) can
be written: *)

4
i, k3Kt Vyr=0, . . . . . . (100)
or
4
e dKli=0] . . . . . . . (D"

The equations (Cy), (D.), (D',) and (100) are deduced by Ricor.?)
(n—1) (n—2) (n—3)

,the number
1.2.38

The number of the equations (D)) is

(n—1) (1—2) (n—3)
3
mutate not only j and %, but also Z and {*). (D,’) contains third,

(D,") only first differential quotients of ym.
The conditions (D "y vanish 1dentlcally, when the characteristic

, because we may per-

of the equations (D") is

numbers /kjn of, K vanish. Since in a space of constant RiEdMaNy-
curvature X, : -

4
K=2K,@a~b@~hb*s. . .. . . (101)
the equation holds:

4

ini[ikij%KZO,. . . . . . . . (102)

so that the condition (D,")is an identily in such a space, and hence also
in a euclidean space. Thus (D)) reduces in this case to (D',). For

1 (0'3 ) can also be deduced from (84) in an analogous way as (D).

2) Comp. A. R. page 59.

8) G. Rrccr, Dei sistemi ete., p. 814. Here the equations (Cj) and (D) are lettered
(4;) and (B;). G. Ricor, Sui sistemi, p. 151,
4) Compare the observations of Ricar on occasion of a paper of Dracr, Comptes
Rendus 125 (97) 598—601 and 810—811.

§) Compare Of BrancurLukar, 1st. german edition, p. 574.
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euclidean space the condition (D',) has been given by Darsoux *) *). The

4
characteristic numbers (/kjn) of K vanish too, when the Vi, Li,
are geodesic.

10. Livy’s, CavrLEY’s and DarBoUX’s conditions. Differentiating the
relation :
= 0pSp. - - . . . . . . (103)
we get
Vip=(Va)sn+6,Vsu . . . . . . (104
Differentiating again, we get: .

YV in = (VV O'n) Sn + (V Sn) 1 a(V Un) a-- (\7 O'n) V sn + 6n VYV Sn, (105)
and from this and (104) we have for VV 0n:

2 v
%Y 6 = 00 (TV i) L in — 0° (T 80) T in - 7’ (V 6n) (7 ). (106)
n

Since:
(Vi) in==V {(V in) L in} — (V in) 1 @ (Vin) 1 a==h1 *h=(Un . Un) i in,(107)
we get, in connection with (92):

4 4 )
8.2 VYV o,=—x06,"h! *h—20n8, ¢ (VV 8n) 1 sn+ 2 6n tnun. (108)
In connection with (C,) this equation gives a new shape to the
first condition :

1} G. DarBoux, Legons sur les systdmes orthogonaux et les coordonnées curvi-
Yignes I (98), p. 130, form. (35).

%) As a simple example for the application of (Cs) and (D)) for euclidean space,
we can take the system u = ¥, (y)) 4 ...+ Ya (y»), in which 4, . .., yyn are Cartesian
coordinates. To calculate gmea: ete.. it is necessary to find a system of n—1 Vyp—1
which determines in the Vu—1 u = const. a system of coordinates eq, ... Then
#€a; « 81, = Jmay, etc. For this purpose we must try to find #—1 independent
solutions of the differential equations

Leeoy® 0y 0O
i ayz ayl
For the calculation compare e.g. WIERINGA, Diss. p. 21 and seq. Then we can

see that the comdition (D) is identically satisfied, so that only Liuientuar's con-
dition (Cj) remains, which can be written in this case:

Lo..un 0
0 or 2 7, (yl)—qi_::()
3 ayl

1 1 1
I)'lfl YL” Yk"
-erYz.'" — 2 Y‘illl Y[’ Yllll e 2 Ylllg Yk' Yk’ll — 2 Ykllﬂ
or Y/ Y/'—2 Y= AY”+ B, in which 4 and B are constants.
This result has been deduced for »=3 by SkRRLT, and for a general »n by

DARBOUX in another way as has been done here. Comp. DARBOUX, Legons sur les
systémes orthogonaux etc., p. 140 and 141.
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4
i iz % VV 0n == 2 z6," ij ir 2 {Sn1 (V™) Sn}:m)'nij ir? (in1 K1is) (109)
or

4
iy ix 2 7V 6n=>50pin i) irin LK. (04)

Thus for a V, for which the characteristic numbers (nkjn) of
4
K vanish, this first condition can be written:

iyir 2 VYV o =0, ()

This equation expresses that the tensor VVon has the same prin-
cipal directions as *h. The geometrical signification of o, is that
this quantity is proportional to the infinitesimal distance between
succeeding V,_j 1 in measured along in.

In space of constant RizMann-curvature K, we have, in connection
with (101): N

ir?{int ﬁl. in=—K,ijiz? (e’ — inin) =0, . . (110)
from which we conclude that in this manifeld the first condition
has the shape (C,), hence also in eaclidean space. In this
latter ~ case the condition is deduced for m =238 by Lzvy?),
JAYLEY *), DagrBoux °), and for general values of n by DarBoux *).
Thus the necessary and sufficient conditions for manifolds of constant
Ruimann-curvature are (C,) and (D,").

11. WaziNeaRTEN’S condition. We will try to find a shape of the
conditions that only depends on i, and no more on i;, =1, 2,.. ;n—1.
When a tensor, whose principal directions do not coincide with
those of *h, be transvected once with *h, an affinor arises whose
alternating part is certainly not annihilated. Thus the condition that
the principal directions coincide, is that the alternating part of the
first transvection with *h vanishes. Hence (109) is equivalent to:

4 4
Bg (Vi (VY 6)—0n(Vin)in 2K1in}=0, . . (111)
in which B may indicate that the bxvectoi--part has to be taken.

1) M. L#vy, Mémoire etc., p. 170.

?) A. Cayrey, Sur la condition pour qu'une famille de surfaces fasse partie d'un
systéme orthogonal, Comptes Rendus 75 (72), a series of articles.

% G. DarBoux, Sur l'équation du troisitme ordre donit dépend le probléeme des
surfaces orthogonales. Comptes Rendus 76 (78) 41—45, 83—86. See also e. g.
Biavcur-Lukar 1st german edition.

4) G. DarBoux, Legons sur les systémes orthogonaux etc., p. 128. His formula
(82) is our formula (C',).
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Since:

Vi(Vin)! (Vo) =(VVi)1 Vot a(Vin)l@. V)V o, (112
we have:

4
VA{(Vin)l vopz}_‘:BV{(Vin)l VO’,. } = 1/, K2 inVGn—B (Vin) 1 VVO’n,(113)

so that (111) is equivalent to:

4 14 4
g2 [—— V~{(Vin) 1 Voul+ 3 K2i,V0,—6,B(Vi)in2 K! in]=0. (114)

&
Since in a space of constant Rigmann-curvature on acrount of (92)
and (101):
4 4 4 4 4
82K21hnVon=—0282K2intn=—=—206, K, % in~un= 0, (115)

the condition for such a manifold is, on account of (110), that the
component of V _— {(Vix)! Ven} in the region Li» vanishes. On
account however of STokes’ law '), we have for each vector v:

fv.dx=—2;J,f%(v~v)da, .. . . (116)

s 4

in which ¢ is a closed curve and fdo the bivector of the surface-
element of any surface ¢ bounded by this curve. From this we
conclude that in a space of constant RIEMANN-curvature we can also

gwe as first condition that the linear integral of the vector (Viy)! Vo,
along each closed curve in @ Vu_y 1 in vanishes. This condition is the
only one for V,. Foran R, it has been first indicated by WrINGARTEN *)
and Riccr?) has observed on occasion of WEINGARTEN's paper that the
condition holds also for a ¥, of constant RiemaNN-curvature. From
the above-mentioned we see that the condition, but no more as the
only one, holds also for manifolds of constant Riemann-curvature,
for which » > 3.

1} Comp. A. R., page 37 and 61.

2} WeINGARTEN, Ueber die Bedingung, unter welcher eine Flachenfamilie einem
orthogonalen Flachensystem angehdit. Crelle 83 (77), 1—12.

8) G. Rices, Della equazione di condizione dei parvametri dei sistemi di superficie,
che appartengono ad uh sistema triplo orlogonale. Rendiconti Acc Lincel Ser. V,
111, (94) 93—96.

Ricar observes for the case n =238 that WEINGARTEN's theorem remains also

4
valid, when K has the shape:

K=pG@~b)@a~b)+v@E—~i)G~i)

when v is an arbitrary coefficient. This however holds also for general values of #.
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12. Mutually orthogonal V,—yi-systems through a given congruence,
the canonical congruences being not singly determined.

When the routs of (24) are not all different, these roots determine
in general ¢ mutually perpendicular vegions £, ,... ]iqu. Within
the region R, every set of p. mutually perpendicular directions
satisfies the canonical conditions. The equations (47—51) teach us
that it must be possible to choose the canonical directions in each of
the regions R,,a in such a way that they are ¥,_;-normal, when
throngh i, there shall pass n—1 mutually orthogonal V, _(-systems.
Thus the conditions (C”) and (D), depending on (55) resp. (67), i.e.
of the being V,—j-normal of all canonical congruences, will no more
remain valid withont any restriction.

When i, ... .,,qi are the unit-p-vectors belonging to the regions

Ry, ..., li’pq, the equations:
Wl V=0, . . . . . . . (117
p“il.Vyz= a=1,--,.5’~—1,3+1,---79

must be satisfied by pz independent solutions. On account of (B)
we thus have:

(in pi.-. i’/a—1i /'p+1i"' ?’qi)2 7~ ”ﬁizo' . . . (118)
and from this we conclude:

ik"‘inz.ViJ:O, e e e e e (1[9)
k—~i2vh=0, . . . . . . . (120)
in which i, belongs to another region than it and i, and for the rest

the choice is arbitrary, provided £ # [
(119) has entirely the same form as (55) and from (120) follows
for the special case that ij, iz, i each belong to different regions:
irit2vVig=0, . . . . . . . (121)

an equation of the same form, and deduced in the same way as (67).
The equations (C’) and (D) only remain valid under the above-

mentioned restricting conditions. They are besides no longer sufficient.

A sapplementary condition will be found in the following way:
The equation (65) shows:

(Z]c———-lj) i iy 2 v i] + Xijik i3V *h=0, (122)
W —2) ip? Vi +ojiiz? Vh=0.)

valid for the case that ir and it belong to the same region and i,
to another one. Then, subtracting the equations (122) one from
the other we conclude, in connection with (121):

-10 -
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i ~i)' v h=01Y) Jjs£k j#£l kL j k=12, n—1.| (E)

Under the mentioned conditions the equations (C"), (D) and (X)
are not only necessary, but also sufficient. In fact, from (Z) may

be concluded, in connection with (122), since 2z = 4;, that Vi, is
symmetrical in [ and £, when [ and % belong to the same region,
but 7 and [/ do not. From (D) we conclude, in analogical way as
we have explained in the first part of, this paper, that Vi, is
symmetrical in [ and £, when [ and £ belong to different regions,
different from j. (C") tells that Vi, is symmetrical in 7 and £, when
k differs from j. Hence these three conditions are sufficient to show
that Vi, is symmetrical in the region L1i,, and thus that i, is
V,—1-normal.

When we call®) p,p,...p, the multiplicity of the roots
of the algebraic characteristic equation (24), the number of
equations (") is the sum of the two-facforial products of the numbers
P> Pas - -+ Py and  the number of the equations (D) is thrice
the sum of the three-factorial products of these nuinbers. The
number of the equalions (£) is equal to the sum of the products
Ph + Pk . 1)

of the form py ph( 5

!

13, Simplifications for the case that the given congruence is
Vp—y1-mormai.

When i, is V,—synormal, (C) passes into (C,) or (C,), being
valid for the case that i, and i belong to different regions. (D) can
also be brought into the form {D,) and is then valid for the case
that i,, iz and i, belong to different regions.

From (97) follows for the case that ir and 1i; belong to the
same region and 1, to another:

ij (ilc"\il)3 VVsaz=0., . . . . . . (123)
This equation can also be written in the form:

1
i3 Kli,=0%|. . « . . . (E)

which has a formal analogy to (D,"), but which is valid under
different conditions. But the increment of the vector i,, when

1) (E) is the equation {C) of Ricci, Dei sistemi, page 312, but deduced from
*h, and not from V — iy

%) Compare Riccr, Dei sistemi, p. 312.

3) (E)) is (Qy) of Riccr, Dei sistemi, p. 314.
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geodesically moved along the boundary of the surface-element do,
is:?)
4
Dyin=doizi2K%¥%. . . . . . . . (129
So (Z,) demands this increment to remain in the region formed
by ir and i.?) -
Thus we have obtained the following theorem:
III. A system of o' Vu_yi in a Vi, whose second fundamental.
tensor, apart from determined V, r< m, has q singly determined
principal regions R,, ..., qu, but within the regions of more than

one dimension no singly determined principal directions, belongs then
and only then to an n-uple orthogonal system, when by moving
perpendicular to m of the principal regions of *h, the component
of the geodesic differential of ®h, in the manifold determined by these
m regions, has principal regions that coincide with the m mentioned
principal regions of *h, and when besides the increment of in, when in
is geodesically moved along the boundary of a surface-element in any
principal region, remains entirely in this same principal region.

14. Necessary and sufficient conditions that a V. may admit n-uple
orthogonal V. _i-systems.

The condition (D,") is a condition for the V, in which the n-uple
orthogonal system exists. If we wish every system of n mutually
perpendicular (n—1)-directions in each point of the V. to belong to
an n-uple orthogonal V.-system, then (D,") must be valid for every

set of four mutually perpendicular unit-vectors. It can be proved

4
that KX can then be written in the form:

. (F)

K=@ -2((@a-2

in which 2* is an arbitrary tensor. For n =3 lé can always get
this shape and, as has been proved by CoTron?®), every set of three
mutually perpendicular directions in any point of a ¥, can belong
to a triple orthogonal system. It can be proved that (F)issufticient
for n >3 too.

) A. R. p. 64.

%) An analogous geometrical interpretation can also be given to condition (D,").

8) K. Corron Sur une généralisation du probléme de la représentation conforme
aux variétes & trois dimensions, Clomptes Rendus 125 (97) 225—228, compare also
E. Corron, Annales de Toulouse 1 (99) 385—438, Chap. III.

-12 -
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15.  Addendum.

In this paper the product i.i=—== of the system R,°?) is used.
% can be found from the dualities existing in the orthogonal group,
on which the identifications used in the system R,’ are founded.
Now in investigations on differential geometry these identifications
(e.g. of i, and 1,7, 1,) are practically not used. In this case it is
convenient to substitute » by + 1, then » vanishes in all formulae,
and the calculation grows much easier. It has however fto be
noted, that taking 41 for x it is no longer permitted to make use
of the identifications founded on the dualities of the orthogonal group.

1y J A. SceoutreN, On the direct analyses of the linear quantities etc., These
Proceedings 21 (17) 327—341; Die Zahlensysteme der geometrischen Groszen,
Nieuw Archief (20) 141—156.
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