Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J.A. Schouten \& D.J. Struik, On n-tuple orthogonal systems of n-1-dimensional manifolds in a general manifold of n dimensions, in:
KNAW, Proceedings, 22 II, 1920, Amsterdam, 1920, pp. 684-695

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "On n-uple orthogonal systems of n-1-dimensional manifolds in a general manifold of n dimensions." By Prof. J. A. Schouten and D. J. Stroik. (Communicated by Prof. J. Cardinami).
(Communicated at the meeting of October 25, 1919).

II.

7. Dupin's theorem and an inversion. From theorem I we conclude that Dupin's theorem also holds for a general manifold:

The V_{n-1} of an n-uple orthogonal system intersect along the lines of curvature.

This theorem may be inverted in the following way:
When $n-1$ mutually orthogonal V_{n-1}-systems, determined by the congruences $\mathbf{i}_{1}, \ldots, \mathbf{i}_{n \rightarrow-1}$ perpendicular to them, intersect along a congruence \mathbf{i}_{n}, and when we can choose the arrangement of the first congruences in such a way that the congruence \mathbf{i}_{n} in each $V_{n-k+1} \perp \mathbf{i}_{1}, \ldots, \mathbf{i}_{k-1}$ is a congruence of lines of curvature for the V_{n-k} being the intersection of this V_{n-k+1} with the $V_{n-1} \perp \mathbf{i}_{k}, k=1, \ldots, n-1$, then \mathbf{i}_{n} is perpendicular to a V_{n-1}-system, orthogonal to the $n-1$ given systems, and $\mathbf{i}_{1}, \ldots, \mathbf{i}_{n}$ are the congruences of the lines of curvature for each of the n systems.

Proof. When the fundamental tensor ${ }^{\text {' } g}$ of the V_{n} is written:

$$
\begin{equation*}
{ }^{2} \mathrm{~g}=\mathrm{a} \mathrm{a}=\mathrm{b} \mathrm{~b}=\ldots \tag{72}
\end{equation*}
$$

then the ideal factor a can be decomposed as follows:

$$
\begin{equation*}
\mathbf{a}=\mathbf{a}^{\prime}+\mathbf{a}^{\prime \prime} \tag{73}
\end{equation*}
$$

in which \mathbf{a}^{\prime} contains but $\mathbf{i}_{k}, \ldots, \mathbf{i}_{n}, \mathbf{a}^{\prime \prime}$ but $\mathbf{i}_{1}, \ldots, \mathbf{i}_{k-1}$.
${ }^{2} \mathbf{g}^{\prime}=\mathbf{a}^{\prime} \mathrm{a}^{\prime}=\mathrm{b}^{\prime} \mathbf{b}^{\prime}=\ldots$ is the fundamental tensor of the $P_{n-k+1} \perp$ $\mathbf{i}_{1}, \ldots, \mathbf{i}_{k-1}$ and the geodesic differentiation of a vector \mathbf{v}, which is wholly situated in this V_{n-k+1}, is determined by the equation:

$$
\begin{equation*}
\nabla^{\prime} v={ }^{2} \mathrm{~g}^{\prime} \cdot \nabla\left(\mathbf{a}^{\prime} \cdot v\right) \mathrm{a}^{\prime} . \tag{74}
\end{equation*}
$$

Hence for \mathbf{i}_{k} we have:

$$
\begin{gather*}
\mathbf{i}_{n}!\nabla \mathrm{i}_{k}=\mathbf{i}_{n}!\nabla\left(\mathbf{i}_{k} \cdot \mathbf{a}\right) \mathbf{a}=\mathbf{i}_{n}!\nabla\left(\mathbf{i}_{k} \cdot \mathbf{a}^{\prime}\right) \mathbf{a}^{\prime}+\mathbf{i}_{n}!\nabla\left(\mathbf{i}_{k}, \mathbf{a}^{\prime}\right) \mathbf{a}^{\prime \prime}=\{ \tag{75}\\
=\mathbf{i}_{n}!\nabla^{\prime} \mathbf{i}_{k}+\mathbf{i}_{n}!\nabla\left(\mathbf{i}_{k} \cdot \mathbf{a}^{\prime}\right) \mathbf{a}^{\prime \prime} .
\end{gather*}
$$

According to the supposition \mathbf{i}_{n} is a congruence of lines of curvature for the V_{n-k} being $\perp \mathbf{i}_{k}$ in the considered V_{n-k+1}, so that according to (38):

$$
\begin{equation*}
x \dot{\mathrm{i}}_{n}^{1}!\nabla^{\prime} \mathrm{i}_{k}=\varrho_{k} \mathrm{i}_{n}, \tag{76}
\end{equation*}
$$

in which ρ_{k} is a still unknown coefficient. Hence we conclude from (76):

$$
\begin{equation*}
x \mathrm{i}_{n}!\nabla \mathrm{i}_{k}=\rho_{k} \mathrm{i}_{n}+\sum_{j}^{1, ., k-1} \mu_{k j} \mathrm{i}_{j} \tag{77}
\end{equation*}
$$

in which $\mu_{k j}$ are still unknown coefficients. So it is supposed that it must be possible to arrange $\mathbf{i}_{1}, \ldots, \mathbf{i}_{n-1}$ in such a way that the equation (77) is satisfied in the same time for all values $k=1, \ldots, n-1$.

Since

$$
\begin{equation*}
\mathbf{i}_{k} \cdot \mathbf{i} l=0, \quad k, l=1, \ldots, n, \quad k \neq l . \tag{78}
\end{equation*}
$$

we find by application of $\mathbf{i}_{n} . \nabla$:

$$
\begin{equation*}
\dot{i}_{l} \dot{i}_{n}^{2} \cdot \nabla \mathbf{i}_{k}=-\mathbf{i}_{k} \mathbf{i}_{n} \cdot \frac{2}{!} \mathbf{i}_{l} \tag{79}
\end{equation*}
$$

For $k<l$ we have thus from (77), (78), and (79):

$$
\begin{equation*}
\mathbf{i}_{l} \mathbf{i}_{n}!\nabla \mathbf{i} l=0, \quad l=1, \ldots, n-1 \tag{80}
\end{equation*}
$$

hence:

$$
\left.\begin{array}{ll}
\mu_{k j}=0 & k=1, \ldots, n-1 \tag{81}\\
& j=1, \ldots, n-2
\end{array}\right\} .
$$

By this the equations (77) pass into:

$$
\begin{equation*}
x \dot{\mathbf{i}}_{n}!\nabla \mathbf{i}_{k}=\rho_{k} \mathbf{i}_{n}, \quad k=1, \ldots, n-1 \tag{82}
\end{equation*}
$$

which can geometrically be interpreted in such a way that \dot{i}_{n} is a congruence of lines of curvature in each of the $n-1$ given $V_{n-1}-$ systems.

By application of \mathbf{i}_{k}. ∇ we conclude from (78):

$$
\begin{equation*}
\mathbf{i}_{l} \mathbf{i}_{k} ? \nabla \mathbf{i}_{n}=-\mathbf{i}_{n} \mathbf{i}_{k} \stackrel{2}{!} \boldsymbol{i} l, \quad k, l=1, \ldots, n-1 \ldots \tag{83}
\end{equation*}
$$

Now \mathbf{i}_{l} is V_{n-1}-normal, hence $\nabla \mathbf{i}_{l}$ is symmetrical in k and n, so that we have from (80) and (83):

$$
\begin{equation*}
\mathbf{i}_{l} \mathbf{j}_{k} \cdot{ }^{2} \nabla \mathbf{i}_{n}=0, \quad k, l=1, \ldots, n-1 \tag{84}
\end{equation*}
$$

hence \mathbf{i}_{n} is ∇_{n-1}-normal and $\mathbf{i}_{1}, \ldots, \mathbf{i}_{n-1}$ are the congruences of the lines of curvature of the $V_{n-1} \perp \mathbf{i}_{n}$.

Since $\mathbf{i}_{1}, \ldots, \mathbf{i}_{n-1}$ are V_{n-1}-normal and matually perpendicular, we liave also from (67):

$$
\begin{equation*}
\mathbf{i}_{j} \mathbf{i}_{k}{ }^{2} \nabla \mathbf{i}_{l}=0, \quad j, k, l=1, \ldots, n-1 . \tag{85}
\end{equation*}
$$

sso that $\mathbf{i}_{1}, \ldots, \mathbf{i}_{n}$ are the congruences of the lines of curvature for each of the n systems $\perp \mathbf{i}_{1}, \ldots, \mathbf{i}_{n}$.

For a V_{3}^{\prime} the proved theorem can be expressed in this way:
When two mutually orthogonal systems of surfaces intersect along a congruence of curves, which are the lines of curvature of one of
the two systems of surfaces, then there exists a system of surfaces orthogonal to the two given systems and the three systems intersect along their lines of curvature.

For the R_{s} (his theorem has been first deduced by Darboux ${ }^{1}$).
8. Lilienthal's conditions. We will now connect different shapes, in which the conditions occur in literature, for the case that i_{n} is V_{n-1}-normal, and inquire how far they remain valid, when more general manifolds are admitted.

In the same way as ${ }^{2} h$ the tensor ${ }^{\text {'p }} \mathrm{p}$ gets a simple significance when i_{n} is V_{n-1}-normal. Since on account of (19) and (42):

$$
\begin{equation*}
\nabla \smile \mathbf{i}_{n}=-\frac{\varkappa}{2} \sum_{\lambda \mu}\left\{\left(\mathbf{i}_{n}, \nabla\right) g^{\lambda \mu}\right\} \mathbf{e}^{\prime}{ }_{\lambda} \mathbf{e}_{\mu}^{\prime}+\mathbf{i}_{n} \smile \mathbf{u}_{n}, . \tag{86}
\end{equation*}
$$

the contravariant characteristic number of $x\left(\mathbf{i}_{n} . \nabla\right) \nabla \smile \mathbf{i}_{n}$ is:

$$
\begin{aligned}
& x e_{\beta} e_{\alpha} ?\left(i_{n} \cdot \nabla\right)\left(\nabla \smile i_{n}\right)=-\frac{1}{2} e_{\beta} e_{\alpha} \cdot \sum_{\lambda \mu}\left[e_{\lambda}^{\prime} e_{\mu}^{\prime}\left(i_{n} . \nabla\right)^{2} g^{2 \mu}+\right. \\
& \left.\left.+\left\{\left(\mathbf{i}_{n} . \nabla\right) \mathbf{e}^{\prime}\right) \mathbf{e}^{\prime}{ }_{\mu}\right\}\left(\mathbf{i}_{n} . \nabla\right) g^{\lambda \mu}\right]+\mathbf{e}_{\beta} \mathbf{e}_{\alpha}{ }^{2} \cdot \mathbf{u}_{n} \mathbf{u}_{n}= \\
& =-\frac{1}{2}\left(\mathbf{i}_{n} . \nabla\right)^{2} g^{\alpha 3}+\mathrm{e}_{\beta} \mathrm{e}_{\alpha} \cdot \sum_{\lambda_{\mu}}\left\{\left(\nabla-\mathrm{i}_{n}\right)^{2} \cdot \mathrm{e}_{\lambda} \mathbf{e}_{\mu}\left(\mathrm{i}_{n} . \nabla\right) \mathrm{e}^{\prime} \mathrm{e}^{\prime}{ }_{\mu}\right\}+\mathrm{e}_{\beta} \mathrm{e}_{\alpha}{ }^{2} \mathbf{u}_{n} \mathbf{u}_{n}=
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{1}{2}\left(\mathbf{i}_{n} \cdot \nabla\right)^{2} g^{\alpha \beta}+\sum_{\lambda \mu}\left(\nabla \smile \mathbf{i}_{n}\right)^{2} \mathbf{e}_{\lambda} \mathbf{e}_{\mu}\left\{\mathbf{e}^{\prime}, \mathbf{e}^{\prime}{ }_{\mu}{ }^{2} \cdot\left(\left(\nabla \mathbf{i}_{n}\right){ }^{1} \cdot \mathbf{e}_{\beta} \mathbf{e}_{\alpha}+\mathbf{e}_{\beta}\left(\nabla \mathbf{i}_{n}\right)^{1} \mathbf{e}_{\alpha}\right)\right\}^{2}+ \tag{8}\\
& +\mathrm{e}_{\beta} \mathbf{e}_{\alpha}{ }^{2} \mathbf{u}_{n} \mathbf{u}_{n}= \\
& =-\frac{1}{2}\left(i_{n} . \nabla\right)^{2} g^{\alpha \beta}+\sum_{\mu} e_{\alpha}!\left(\nabla-i_{n}\right)^{1} \mathbf{e}_{\mu} \mathbf{e}^{\prime}{ }_{\mu}^{1} \cdot\left(\nabla i_{n}\right)^{1} e_{\beta}+ \\
& +\sum_{\lambda} \mathrm{e}_{\beta}^{1}\left(\nabla \smile \mathrm{i}_{n}\right)!\mathrm{e}_{\lambda} \mathrm{e}^{\prime}{ }_{\lambda}^{1}!\left(\nabla \mathrm{i}_{n}\right)!\mathrm{e}_{\alpha}+
\end{align*}
$$

$$
\begin{aligned}
& =-\frac{1}{2}\left(\mathrm{i}_{n} . \nabla\right)^{2} g^{\alpha \beta}+2 \mathrm{e}_{\alpha} \mathrm{e}_{\beta}{ }^{2} \cdot T\left(\nabla \smile \mathrm{i}_{n}\right)!\nabla \mathrm{i}_{n} \text {; }
\end{aligned}
$$

from which in connection with (59) we conclude:

$$
\begin{equation*}
{ }^{2} \mathrm{p}=-\frac{x}{2} \mathbf{e}_{\alpha}^{\prime} \mathrm{e}_{\beta}^{\prime}\left(\mathrm{i}_{n} . \nabla\right)^{2} g^{\alpha \beta}=\mathrm{e}_{\alpha}^{\prime} \mathrm{e}_{\beta}^{\prime}\left(\mathrm{i}_{n} . \nabla\right) h^{\alpha \beta} . \tag{88}
\end{equation*}
$$

Hence the condition that ${ }^{2} h$ and ${ }^{2} p$ have the same principal directions, for the case $n=3$, can be written in coordinales:

$$
\left|\begin{array}{lll}
g^{a a} & g^{a b} & g^{b b} \tag{2}\\
\left(\mathbf{i}_{n} . \nabla\right) g^{a a} & \left(\mathbf{i}_{n} . \nabla\right) g^{a b} & \left(\mathbf{i}_{n} \cdot \nabla\right) g^{b b} \\
\left(\mathbf{i}_{n} \cdot \nabla\right)^{2} g^{a a} & \left(\mathbf{i}_{n} . \nabla\right)^{2} g^{a b} & \left(\mathbf{i}_{n} . \nabla\right)^{2} g^{b b}
\end{array}\right|=0,
$$

[^0]and this is exactly the equation given for the first time for R_{0} by Lilienthai ${ }^{1}$), and to which lately, also for R_{8}, Wieringa ${ }^{2}$) has again drawn the attention. So this condition is a special case from Riccr's first. It remains also valid for an arbitrary linear element, and also for $n>3$, then however it is no longer the only condition.
9. Ricci's conditions. Be i_{n} again V_{n-1}-normal. Then we can choose an original variable y^{n} and vectors s_{n} and s_{n}^{\prime}, so that: :'
\[

$$
\begin{equation*}
\mathrm{i}_{n}=\sigma_{n} \mathbf{s}_{n}=\frac{1}{\sigma_{n}^{\prime \prime}} \mathbf{s}_{n}^{\prime} \tag{89}
\end{equation*}
$$

\]

By means of this equation we can eliminate \mathbf{i}_{n} from (C) and (D) and substitute s_{n} for it.

Since:

$$
\begin{equation*}
\left(\mathbf{i}_{n} . \nabla\right)\left(\nabla \smile \mathbf{i}_{n}\right)=\left(\mathbf{i}_{n} . \nabla\right)\left\{\sigma_{n} \nabla \mathbf{s}_{n}+\frac{1}{2}\left(\nabla \sigma_{n}\right) \mathbf{s}_{n}+\frac{1}{2} \mathbf{s}_{n} \nabla \sigma_{n}\right\}, \tag{90}
\end{equation*}
$$

we have:

$$
\left.\begin{array}{c}
\mathrm{g}_{n}^{2}\left(\mathrm{i}_{n} . \nabla\right)\left(\nabla-\mathrm{i}_{n}\right)=\stackrel{4}{\mathfrak{g}_{n}} 2\left\{\left(\mathrm{i}_{n} . \nabla \sigma_{n}\right) \nabla \mathrm{s}_{n}+\sigma_{n} \mathrm{i}_{n}!\nabla \nabla \mathrm{s}_{n}+\right. \tag{91}\\
\left.+\frac{1}{2}\left(\nabla \sigma_{n}\right) \mathrm{i}_{n}!\nabla \mathrm{s}_{n}+\frac{1}{2}\left(\mathrm{i}_{n}!\nabla \mathrm{s}_{n}\right) \nabla \sigma_{n}\right\}
\end{array}\right\}
$$

or, since:
$\nabla \sigma_{n}=\nabla\left(\kappa \mathrm{s}_{n} . \mathrm{s}_{n}\right)^{-\frac{1}{2}}=-\varepsilon \sigma_{n}{ }^{\mathbf{s}}\left(\nabla \mathrm{s}_{n}\right)^{1} \mathbf{s}_{n}=-\sigma_{n} \mathbf{u}_{n}+\mu \sigma_{n} \mathbf{s}_{n}{ }^{1}\left(\nabla \sigma_{n}\right) \mathbf{s}_{n},(92)$ also:

Since on account of (31) and (69):

$$
\begin{equation*}
\mathbf{i}_{j} \mathbf{i}_{k}{ }^{2}\left\{2 x T\left(\nabla \smile \mathbf{i}_{n}\right)!\nabla \mathbf{i}_{n}\right\}=\mathbf{i}_{j} \mathbf{i}_{k}{ }^{2} \mathbf{u}_{n} \mathbf{u}_{n} \tag{94}
\end{equation*}
$$

the condition $\left(C^{t}\right)$ gets the shape:

$$
\mathrm{i}_{1} \mathbf{i},_{k}{ }^{2}\left\{\alpha \sigma_{n}{ }^{2} \mathbf{s}_{n}{ }^{1} \nabla \nabla \mathbf{s}_{n}-2 \mathbf{u}_{n} \mathbf{u}_{n}\right\}=0 \quad{ }^{3}, \begin{aligned}
& j \neq k \\
& j, k=1,2, \ldots, n-1 .
\end{aligned}\left(C_{3}\right)
$$

Since :

$$
\begin{equation*}
\nabla \mathrm{s}_{n}=\frac{1}{\sigma_{n}} \nabla \mathrm{i} n+\left(\nabla \frac{1}{\sigma_{n}}\right) \mathbf{i}_{n} \tag{95}
\end{equation*}
$$

we further have, in connection with (30) and (33):

$$
\begin{equation*}
\mathbf{i}_{j} \mathbf{i}_{k}{ }_{2}^{2} \nabla \mathrm{~s}_{n}=0 \tag{96}
\end{equation*}
$$

from which by application of ($\mathrm{i}_{\mathrm{k}} . \nabla$) may be concluded:

${ }^{1}$) R. v. Lilienthal, Ueber die Bedingung, unter der eine Flächenschar einem dreifach orthogonalen Flächensystem angehört. Math. Annalen 44 (94), 449-457.
${ }^{2}$) W. G. L. Wieringa, Over drievoudig orthogonale oppervakkensystemen. Diss. Groningen, (18) 59 pp., see p. 13.
${ }^{3}$) See note ${ }^{1}$) of next page.
$\left(\nabla \mathbf{i}_{n}\right)^{1} \mathbf{i}_{k}$ containing but \mathbf{i}_{k} and \mathbf{i}_{n} on account of (38), we find in connection with (67):
i, $\left.\mathbf{i} k_{k} \mathbf{i}^{3} \nabla \nabla \mathbf{s}_{n}=0, j \neq k, j \neq l, k \neq l, j, k, l=1,2, \ldots, n-1 .{ }^{1}\right)\left(D_{1}\right)$
This equation $\left(D_{1}\right)$ can be decomposed into:

$$
\mathbf{i}_{i} i_{k} i_{l}{ }^{3}(\nabla-\nabla) \mathbf{s}_{n}=0, .-\quad . \quad . \quad . \quad\left(D_{1}^{\prime}\right)
$$

or:

$$
\begin{equation*}
\mathbf{i}_{j} \mathbf{i}_{k} \mathbf{i} l_{l}^{3} \cdot(\nabla \smile \nabla) \nabla y^{n}=0 \tag{98}
\end{equation*}
$$

and:

$$
\begin{equation*}
\mathbf{i}_{j} \mathrm{i}_{k} \mathbf{i}_{l} \cdot \frac{3}{(\nabla \frown \nabla) \mathrm{s}_{n}=0 .} \tag{99}
\end{equation*}
$$

When $\stackrel{4}{K}$ is the Riemann-Christoffel-affincr of V_{n}, (99) can be written: ${ }^{2}$)

$$
\begin{equation*}
\mathbf{i}_{y_{l}} \mathbf{i}_{k} \mathbf{i}_{l} \stackrel{4}{\mathrm{~K}}!\nabla y^{n}=0, \tag{100}
\end{equation*}
$$

or

$$
\begin{equation*}
i_{i j} \mathbf{i}_{k} \mathbf{i} l^{3} \stackrel{4}{K}^{4} \mathbf{i}_{n}=0 \tag{1}
\end{equation*}
$$

The equations $\left(C_{3}^{\prime}\right),\left(D_{1}\right),\left(D_{2}^{\prime}\right)$ and (100) are deduced by Riccr. ${ }^{2}$) The number of the equations $\left(D_{1}^{\prime}\right)$ is $\frac{(n-1)(n-2)(n-3)}{1.2 .3}$, the number of the equations $\left(D^{\prime \prime}\right)$ is $\frac{(n-1)(n-2)(n-3)}{3}$, because we may permutate not only j and k, but also k and $\left.l^{4}\right)$. ($D_{1}{ }^{\prime}$) contains third, ($D_{1}{ }^{\prime \prime}$) only first differential quotients of y^{n}.

The conditions ($D_{1}{ }^{\prime \prime}$) vanish identically, when the characteristic numbers $l / k j n$ of $\stackrel{4}{K}$ vanish. Since in a space of constant Riemanncurvature K_{0} :

$$
\begin{equation*}
\left.\stackrel{4}{\mathrm{~K}}=2 K_{\mathrm{b}}(\mathrm{a}-\mathrm{b})(\mathrm{a} \sim \mathrm{~b})^{\mathrm{b}}\right) \tag{101}
\end{equation*}
$$

the equation holds:

$$
\begin{equation*}
\mathbf{i}_{n} \mathbf{i}_{l} \mathbf{i}_{k} \mathbf{i}_{j}^{4} \cdot \stackrel{4}{\mathrm{~K}}=0, \tag{102}
\end{equation*}
$$

so that the condition $\left(D_{1}^{\prime \prime}\right)$ is an identily in such a space, and bence also in a euclidean space. Thus (D_{1}) reduces in this case to $\left(D_{1}^{\prime}\right)$. For

[^1]euclidean space the condition (D_{1}^{\prime}) has been given by Darboux $\left.{ }^{1}\right)^{2}$). The characteristic numbers (ll/jn) of $\frac{4}{K}$ vanish too, when the $V_{n-1} \perp \mathbf{i}_{n}$ are geodesic.
10. Lefvy's, Cayley's and Darboux's conditions. Differentiating the relation :
\[

$$
\begin{equation*}
\mathbf{i}_{n}=\sigma_{n} \mathbf{s}_{n} \tag{103}
\end{equation*}
$$

\]

we get

$$
\begin{equation*}
\nabla \mathrm{i}_{n}=\left(\nabla \sigma_{n}\right) \mathrm{s}_{n}+\sigma_{n} \nabla \mathrm{~s}_{n} \tag{104}
\end{equation*}
$$

Differentiating again, we get:
$\nabla \nabla \mathbf{i}_{n}=\left(\nabla \nabla \sigma_{n}\right) \mathbf{s}_{n}+\left(\nabla \mathrm{s}_{n}\right)^{1} \mathbf{a}\left(\nabla \sigma_{n}\right) \mathbf{a}+\left(\nabla \sigma_{n}\right) \nabla \mathrm{s}_{n}+\sigma_{n} \nabla \nabla \mathrm{~s}_{n}$,
and from this and (104) we have for $\nabla \nabla \sigma_{n}$:
$x \nabla \nabla \sigma_{n}=\sigma_{n}\left(\nabla \nabla \mathbf{i}_{n}\right)!\mathbf{i}_{n}-\sigma_{n}{ }^{2}\left(\nabla \nabla \mathbf{s}_{n}\right)!\mathbf{i}_{n}+\frac{2 \varkappa}{\sigma_{n}}\left(\nabla \sigma_{n}\right)\left(\nabla \sigma_{n}\right)$.
Since:
$\left(\nabla \nabla \mathbf{i}_{n}\right)^{!} \mathbf{i}_{n}=\nabla\left\{\left(\nabla \mathbf{i}_{n}\right)^{1} \mathbf{i}_{n}\right\}-\left(\nabla \mathbf{i}_{n}\right)^{!} \cdot \mathbf{a}\left(\nabla \mathbf{i}_{n}\right)!\mathbf{a}={ }^{2} \mathbf{h}!{ }^{1} \mathbf{h}-\left(\mathbf{u}_{n} . \mathbf{u}_{n}\right) \mathbf{i}_{n} \mathbf{i}_{n},(107)$ we get, in connection with (92):

In connection with $\left(C_{s}\right)$ this equation gives a new shape to the first condition :

[^2]\[

$$
\begin{equation*}
\mathbf{i}_{j} \mathbf{i}_{k}{ }^{2} \nabla \nabla \sigma_{n}=2 \kappa \sigma_{n}{ }^{3} \mathbf{i}_{j} \mathbf{i}_{k}{ }^{2}\left\{s_{n}{ }^{1}(\nabla-\nabla) \mathrm{s}_{n}\right\}=x \sigma_{n} \mathbf{i}_{j} \mathbf{i}_{l}{ }^{2}\left(\mathbf{i}_{n}{ }^{1} \mathrm{~K}^{4} \mathbf{i}_{n}\right) \tag{109}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
\mathbf{i}_{j} \mathbf{i}_{k}{ }^{2} \cdot \nabla \nabla \sigma_{n}=r \sigma_{n} \mathbf{i}_{n} \mathbf{i}_{j} \mathbf{i}_{k} \mathbf{i}_{n} \stackrel{4}{K} . \tag{4}
\end{equation*}
$$

Thus for a V_{n}, for which the characteristic numbers ($n k j n$) of $\stackrel{4}{K}$ vanish, this first condition can be written :

$$
\begin{equation*}
i_{1} \mathrm{i}_{k} ? \nabla \nabla \sigma_{n}=0 . \tag{4}
\end{equation*}
$$

This equation expresses that the tensor $\nabla \nabla \sigma_{\mathfrak{n}}$ has the same principal directions as ${ }^{2} \mathrm{~h}$. The geometrical signification of σ_{n} is that this quantity is proportional to the infinitesimal distance between succeeding $V_{n-1} \perp \mathbf{i}_{n}$ measured along \mathbf{i}_{n}.

In space of constant Riemann-curvature K_{0} we have, in connection with (101):

$$
\begin{equation*}
\mathbf{i}_{j} \mathbf{i}_{k}^{2}\left\{\mathbf{i}_{n}{ }^{\mathbf{4}} \mathbf{K}^{1} \mathbf{i}_{n}\right\}=-K_{0} \mathbf{i}_{j} \mathbf{i}_{k}^{2} \cdot\left(x^{2} \mathbf{g}-\mathbf{i}_{n} \mathbf{i}_{n}\right)=0, \tag{110}
\end{equation*}
$$

from which we conclude that in this manifold the first condition has the shape $\left(C_{4}^{\prime}\right)$, hence also in euclidean space. In this latter case the condition is deduced for $n=3$ by Levy^{1}), (Cayley ${ }^{2}$), Darboux ${ }^{3}$), and for general values of n by $D_{a r b o u x ~}{ }^{4}$). Thus the necessary and sufficient conditions for manifolds of constant Riemann-curvature are (C_{4}^{\prime}) and (D_{1}^{\prime}).
11. Weingarten's condition. We will try to find a shape of the conditions that only depends on i_{n} and no more on $i_{j}, j=1,2, \ldots, n-1$. When a tensor, whose principal directions do not coincide with those of $\mathbf{~} h$, be transrected once with ${ }^{2} h$, an affinor arises whose alternating part is certainly not annihilated. Thus the condition that the principal directions coincide, is that the alternating part of the first transvection with ${ }^{3} \mathrm{~h}$ vanishes. Hence (109) is equivalent to:
in which B_{x} may indicate that the bivector-part has to be taken.

[^3]Since :

$$
\begin{equation*}
\nabla\left\{\left(\nabla \mathbf{i}_{n}\right)!\left(\nabla \sigma_{n}\right)\right\}=\left(\nabla \nabla \mathbf{i}_{n}\right)^{1} \nabla \sigma_{n}+\mathbf{a}\left(\nabla \mathbf{i}_{n}\right)^{1}(\mathbf{a} \cdot \nabla) \nabla \sigma_{n} \tag{112}
\end{equation*}
$$

we have:

$$
\nabla 一\left\{\left(\nabla \mathbf{i}_{n}\right)!\nabla \sigma_{n}\right\}=B \nabla\left\{\left(\nabla \mathbf{i}_{n}\right)^{1} \nabla \sigma_{n}\right\}={ }^{1 / 2}{ }^{4} \mathbf{K}^{2} \mathbf{i}_{n} \nabla \sigma_{n}-B\left(\nabla \mathbf{i}_{n}\right)^{1} \nabla \nabla \sigma_{n},(113)
$$

so that (111) is equivalent to:
${ }_{\mathbf{g}}{ }^{2}\left[-\nabla-\left\{\left(\nabla \mathbf{i}_{n}\right)!\stackrel{1}{!} \nabla \sigma_{n}\right\}+\frac{1}{2} \stackrel{4}{K} \stackrel{2}{2} \mathbf{i}_{n} \nabla \sigma_{n}-\sigma_{n} B\left(\nabla \mathbf{i}_{n}\right) \mathbf{i}_{n} \stackrel{4}{K^{1}}{ }^{1} \mathbf{i}_{n}\right]=0$.
Since in a space of constant Riemann-curvature on acrount of (92) and (101):

$$
\begin{equation*}
\stackrel{4}{\mathbf{g}^{2} \cdot \mathbf{K}^{\mathbf{K}} \cdot \mathbf{l}_{n} \nabla \sigma_{n}=-\sigma_{n} \stackrel{4}{\mathbf{g}}{ }^{?} \mathbf{K}^{2} \cdot \mathbf{i}_{n} \mathbf{u}_{n}=-2 \sigma_{n} K_{0} \stackrel{4}{\mathbf{g}}^{2} \mathbf{i}_{n}-\mathbf{u}_{n}=0,} \tag{115}
\end{equation*}
$$

the condition for such a manifold is, on account of (110), that the component of $\nabla \frown\left\{\left(\nabla \mathrm{i}_{n}\right)^{1} \nabla \sigma_{n}\right\}$ in the region $\perp \mathbf{i}_{n}$ vanishes. On account however of Stokes' law ${ }^{1}$), we have for each vector \mathbf{v} :

$$
\begin{equation*}
\int_{s} \mathbf{v} \cdot d \mathbf{x}=-2 x \int_{\sigma} \mathrm{f}^{2}{ }^{2}(\nabla-\mathrm{v}) d \sigma \tag{116}
\end{equation*}
$$

in which s is a closed curve and ${ }^{2} f d \sigma$ the bivector of the surfaceelement of any surface σ bounded by this curve. From this we conclude that in a space of constant Riemann-curvature we can also give as first condition that the linear integral of the vector $\left(\nabla \mathrm{i}_{n}\right)!\nabla \sigma_{n}$ along each closed curve in a $V_{n-1} \perp \mathbf{i}_{n}$ vanishes. This condrtion is the only one for V_{2}. For an R_{8} it has been first indicated by Weingarten ${ }^{2}$) and Ricci ${ }^{3}$) has observed on occasion of Weingarten's paper that the condition holds also for a V_{z} of constant Riemann-curvature. From the above-mentioned we see that the condition, but no more as the only one, holds also for manifolds of constant Riemann-curvature, for which $n>3$.

[^4]12. Mutually orthogonal V_{n-1}-systems through a given congruence, the canonical conyruences being not singly determined.

When the routs of (24) are not all different, these roots determine in general q matually perpendicular regions $R_{p_{1}}, \ldots R_{p_{q}}$. Within the region $R_{p_{\alpha}}$ every set of p_{α} mutually perpendicular directions salusfies the canonical conditions. The equations (47-51) teach us that it must be possible to choose the canonical directions in each of the regions $R_{p_{\alpha}}$ in such a way that they are V_{n-1}-normal, when throngh i_{n} there shall pass $n-1$ mutually orthogonal V_{n-1}-systems. Thus the conditions ($C^{\prime \prime}$) and (D), depending on (55) resp. (67), i.e. of the being V_{n-1}-normal of all canonical congruences, will no more remain valid withont any restriction.

When $p_{1}, \ldots \ldots p_{q} \mathbf{i}$ are the unit- p-vectors belonging to the regions $R_{p_{1}}, \ldots, R_{p_{q}}$, the equations:

$$
\begin{aligned}
& \mathbf{i}_{n}!\nabla y^{z}=0 . \quad . \quad . \quad . \quad . \quad(117) \\
& p_{\alpha} \mathbf{i}!\nabla y^{z}=0 \quad \alpha=1, \ldots, \beta-1, \beta+1, \ldots, q
\end{aligned}
$$

must be satisfied by p_{β} independent solutions. On account of (B) we thus have:

$$
\begin{equation*}
\left(\mathbf{i}_{n_{1}} \mathbf{i} \cdots p_{\beta-1} \hat{\mathbf{i}}_{p_{\beta+1}} \mathbf{i} \cdots p_{q} \mathbf{i}^{2} \nabla \sim_{p_{\beta}}^{\mathbf{i}}=0 .\right. \tag{118}
\end{equation*}
$$

and from this we conclude:

$$
\begin{align*}
& \mathbf{i}_{k} \sim \mathbf{i}_{n}{ }^{2} \nabla \mathbf{i}_{j}=0 \\
& \mathbf{i}_{l}-\mathbf{i}_{l}{ }^{2} \cdot \nabla \mathbf{i}_{j}=0 \tag{120}
\end{align*}
$$

in which \mathbf{i}_{3} belongs to another region than $\mathbf{i} k$ and \mathbf{i}_{l}, and for the rest the choice is arbitrary, provided $k \neq l$.
(119) has entirely the same form as (55) and from (120) follows for the special case that $\mathbf{i}_{j}, \mathbf{i}_{k}$, \mathbf{i}_{l} each belong to different regions:

$$
\begin{equation*}
\mathbf{i}_{k} \mathbf{i}_{\mathbf{l}}^{?} \nabla \nabla \mathbf{i}_{j}=0 \tag{121}
\end{equation*}
$$

an equation of the same form, and deduced in the same way as (67).
The equations ($C^{\prime \prime}$) and (D) only remain valid under the abovementioned restricting conditions. They are besides no longer sufficient. A supplementary condition will be found in the following way:

The equation (65) shows:

$$
\begin{align*}
& \left(\lambda_{k}-\lambda_{j}\right) \mathbf{i}_{k} \mathbf{i}_{l}{ }^{2} \nabla \nabla \mathbf{i}_{j}+x \mathbf{i}_{j} \mathbf{i}_{k} \mathbf{i}_{l}{ }^{3} \nabla^{2} \mathbf{h}=0, \tag{122}\\
& \left(\lambda_{l}-\lambda_{j}\right) \mathbf{i}_{l} \mathbf{i}_{k}{ }^{2} \nabla \nabla \mathbf{i}_{j}+x \mathbf{i}_{j} \mathbf{i}_{l} \mathbf{i}_{k}{ }^{3} \cdot \nabla^{2} \mathbf{h}=0 .
\end{align*} .
$$

valid for the case that \mathbf{i}_{k} and \mathbf{i} belong to the same region and \mathbf{i}_{3} to another one. Then, subtracting the equations (122) one from the other we conclude, in connection with (121):

$$
\begin{equation*}
\left.\mathbf{i}_{j}\left(\mathbf{i}_{k}-\mathbf{i}_{l}\right)^{2} \nabla^{2} \mathbf{h}=0^{1}\right) \quad j \neq k, j \neq l, k \neq l, j, k=1,2, \ldots, n-1 . \tag{E}
\end{equation*}
$$

Under the mentioned conditions the equations $\left(C^{\prime}\right),(D)$ and (E) are not only neressary, but also sufficient. In fact, from (E) may be concluded, in connection with (122), since $\lambda_{k}=\lambda_{l}$, that $\nabla \mathbf{i}_{3}$ is symmetrical in l and k, when l and k belong to the same region, but j and l do not. From (D) we conclude, in analogical way as we have explained in the first part of this paper, that $\nabla \mathbf{i}_{3}$ is symmetrical in l and k, when l and k belong to different regions, different from j. ($C^{\prime \prime}$) tells that $\nabla \mathbf{i}$, is symmetrical in n and k, when k differs from j. Hence these three conditions are sufficient to show that $\nabla \mathbf{i}_{3}$ is symmetrical in the region $\perp \mathbf{i}_{j}$, and thus that \mathbf{i}_{3} is V_{n-1}-normal.

When we call ${ }^{2}$) $p_{1}, p_{2} \ldots p_{q}$ the multiplicity of the roots of the algebrac characteristic equation (24), the number of equations $\left(C^{\prime \prime}\right)$ is the sum of the two-factorial products of the numbers $p_{1}, p_{2}, \ldots p_{q}$, and the number of the equations (D) is thrice the sum of the three-factorial products of these numbers. The number of the equations (E) is equal to the sum of the products of the form $p_{k} p_{h}\left(\frac{p_{h}+p_{k}}{2}-1\right)$.
13. Simplifications for the case that the given congruence is V_{n-1}-normal.

When \mathbf{i}_{n} is V_{n-1}-normal, (C) passes into $\left(C_{1}\right.$) or (C_{2}), being valid for the case that \dot{j}_{j} and \dot{i}_{k} belong to different regions. (D) can also be brought into the form $\left(D_{1}\right)$ and is then valid for the case that $\mathbf{i}_{y}, \mathbf{i}_{k}$ and \mathbf{i}_{l} belong to different regions.

From (97) follows for the case that \mathbf{i}_{k} and \mathbf{i}_{l} belong to the same region and I_{3} to another:

$$
\begin{equation*}
\mathbf{i}_{j}\left(\mathbf{i}_{k}-\mathbf{i}_{z}\right)^{3} \nabla \nabla \mathbf{s}_{n}=0 . \tag{123}
\end{equation*}
$$

This equation can also be written in the form:

$$
\left.\mathbf{i}_{j} \mathbf{i}_{k} \mathbf{i}_{l} 3^{4} \mathbf{K}^{1} \mathbf{i}_{n}=0^{3}\right)
$$

which has a formal analogy to ($D_{1}{ }^{\prime \prime}$), but which is valid under different conditions. But the increment of the vector \mathfrak{i}_{n}, when

[^5]geodesically moved along the boundary of the surface-element do, is: ${ }^{1}$)
\[

$$
\begin{equation*}
D_{k l} \mathbf{i}_{n}=d \sigma \mathbf{i}_{k} \mathbf{i}_{l}^{2}{\stackrel{4}{\mathbf{K}}!\mathbf{i}_{n}}^{4} \tag{124}
\end{equation*}
$$

\]

So (E_{1}) demands this increment to remain in the region formed by \mathbf{i}_{k} and $\mathbf{i}_{l} .{ }^{2}$)

Thus we have obtained the following theorem:
III. A system of $\infty^{1} V_{n-1}$ in a V_{n}, whose second fundamental. tensor, apart from determined $V_{r}, r<n$, has q singly determined principal regions $R_{\mu_{1}}, \ldots, R_{p_{q}}$, but within the regions of more than one dimension no singly determined principal directions, belongs then and only then to an n-uple orthogonal system, when by moving perpendicular to m of the principal regions of ${ }^{2} \mathbf{h}$, the component of the geodesic differential of ${ }^{2} \mathbf{h}$, in the manifold determined by these m regions, has principal regions that coincide with the m mentioned principal regions of ${ }^{2} \mathbf{h}$, and when besides the increment of \mathbf{i}_{n}, when \mathbf{i}_{n} is geodesically moved along the boundary of a surface-element in any principal region, remains entirely in this same principal region.
11. Necessary and sufficient conditions that a V_{n} may admit n-uple orthogonal V_{n-1}-systems.

The condition ($D_{2}{ }^{\prime \prime}$) is a condition for the V_{n} in which the n-uple orthogonal system exists. If we wish every system of n mutually perpendicular ($n-1$)-drections in each point of the V_{n} to belong to an n-uple orthogonal V_{n}-system, then ($D_{1}{ }^{\prime \prime}$) must be valid for every set of four mutually perpendicular unit-vectors. It can be proved that $\stackrel{4}{K}$ can then be written in the form:

$$
\begin{align*}
& 4 \tag{F}\\
& \mathbf{K}=(\mathbf{a} \frown \mathbf{z})(\mathbf{a} \frown \mathbf{z}) \\
& \hline
\end{align*}
$$

in which \mathbf{z}^{2} is an arbitrary tensor. For $n=3 \frac{4}{K}$ can always get this shape and, as has been proved by (orton ${ }^{2}$), every set of three mutually perpendicular directions in any point of a V_{8} can belong to a triple orthogonal system. It can be proved that (F) is sufticient for $n>3$ too.

[^6]15. Addendum.

In this paper the product $\mathbf{i} . \mathbf{i}=\boldsymbol{x}$ of the system $\mathrm{R}_{n}{ }^{0}$) is used. x can be found from the dualties existing in the orthogonal group, on which the identifications used in the system $R_{n}{ }^{0}$ are founded. Now in investigations on differential geometry these identifications (e.g. of i_{1} and $i_{2} \ldots i_{n}$) are practically not used. In this case it is convenient to substitute x by +1 , then x vanishes in all formulae, and the calculation grows much easier. It has however to be noted, that taking +1 for x it is no longer permitted to make use of the identifications founded on the dualities of the orthogonal group.
${ }^{1}$) J A. Schouten, On the direct analyses of the linear quantities etc., These Proceedings 21 (17) 327-341; Die Zahlensysteme der geometrıschen Groszen, Nieuw Archief (20) 141-156.

[^0]: ${ }^{1}$) G. Darboux, Sur les surfaces orthogonales. Annales sc. de l'Ecole Normale 3 (66) 97-141, p. 110.

[^1]: 1) $\left(C_{3}\right)$ can also be deduced from (84) in an analogous way as (D_{1}).
 ${ }^{2}$) Comp. A. R. page 59.
 ${ }^{3}$) G. Riccr, Dei sistemi etc., p. 314. Here the equations $\left(C_{3}\right)$ and $\left(D_{1}\right)$ are lettered $\left(A_{1}\right)$ and (B_{1}). G. Ricar, Sui sistemi, p. 151.
 ${ }^{4}$) Compare the observations of Rucai on occasion of a paper of Drach, Comptes Rendus 125 (97) 598-601 and 810-811.
 ${ }^{5}$) Compare Cf. Biangei-Lukat, 1st. german edition, p. 574.
[^2]: ${ }^{1}$) G. Darbodx, Leçons sur les systèmes orthogonaux et les coördonnées curvilignes I (98), p. 130, form. (35).
 ${ }^{2}$) As a simple example for the application of $\left(C_{2}\right)$ and $\left(D_{1}^{\prime}\right)$ for euclidean space, we can take the system $u=Y_{1}\left(y^{2}\right)+\ldots+Y_{n}\left(y^{n}\right)$, in which y^{1}, \ldots, y^{n} are Cartesian coordinates. To calculate $g^{a_{1} \sigma_{2}}$ etc.. it is necessary to find a system of $n-1 \nabla_{n-1}$ which determines in the $V_{n-1} u=$ const. a system of coordinates $\mathrm{e}_{a_{1}} \ldots$ Then $x e_{a_{1}} \cdot \theta_{a_{1}}=g a_{1} a_{1}$, etc. For this purpose we must try to find $n-1$ independent solutions of the differential equations

 $$
 \sum_{i}^{1, \ldots, n^{n}} \frac{\partial u}{\partial y^{i}} \frac{\partial \psi}{\partial y^{i}}=0 \quad \text { or } \quad{\underset{i}{2}}_{1, \ldots, n}^{\Sigma_{i}}\left(y^{2}\right) \frac{\partial \psi}{\partial y^{i}}=0
 $$

 For the calculation compare e.g. Wirminga, Diss. p. 21 and seq. Then we can see that the condition (D_{1}^{\prime}) is identically satisfied, so that only Limenthat's condition $\left(C_{2}\right)$ remains, which can be written in this case:
 $\left|\begin{array}{ccc}\stackrel{1}{Y_{i}^{\prime \prime}} & \stackrel{1}{Y_{l}^{\prime \prime}} & \stackrel{1}{Y_{k}^{\prime \prime}} \\ Y_{\imath}^{\prime} Y_{i}^{\prime \prime \prime}-2 Y_{i}^{\prime \prime 2} & Y_{l}^{\prime} Y_{l}^{\prime \prime \prime}-2 Y_{l}^{\prime \prime 2} & Y_{k}^{\prime} Y_{k}^{\prime \prime \prime}-2 Y_{l^{\prime \prime 2}}\end{array}\right|=0$, or $Y_{i^{\prime}} Y_{i}^{\prime \prime \prime}-2 Y_{i}{ }^{\prime \prime 2}=A Y_{i}{ }^{\prime \prime}+B$, in which A and B are constants.
 This result has been deduced for $n=3$ by Simerde, and for a general n by Darboux in another way as has been done here. Comp. Darboux, Leçons sur les systèmes orthogonaux etc., p. 140 and 141.

[^3]: ${ }^{\text {1 }}$) M. Lévy, Mémoire etc., p. 170.
 ${ }^{2}$) A. Cayley, Sur la condition pour qu'une famille de surfaces fasse partie d'un systeme orthogonal, Comptes Rendus 75 (72), a series of articles.
 ${ }^{3}$) G. Darboux, Sur l'équation du troisième ordre dont dépend le problème des surfaces orthogonales. Comptes Rendus 76 (73) 41-45, 83-86. See also e.g. Blanchi-Luiat list german edition.
 ${ }^{4}$) G. Darboux, Leçons sur les systèmes orthogonaux etc., p. 128. His formula (32) is our formula ($C_{4}^{\prime \prime}$).

[^4]: 1) Comp. A. R., page 37 and 61.
 ${ }^{\text {2 }}$) Whingarten, Ueber die Bedingung, unter welcher eine Flachenfamilie einem orthogonalen Flàchensystem angelö̀t. Grelle 83 (77), 1-12.
 ${ }^{3}$) G . Ruccr. Della equazione di condizione dei parametri dei sistemi di superficie, che appartengono ad un sistema triplo orlogonale. Rendiconti Ace Lincei Ser. V, HII_{2} (94) 93-96.

 Ricar observes for the case $n=3$ that Weingarten's theorem remains also valid, when $\frac{4}{\mathrm{~K}}$ has the shape:

 $$
 \stackrel{4}{K}=\mu(a \frown b)(a \frown b)+v\left(i_{1} \frown i_{2}\right)\left(i_{1} \frown i_{2}\right)
 $$

 when ν is an arbitrary coefficient. This however holds also for general values of n.

[^5]: ${ }^{1}$) (E) is the equation (C) of Ricci, Dei sistemi, page 312, but deduced from $2 h$, and not from $\nabla-i_{n}$.
 ${ }^{2}$) Compare Ricci, Dei sistemi, p. 312.
 $\left.{ }^{3}\right)\left(E_{1}\right)$ is $\left(G_{1}\right)$ of Ricci, Dei sistemi, p. 314.

[^6]: ${ }^{1}$) A. R. p. 64.
 ${ }^{2}$) An analogous geometrical interpretation can also be given to condition $\left(D_{1}{ }^{\prime \prime}\right)$.
 ${ }^{3}$) E. Cotron Sur une généralisation du problème de la représentation conforme aux variétes à trois dimensions, Comptes Rendus 125 (97) 225-228, compare also E. Cotton, Annales de Toulouse 1 (99) 385-438, Chap. III.

