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Physics. — “The Contributions from the Polarization and Magne-
tization Electronsto the Electric Current”. By Dr. A.D. Fokkeg.
(Communicated by Prof. H. A. LorenTz).

(Communicaled at the meeting of June 27, 1919).

1. An important point in the theory of electrons is how to
evaluate the electric current proceeding from the electrons which
in their movements are bound to the atoms of matter. We require
it for establishing the equations of the electromagnetic field in
ponderable matter, and we know that it is responsible for the effects .
of polarization and magnetization.

Consider a stream of moving neutral atoms, and imagine . them as
consisting of a positive nucleus and one accompanying electron.
The heavy nuclei will contain the centres of mass of the atoms their
motion therefore will be identified with the motion of matier in
bulk. The acecompanying electrons will move round the nuclei orin
their immediate neighbourhood. Now the stream of positive nuclel
will form an electric current, and the stream of electrons of course
will constitute another. For a great part these two currents will
cancel one another, but not completely, as they would, if both
motions were the same: the resulting current is clearly what arises
from the intra-atomical molions of the bound elecirons.

Obviously we shall know this current if, given the motion of a
stream of particles, we can find the variation effected by displacing
them slightly from their tracks, for it is by snch small displacements
that the motion of the elecirons may be found from the motions of
the nuclei. Our problem thus presents itself as a wariation problem.

M. BorN has told us') that the idea to put it thus is due to
Hermann Minkowski. He has developed it after Minkowskl's death
and compared his deductions with Minkowskr's posthumous notes. I
venture to offer to the Academy a novel development of the same
idea, which might claim a great simplicity and might be more
exact in some points. In addition, a new second order contribution
of the bound electrons is arrived at, which has been neglected until
now, so far as I know (§§ 9 and 11).

1) H. Misgowski—M. Borw, Hine Ableitung der Grundgleichungen fir die
eleklromagnetischen Vorgdnge in  bewegien Korpern wvom Standpunlkie der
Elektroneniheorie, Math. Ann. 68, p. 526, 1910.
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The Variational Displacements.

2. We consider a field of streaming discrete particles, the velo-
cities being continuous functions of the coordinates and the time.
We imagine a picture in a four-dimensional space-time-exiension
designing the motion-trails of the particles indicaling their pousitions
in successive instants. Now the displacements will consist of a shift
in space and a shift in time, and we shall define these shifts with
the aid of a field of a four-fold vector »¢, the components of which:
r1), 2@, pB), being space-components and ) being the time-compo-
nent, will be continuous functions of the coordinates and time =z
(a=1..4).

Mathematically, we define the shifts as the one-membered infini-
tesimal transformation group determined by the functions ¢ (¢ = 1.. 4),
with parameter 6:

O
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Dapo=0Grt 4+ 6° 2 () r°—+ .
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—

This will be clearer if we explain the nature of the re. If the
variational parameter increases by an amount d#, then the particles
are supposed as suffering an additional shift given by

r2df (a=1,2,38,4),
the values of r2 being taken such as they are in the momentary
point-instant occupied by the particle. Leaving out second order
terms with 8% we at once see that the first approximation of the
total shift will be

Grt, (a=1..4),
and proceeding to second order terms we obviously get

]
A aa ::f
0
142

A pt=—=fra | § 6° 2(0)7697—1
dac

0ra .
) (c)a—v—crc‘ﬂ ad,

where now the values of re and their derivatives have been taken
in the point-instants of the particle’s undisturbed motion.

The Variation of the Stream.

3. The following conception of the stream components will greatly
facilitate our deductions.

Let &V, a continuous function of space-time-coordinates, represent
the density of the parlicles’ distribution through space. At the instant
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ath), take an element of volume dV, sitnated at the point (D), z(®),
28). It will contain NdV particles. We assume that NdV is still
a great number, notwithstanding ¢V being physically infinitesimal.
Now, in our four-dimensional picture, consider the trails of these
NdV particles, run (hrongh during an interval of time da®. These
trails will cover an element of space-time-extension of magnitude
dVdi®. In the direction of the coordinate X the components wiil
in the aggregate amount to
: Nd Vdze.

It will readily be seen that the streamcomponent in the direction
of Xo is the aggregate of the X<-components of the four-dimensional
trails, run through by the particles per unit of volume per unit of time:

"NdVdae _ dge ,
i@ = Nggg =Nee. (@=1,2,3,4)

We shall put w®, w®, w® for the components of the velocity :
dajda®), da®/da®), daf®)/dat®). The foarth component equals unity:
w® = dz*)/dz®), and accordingly the fonrth streamcomponent Nw®
is the number of particles per unit of volume.

It is obvious that the equation of continuity must be satisfied by

these streamcomponents:

o Nwb _

(3) 5= 0.

By the displacements the components will change to
Nuwe + dNwe + § d* Nue,
where the first variation dNVwe is proportional to @ and the second
variation d*Nw® will contain the second order terms with % It
may be anticipated that the first variation will account for by
far the greater part of the effects of polarization, whereas the second
variation mainly gives the effects of magnelization.

4. We proceed to the evaluation of the first variation. Here we
may consistently neglect &°.

The displacements will have changed the aggregate of the Xo-
components of the ftrails under consideration: each, da¢ passes into

008rs
56 4 3 (b) —— dah,
dub
so that the aggregate becomes
d4ra -

Nav dee + 3 (B = dat|.
{

On the other hand the four-dimensional extension covered by the

1S
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trails has changed too: we find its magnitude by the aid of the
JacoBiaN determinant :

a(m“ ——{- A .'L'a) 0 (m(l 4 A (L'(')
dzn dxt
b &b b - al
(dVdm(4))' — a(w + A v ) a (’0 "l Ax ) av d'v(ll),
0z Ozb
Ora dra
1495 5
5 b 5
=] s e¥ Vaw=1+ 2o |av aww
oz 0xb Qb

We must divide by this, and so when we follow the displacement,
we may state a change of the streamcomponent into

dre 0rd
Nwa - A Nwe = [Nw“ + = (0) Nwb 0—] . [1 — 2 () 0——] .
0z? Qb

But this is not the thing we want. This value is found in the
point-instant ¢ 4 Aaz¢, after the displacement. We require the varia-
tion of the stream which we get if we slick to one and the same
point-instant. &® both when the particles are shifted and when they
are not. It is clear that the shifted particles which will by the
displacement get to our point, had their starting-points elsewhere,
in a point-instant which may be found if in the formula for A
we change # into —6.

So we have to correct the above expression by accounting for
this different starting-point: instead of Nwe we are to take

O Nwe

Py b,

Nuwe — 2 (b)

and we get

@ )
Nua + ¢Nws = Nuwr-+ X (b) N Nuwe 0P 1 N 6],
dxb 0t azb

Availing ourselves of the equation of continuity, we may put our
result in the symmetrical form:

0
dNwt = & (b)m {Ora Nwb — Orb Nwa} .
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This formula is also given by Born. It may be found, without
dedunciion however, in a paper by l.ormNtz ') ‘

5. The second variation is easily found, without calculation, by
submitting the first variation in turn to the operation which we had
to apply to Nw* in ovder to find dNw? So we get without difficulty

0
d.d Nuwa = X () S5 {Ore INwb — Orb dNw?,
‘v

0
dac

It is, however, important to remark that this formula implies the
accurate definitions of the displacements as given in § 2. This can
be verified by a direct deduction, following thronghout the same
line of argument as in the case of the first variation. We may
refrain from reproducing the calculus, but it will be good to point
out, that one has to’ develop the Jacobian with the required exactness
up to the terms with &%, and, above all, that at the last step to be
taken one has to be careful to choose the right starting-point from
where the displacements will carry the particles to the point under
consideration, viz.,

) orc

ws — Ore 4 L 0% 3 (¢) re—,

Oae
and no? x*—A»Oze, as we might be tempted to take.

Next, we have to give an interpretation of onr mathematical
result in physical terms such as polarization and magnetization.

a v
d* Nut = % (bc;)ai re—([0rd N wc—/]r"wa]—ﬁrba—w—[07’“Nw°—€'rCNw"] )
v c

The Simultaneous Displacements.

6.1. DBefore turning to the physical interpretation we must look
closer into the nature of our displacement vector 7« and the under-
lying assumptions.

We are to assume, that the trails of the electrons can be found
from the trails of the nuclei with the aid of the vectors »¢, in the
indicated manner. First of all, we have taken these to be continuous
functions of the coordinates. This implies that neighbouring atoms
are supposed as having their electrons at similar distancesin similar
directions, the positions of the electrons relative to the nuclei varying but
extremely slowly from one atom to the next. Of course this will not

1) H. A Lorentz, HamMwroNn's Principle in EINSTEIN'S theory of Gravilation,
Proc. R. Ac. of Amsterdam, 19, p. 751, 1915.
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exactly or even nearly exactly correspond to reality. But we can
commit no essential error by assuming the atoms as bebaving in
such a continnous way.

Secondly, we must observe, that the only realily we are concerned
with is the aggregate of trails of nuclei and electrons, and that the
choice of the veclors r is entirely arbitrary provided they furnish
us with the right motion of the electrons relalive to the nuclel.
Obviously the choice can be made in a great many different ways.
Sometimes it will be suitable to choose the ¢ such that the time-
component 7 vanishes in all points where matter is in a station-
ary state. We need not specify a particular choice.

6.2. As yet the displacements considered have been accompanied
by a shift in time. In view of the physical interpretation of the
formulae obtained, it will however be necessary to realize the
simultaneous positions of the electrons relative to the nuclei.

Now, in a first approximation, we find the electron belonging to
the nuclevs, which at the instant a® is in the pomnt (), 28, a®,
shifted to the point .

al) + o), 2@ ;- 012, 2() + (r(3)
at the instant
a4 L Gpd |
Thus we see that its position at the time a(* will be given by
20 4 o), 2(®) 4 o), 2(3) 4 o),
where
0% = Grt — wa G4,

For an obvious reason ¢ = 0.

Next, to obtain the second approximation, consider the nucleus
at the instant

-(4) orl4)
a® — Ort) — = (")3 4 6° 9‘661 — we 0L ’ y
0:xe &t
when its coordinates are
(4) (4) @
wa—wa Grd) —qpa 3 () o kg & ii-zﬁm 6* r4) 1(9).

LG% e e Grp(8)
1 6% Y 87()a.vcs+2dm(4)
This line implies the preceding as a special case, for a = 4.
Then the displacements of the electron will be
. ore - ora
dre+ § 6% 2 (c) 7'06_;:5— 0% 2 (c) we r@a{r.

so that its actual position will be given by
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za - Gt - wt G o ) j—- 6% ) plt) - = (o) |4 6° 7~c(%§ _{Uaar )

atd Oxc

" 0r(4)
— ? r(4)wc(aL——wa T ) .

0at dae
Taking a =4, this formula yields the instant 24, for w® =1,
and all terms vanish excepl {he first. -
So we see that [ora =1, 2 3 it gives the simultaneous displacements.
We can simplify ('onmdetably Writing

3 d
2 Ques =Ty

0 0
o — c__ {4)
2 (c) 6 o 2 () 03 + Or e

we get for the simullaneous drsplacements'
a 7;
= g ——l87(4)tﬁ""2(c) oo ]+ 33 ) oc——c. (6.2)
For ¢ =4 we hLave s&)=0.

6.3. Let us inquire what will be the polarization of matter, viz.
the electrical moment per uhit of volume. The electrical moment of
.one atom being es?, where e is the charge of an electron, the answer
i, in a first approximation, that the polarizalion has components
Nesa, (e=1,2,3).

Proceeding more carvefully, we must take some closed surface,
a sphere, say, sum up the electrical moments of the atoms within
and divide by the volume. But what about the border aioms, which
are infersected by the sphere? Must we leave them out, or mnst we
reckon them as lying within the sphere? The difference will be of
second order only, but it does make a difference.

A similar question has been raised by LoreNtz in his Theory of
Electrons (note 53). Loruntz decides himself to leave out the inter-
sected atoms, and this is certainly right when we restrict ourselves
to the first order terms, neglecting &°. But here we retain *.
Fortunately, our caleulus leads us to the answer: it will show a
correction to be made to the same effect as establishing the rule:
the atoms are to be reckoned as lying within the surface, whenever
more than half of the line joining nucleus and electron lies
within the surface. This is a quite satisfaclory rule.

Thus the polarization is:

Nesa— 4 (c)aN‘”asc (6.3)

6.4. The magnetic momentum of an atom has the components



857

1 . dsb , dst
2°\" et T e )

Hence the components of the magnetization are

b o
emtb—=1 Ne (s“ ds — sb ds ) 6.4)

de® " Ja

It is possible this ought to be corrvected in the same way asshown
for the polarization. The correction, however would be of the third
order and contain #°; and this wé drop throughout our investigation.

For this same reason we are justified in replacing s* by o¢in the
expression for the magnetization.-

Interpretation of the Variation of the Stream.

7. 1f ¢ be the charge carried by an electron, then the current
carried by the electrons is
e Nwe + ed Nwe 4 4 ed® Nwo, (a=1,2,3,4).
Adding the current carried by the nuclei, viz. —eNw", we get
for the resulting current:
 edNuw® + §ed” Nue,
Our results indicate that this can be written as a divergency of
a skew-symmetrical tensor 7'ab:
QT ab
e(wa”—{—{;ed’Nwﬂ:E(b)W,
where 7’2t is given by

0
Tab = ¢(r® Nwb—rb Nwt) 4 & e {r2 X (o) s (7% Nawe—re Nuwb) —
Hiag

— b = ——a— (¢ Nwe—rc Nuw) | ,

Oac
and .
Tab — . Toe,

We shall see what this tensor contains. First writing

T
—= (92Nuwb — g? Nuwry

0 0
4§ Oty = 5o (9" Nwe — g¢ Nuwb) — } Gri8 wb = Yo (0® Nue— g¢ Nwr) 4
mc rHg

0 0
+ Lot 2 Fy (0% Nue — gc Nwb) — 4 b = Y (p® Nwe — ¢ Nw?),

we can arrange ferms in such a way as to get
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aoa 0w do? dNepage
@ 5 _ s 2N .
o [ e da! ald awc:| s darc
dgb owb do? Jd bpe
— wNe| @b—16ri8) 2 { e ¢ —ofﬁ— -4 3o 2 A we S Neg'e _
Ozc 7 daf 0ae B Qe
~ alUI) all)a a@ aga
TN ey ANt T ety %Ne[wz“’c dor amj'

We recognize the simultaneous displacements (6.2), and find

0 Nesbse z
da¢ -

0 Nestse
Tob — b Nes“——;‘,‘E—-——c— —wt {Nesb — 4 ¥ ———
0x

L New Caw L Nopsh S cawﬂ L N dst daa)
— 3 iVés sa@-—C‘}'Q‘ es S(T)—,;;—*-g ‘ Sd.'u(‘l) sda:(‘”.

8. Taking b =4, some terms vanish, and we get
0 Nesose
dwe

Remembering what has been fonnd about the polarization in
(6.3), we ai once see that 7' (¢ =1, 2, 3) are the components oy
the polarization. Thus the polarization is no 4-dimensional vector:.
its components are the space-time-components of a tensor.

When neither a nor & have the value 4, then the part of 7'eb
containing the polarization:

Tt = Nest— 4 2 ()

0 Nesase 0 Nesbse
w \Ness — 3 SIVTTE e Nesp — 3 20T
dae dac

is nothing else but & component of the well known Rowreen-vector,
which in three-dimensional analysis is written [p.w], where p and
w are the three-dimensional polarization and velocity vectors. We see
that in our tensor the components of polarization are always accom-
panied by the components of the corresponding RONTGEN-vector.

9. In another part of T® (44, H74), viz.

dsb dse
ab — 1 e e gb )
om & Ne (s Ty s dm(‘i))

we recognize the components of nagnetization.
The remaining part however :

0w d
— } Nest = (c) sca—w~ + 4 Nest 2 () acl—u
¢

indicates the existence of a new ¢fect. It is of the second order and

-10 -
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therefore has been neglected by Lorentz') and by CunniNeRAM ®).

Born does not separate it from the magnetlization. But we can

imagine an experiment (see below) where this effect will manifest

itself apart from magnetism. So we shall keep these terms apart.
Here the quadratic electric moments of the atoms appear:

est Sb,

the same quantities which occur in recent papers of Depue and
Hoursmark on the broadening of spectral lines from luminous gases
under 1ncreased pressures.’) Half the sum of these quantities per
unit of volume we shall call the elecirical ewtension of matier, unless
a belter name be proposed. If an atom contains more than one
electron, then we can have an electrical extension without polavi-
zation. We denote il by
Kob — & Nes@ sb.
and the corresponding part of the tensor can be wrilten
Ouwb Owt
b = — 2 (c) Iaca — Koe——1,

. Oac

10. In order to veview the results reached thus far, let us gather
them in a scheme, and let as for convenience’ sake use rectangular
coordinates ®, 7, z; ¢ for the time, and three-dimensional notations for
the (three-dimensional) vectors of polarizaiion, magnetization, and velo-
city: p, m (m, =m?*, etc.) and w. In addition, write *K for the
three-dimensional extension tensor, and for the new iector k:

k=—[CK. V). w],
where ("K.V) is an operator having vector properiies. Thus k, =
k**, etc. Then the contents of the tensor 7' are:

—l
J/ em: -+ k: + [p.wle -emy — ky — [P-W]y P
@
s —cm; — k: -- [p.wl]- emy + kg + [pw]  py.
Tab ;
emy 4 ky + [pW]ly  ~oma — ke — [p.W]a P2

— P == Py a1
Applying the formula for the carrent from the bound electrons:

1) Encyclopaedie der Mathem. Wissenschaften.
%) The Principle of Relativity, Camb. Univ. Press.
8) P. DeByE, Das molekulare eleltrische Feld in Gasen, Phys. Ztschr. 20,
p. 160, 1919,
J. HoursMark, Ueher die Verbreiterung von Spektrallinien, ib. p. 162.
See also P. Deeuk, Die Van per Waarsschen Kohasionskrafie, Phys. Zsehr.
21, p. 178, 1920.

-11 -
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9 Tab

due ’

and putting it in the right hand members of the equations of the
field, we get for the fundamental equations for moving non-conduet-
ing media, in three-dimensional vector nofation:

= ()

7ol B - I;E:1‘Otm -+ 1;rozf;k —[—-%rot [p.w] +—1—p ,
and \
div E = — div p.
These are LorenTz’ equations with the addition of 7otk to the
current. We see a polarization current p, a RonteeNcurrent 7ot [p.w]
and the current of magnetization rof cm. )

A proposed LExperiment.

11. Let us inquire further into the nature of the second order

current

rot k.
Referring to the definition :
k=— [CK.Y).w]

we see that it is an effect due to the non-uniformity of motion in matter
where the atomical charges lie outside one another. If these charges
bad fixed positions, i.e. if the electrons were rigidly fixed between
the nuclei and if they therefore could be said to have exactly the
motion of matter in bulk (i.e. of the nuclei, or rather motions inter-
polated Uetween the nuclei) then our calculus indicates, that there
would be no current resulting from the charges: the streams ot
positive and negative particles cancelling each other.

But in this case, the motion of matter being non-uniform, the
electrons clearly would turn round the nuclei in an absolute sense,
and the atoms would have a magnetic momentum. It is the part of
k to counterbalance this slight magnetization, it then equals cm with
opposite sign.

On the other hand, in case the electrons, instead of being rigidly
fixed in the frame of the nuclei, always kept the same distance and
in the same direction from the nuclei, not turning round in the
rotating motion of matter, then k comes into play, not being balanced
by a slight magnetization; so an induction field will be produced.

It should be possible to keep the electrons in the same direction
from ‘the tuclel’ by applying an eleciric field ahd maintaining a
constant polarization. A rotatory motion then should produce an
induction. We must be careful, however, to separate this from the

-12 -
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Ronrern-effect, by eliminating the latter. This might be done in the
following way :

Take a sphere of insulating material, which is mounted to perform
rolatory oscillations round a vertical axis. Surround its equator by
a circuit fixed in space. Apply an eleciric field of constant horizontal
direction, and the oscillations of the sphere must induce an oscilla-
ting current in the cireuit.

The effect will be small, buf it should be detectable with the atd
of the modern detectors of radiotelegraphy. It will be proportional
to the square of the electric field applied.

It might be pointed out that a comparison of the effect with the
produced polarization, would provide ns with means to determine
the number of electrons per atom, which are involved in the pola-
rization, because, for a given polarization, the displacement 8 of the
electrons is inversely proportional to the number n of displaced
electrons per atom, and so the effect of k per electron is inversely
to »®. Materials with the same di-electric constant should show the
effect to a degree inversely proportional to the number of polarizing
electrons per atom. )

Spontaneous Electric Polarization of Moving Magnets.

12. Though we bhave used in the title of this paper tne deno-
minations “Polarization and Magnetization Electrons”, yet it is well
known that it is impossible to make a vigorous distinction between
the two. For even though there may be in some cases electrons
which only produce polarization and no magnefization, there can
be no electron which gives rise to a magnetization and never
produces polarization.

In fact, whenever magnetized maller moves in a direction per-
pendicular to_the magnetization, then it shows.a polarization at right
angles both to magnetization and motion.

The explanation runs as follows. A magnetic atom contains elec-
trons sweeping round the nucleus, in circles, say, with uniform
velocily, under the aclions of electromagnetic forces. When the atom
aequires a motion in the plane of the circling electrons, then the
forces are modified in a way given by the theory of electrons and
of relativity. The effect of this alteralion of the forces will be that
the orbit is no longer a circle, and becomes an ellipse, and that
the veloeity changes in such-a way that the electrons during a
longer time stay in one part of the ellipse near an end of thelong
axis than in the other. This clearly results into a polarization.

-13 -
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We shall call this the polarization of moving magnetism. It explains
why no current is set up in a moving magnet on account of a
molion perpendicular to its own internal induction field, so that
with sliding contacts no current can be taken off. Thus, e.g., if we
take a circular spring, the two ends pressing together, we can put
a long magnet into it. Suppose that we can draw the magnet across
the ring, the ends of the spring giving way and making a sliding
contact: there will arise no current in the ring if we do it.

Again, this polarizaiion is responsible for the electric force set
up in a homogeneous magnetic field if the magnets producing the
latter acquire a uniform motion at right angles to the fleld. The
magnetic field may remain stationary and homogeneous: neverthe-
less an electric force will be induced by the motion of the magnets.

Afterwards these problemns will be treated more adequately when
we shall have explained the character of our deductions from the
relativity point of view (see below § 20).

Then we shall also define a distinction between the di-electric pola-
rization which is independent in itself, and the polarization of moving
magnetism.

N

The Imvariancy of the Resulis.

13. Thus far we did not want to refer to a single theorem of
the theory of velativity to deduce our results. Nevertheless they
possess the property of complete invariancy, not only in EiNstrin-
Minkowskl’s theory of restricted relativily, but also in HINSTEIN's
theory of general relativity. We proceed o show this.

This theory ascribes to a four-dimensional track the length ds:

ds* = 3 (ab) gq; dat dab,
if dat (@ =1..4) define the increments of the coordinates and time.
The determinant of the gq; is called ¢, and its minors divided by
¢ are denoted gab.
What is the character of Nws? Remembering the definition (§ 3 :)
Nwa — Mﬂjﬁ,
Vg dV dat®
we notice that N dTV is a number, dz®is a contravariant vector
and Vg dV da2® constitutes a scalar. Thus Nwe is a contravariant
vector multiplied by 1.
Gre is a contravariant veetor too, and so
Grt Nwd — Ord Nwe
is an skew-symmetrical contravariant tensor, multiplied by y/¢g. (This
is sometimes called a volume-tensor or a tensor-density, after Wryr), -
Then we know that

-14 -
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d Nt = 2 (b)g%{ﬁra Nuwb — Orb & N2}

is the contravariant vector-divergency of ihis tensor, multiplied by
Vg, and thus of the same nature as Nwe itself.,
In like manner the second variation

0
d* Nw= = (b) 50 {@ra INwb — Gr" ENw*}

is a contravariant vector multiplied by /¢ again.

It follows thal our results are in complete accordance with relativity
theory in the most general sense, and we are justified in applying any
theorem of that theory.

Having thus recognized the true character of our tensor, we shall
henceforth write g T instead of 7%  ©

Vg T0b = efra Nub — ¢frb Nuwt + § o Ore & Nuwb — G¢b f Nwal,

This will cause no confusion.

We must further keep in mind that w¢ is no four-dimensional vector,
but we da®/ds is. We shall not introduce a new notation for this
velocity vector.

The General Covariant Equations for the Field.

14. The covariant tensor of the field can be written as the rotation
of the potential vector ¢p,:

a(f)b a(/)(; .
for= 5o — 0t @=1,2,84; b=1..4) (141)

From these we get the contravariant components:
feb= = (cd) g 9 fod
and the fundamental equations of the theory of elecirons are

0
= (s = e (142)

where ¢ is the density of the electric charges, and gv? is a contra-
variant vector multiplied by 1”7g.

From the velations (11.1) arvises another equation. Multiply by
the contravariant fourth rank tensor 4detcd/)/g, and contract twice.
Heve dabed ig 1 whenever the figures abed constitule an even permu-
tation of 1234, and in other cases vanishes. Then we get the conjugate

tensorf® *):

f*ab —_ (cd) d‘abcdfcd.

2V

1) In order to get the covariant conjugale tensor components f¥qp from the
contravariant fed, multiply in the same way by the covariant tensor
Yo Vg Sabed - (Oabea = 0abed).
57

Proceedings Royal Acad. Amsterdam. Vol XXIIL
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If now we write
0
2 055 W) =0, (14.8)
4

this must be an identity in virtue of (14.1).
The Minkowskian force acting on a moving_charge e has the
covariant components:

dai4)
fa=1¢eZ2 (D) e w Fup

These equations are supposed to hold within the finest structure
of matter.

To obtain the equations of matter in bulk, we take the mean
over a small region, cogltaining a great many atoms. We define

S fap Vg dell) .. da'® . STV g dal) . da®)
[Vgda) . dob T Sygdat). do®) '
It is readily seen that still Feb = Z(cd) g gtd Feq.

The mean of the convection current g, as produced by the
bound electrons, we have just found, and so the equations for non-

conducting matter are:

F'ub ==

0 0
SO 55 Ve F) =2 (0) 57 (Vg T). (14.41)

In conducting matter, the current from the conduction electrons
V'gl¢ must be added in the right hand member.
The other equations become

9
S )5 (Ve Fe) =0 (14.42)

Now, we could try a solution F@= 7Ta and add a solution
Ea of the equations

0
> (b)m(Vg Eab)y =0 (14.51)

- N

o

and
9 0
2 (0) 5 (Vg B = — 2 (8) 5 (Vg Tu), (14.52)

Ly and Ty being the conjugate tensors of E% and T'@®. Then
Fab — T'ab Fab

is a solution of equations (14.41) and (14.42). We shall call 7'eb

the tnternal, and L the external field.

Separation of the Polarization and the Magnetization Tensor.

15.1. It has been remarked, that in our tensor /g 1'% the
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polarization and magnetization are intimately interwoven. Indeed, it
is not always easy to separate them.

We shall assume that our system of reference is such that Gad
vanishes for ¢ =1, 2, 3. This means, that in our system of reference
the velocity of beams of light in opposite directions is the same.
This also implies that whenever the first three contravariant
components of velocity vanish, also the first three covariant components
vanish.

Then we may in stationary points of matter (or in an arbitrary
point after changing variables in a way that renders it stationary)
separate 7'® into two tensors, one consisting of the (a4)-components,
the other components vanishing, and vice versa. These tensors we
may call the polarization and magnetization tensors. 1t should be
undersfood, that a change of variables, or a motion of matter, cannot
leave half of the components zero, as they are in stationary points:
the magnetization tensor, e.g., completes 1tself with polarization
components.

Write 7% for T'eb in a stationary point, and separate:

OTab o oMab 4 oPab,

so that
aTll 01’18 0
OMab (::) 011'21 07‘23 0 ? )
°7"81 01732 0
0 0 0
and
0 0o I
Pab (=) 0 0o T
0 0 el
0:]‘41 0_’[‘42 °T43

We could have taken the covariant components of the tensor
Ta and the separation would have had the same effect. This is
due to the fact that gqu vanishes for a =1, 2, 3. If this is not the
case, then we have first to change variables to make them vanish
and afterwards make the separation.

15.2. We shall now briefly indicate what becomes of the constitutive
relations between polarization and electric force, magnetization and
magnetic force, and between the conduction current and electric
force. We proceed in a quite formal way

First, to find the generalization of the equation P = (e—1) E, we
form from the field-tensor a force-veclor F% :

57*
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dald)
w:zm%wmm
)

and from the polarization tensor we form a vector Pe:
Po— 2 (b) Eifﬁ) wy, Pab,
ds -
and the required generalization will be
Pa— — (s—1) Fe,
Secondly, to generalize the relation B — uH, or rather
u—1

o
we proceed in a similar manner. From the conjugate field tensor
we form a vector Gy: -

’

’ dz(®
Go= = (b) —;—s w0 Fgp,
and from the conjugate magnetization tensor a vector (J,:
da4)
%:E@%WWW

The generalized relation is

The current of the free electrons is partly a convection current,
partly a conduction current. The latter will be the component of the
four-dimensional vector-density §/¢gI® in a direction perpendicular to
the four-dimensional velocity vector. The conduction vector thus is:

TR
S ) wy I
dss

This can be put otherwise, if we first form a skew-symmetrical
tensor

JU:I{!___wﬂ

4

4
- fab :da,( ){_[a wb — Jb wa}

ds
and afterwards from this tensor form a vector again:

da(4)
Ja= 3 (b) —— wp I,
ds
The equation for the conduetion current must be

Jo = — ) Fe,
We notice that in the common equation J=oE, o= A}y.

16.1. Now take the contravariant tensor P and form its con-

jugate :
P*ab == 2 (Gd) % ‘/g dabcd Ped,
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then we get the conjugate tensor with covariant compounents
VP —vlt  yeP”
— I/.q_Pl'i l/yl)l4 VgPll
Prap (=) VP —ygP VgP*
— l/ngu _Van —y/g P
By multiplying by the velocity vector and coniracting,
dwe(4)
ds
we get a vector. This vector clearly vanishes in a stationary point,
because wit), w®, w®, and ,Psyq vanish, and it therefore alwnys
vanishes. Thus we conclude that we shall always have
0 = w® 1L g P — i) g P + g P?, (16.1)
and similar relations for cyclic permutations of the figures 123. It
is thus confirmed that where }/gP® (n =1, 2, 3) are polarization
components, the other components of this tensor consist of compo-
nents of the corresponding RONTGEN-vector.

Wb Prgs,

2 ()

16.2. Apply a similar reasoning to the magnetization tensor.
Multiply by the velocity vector and contract:
- da(®) dax®

= (be) gue we Mab = Z(b) — wy, Mab,
ds ds

This will be a vector vanishing in stationary points, since w,, w,,
w,, and M vanish. Therefore it will always vanish, and we
shall have

0 =w, M* 4 w, M*® 4w, M*. (cycl. 123). (16.2)

Here we meet the polarization of moving magnetism, 1/ gMe4,in terms
of Meb. We know from §§ 8, 9 that V/gMe must contain, besides
the components of the magnetization and of %6, the components of
the RoONTeEN-vector corresponding to the polarization of moving mag-
netism also.

This will afford us means completely to express the polarization
of moving magnelism in terms of the magnetization and k of moving
matter (§ 19).

Comparison with Other Theories.

17. In constructing the polarization tensor EinstriN, following
Minkowskr, starts from the vector P2 defined in §15.2, and he puts
for his tensor?)

) Die formale Grundlage der allgemeinen Relativitaistheorie, Berl. Sitz, 41,
p. 1065, 1914, “ .
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d.'z, @)

‘ , ds

In order to show that this is the same as our tensor Peb, take
a special case, a =1, 6 =2 e.g., and write in full

4 4)] 2
dat ){Pa wh— Pl — datt

8

——{Pa wb Pb wal,

w'® (wﬂ P 4 wr_Pla + w, .P“) — -

— w®) (w, P 4w, P*? fa, Py,

We can rearrange:
‘\dmm

=

P (D, - 0w, + 0@ w, - 0 w,) 1

o w, (w0 PP wf®) PP wl®) PP, (uld) P ) P fu® PR

and now we remark that the latter two. bracket forms vanish in
- virtue of (16.1), for '

“dald)

S (w(l)P“ + w® P | ) Py =

‘ 1 d (4)
=7—“’—(qu P*“ + w® P, 03 Pey) = 0.

g ' -

As ' ‘
Ok
d_w__ Twbwy,=1.
ds

the l'équil‘éd identity is' shown to exist.
In the same way it can be shown that the magnetization tensor
or rnthel its conjugate in the form

dz®)
{Qa wp — Q(, wa}
‘agrees with our Mxg,.

18. Let us make the simplifying assumption of the absence of
gravitation. Then the g, and g have the values:

—1 0 0 0 —1.. 0 0 0
0—1 0 0 S 0—1 0 o

gab (=) 0 0—1 0,g%(=) 0 0—1 0, g=—¢1}
0 0 0 ¢ 0 0 0 1/

If A and ¢ 'denoten the common ‘vectm and scalar potentials, then
the components ¢, are A, A, .A.z and — ¢, The components of -
the field are :

Y In order to avoid imaginaries, we shall everywhere in Vg take |g|.
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B. J— Bg/ ) OEx
— Bz . : ) Bx . GE]/ '
Fap (=) By — B ' ¢Ez
—cEx —cE; = —c¢E: "
B. =B, —Eife
— B ’ ' B, - E],/C.
Fe& (=) B, —B —Esfe

. Exfe Ey/c E./c
The equations for. the field are (14.415'
0 0
Bl 55 (Vg F) = Z(8) 5 (Vig P 4-1Vg M),
Ox 0z

. and we have, if P is the principal di-electric polarization :

[Pw]. — [Pw], P:

Vo P (=) — [Pw]: | [Pw]s P‘;/1
[PW]y - [PW]z P
' © = Py — P,  — P ‘
and '
‘ em+k+[n.w]: | —cmy—ky'[ﬂ'“’]y
1/9M“”£:) —cmz—k;—[n.w]? : emptkoH[n.w]
emy+k,4+H[nw]y —omg—lke—[n.wla
—Ii; ~ly —IIz

(18.1)

) Py

By
18.2
. (18.2)

where n denotes the (electric) polarization of moving magnetism.

- For the conjugate tensor of the field we. have

) Ez ) o Ey . Bx/c
‘ — E: Ex B,/c
ab o i/
' F ¥ =) E, —E B./c

—Bz/c —Byle — B
We see that the equations (14.42) amount to
¢rotE + B =0,
divB =0,
From the equations of the field we see that
div B = — div (P - ),
and '

(18.31)
(18.32)

(18.41)

cr.(l)t B—E=rot(em 4 k -+ |n.w] + [P.w]) + [P +n].  (18.42)

These are the equations we have met in §10.. Only we had not

yet separated p =P -+ n there.
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19. Let us solve n in terms of m and k. Referring to the equation
of § 16 2 we must notice that

W, = — Wa, W, = — Wy, Wy == — Wz w, =g,, wd = ¢,
and we get
¢* iy = Wy (em: + ks + [0 . W]5) ~ Wz (emy + ky + [n. w]y)
or
dn={[w.(m+k + [n.w])] (19.1)
From this it is easily seen that
(m.wy=20,
and as
[w.[n.w]] =v*n—w(n.w),
we get
n: = /g M = W-]-x a.50. (19.2)
w
*(1-%)
and

_om, -}—kz_wz(w.(cm—[-k))

1— 'E o’(l — iﬂ)
a? ¢?

In this form our result for the magnetization tensor can be réadily
compared with the corresponding formulae of Born ). He also points
out the existence of the vector n and states that it is the magnetic
analogon to the RonreuN-vector. We see that the factor 1/(1—w*/c*)
disturbs the analogy. The difference in the appreciation of the result
is this that Born (apart from not separating k) takes the whole of
the components /gM®, V/gM*" and V/gM** to be the components of
magnetization and seems not to have become aware of the fact that
they contain the RoNTGEN-vector components belonging to n as well
as the magnetization components proper.

Born emphasizes the complete symmetry of his electric and mag-
netic equations and -certainly one can enjoy the mathematical beauty
of the formulae thus written. It would, however, be erroneous io
believe tbat the difference from L.orEnTZ’ equations is more than a
difference in form. Our investigation shows that the physical contents
of BorN's equations is no other than whal has been expressed by
LorenTz.

, 4.8.0. (19.3)

Action of Polarization of Moving Magnetism.

20. Let us illustrate some effects of m by considering a long

1) Le. form. 39 and 39, pp. 546 and 547.
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magnet moving at right angles {o its magnetization. We shall follow
the distinction of “internal” and “external” field at the end of § 14.
The effect of this electric polarization m, called inlo exisience by
the motion of magnetized matier, is to produce an internal eleetric
field (18.41):

E—= — n.

This could be expected o act on free electrons, present in the
magnet, and cause a conduction current. But these electrons are
carried along with matter and therefore are moving with velocity
w through the internal magnetic field where the induction vector
is (see § 18.42):

B=cm + k4 [n.w]

and, where the external field may be neglected ), they consequently
are subjected to the Newronian force

1
e(E-{—;[w.B]).

This expression vanishes according to the formulae of §§16.2 and
19, so that the free electrons moving along with the magnet are
not driven sideways. _

Therefore it is impossible with sliding contacts at the magnet’s
sides to get a curvent from it, and the experiment with the long
magnet drawn across a circular spring is explained. (§ 12).

On the other hand, if we cut the magnet at right angles to the
magnetization, and take oui an infinitely thin lamella, so that a
thin wire might be kept in the same place while the magnet is
drawn across, then the “‘external” field in this split will simply be
the continuation of the internal field. and the free electrons in the
wire, not sharing the motion of the magnet, will be subjected to
the electric force E only, so that an induction current will be set
up in the wire.

Thus we see that it is the polarization of moving magnetism that
accounts for the inductive force, when a magnetic pole moves
across a wire, i @ case where the magnetic-field is homogeneous and
stationary.

Conclusive Remarks.

21. In conclusion we may remark that the result of the first
variation is wholly incorporaled in the polarization tensor. The

1) Suppose the magnelization as being homogeneous, and the free poles of the
magnet as being at infinite distance.

-23-



872

greater part of the result of the second variation is represented in
the magnetization tensor.

Consider once more the complete polarization (6.3 and 6.2):

a apc

+%Eo°§% -aza—N%i

Here Neo® is the term, by f{ar the most important, which results
from the first variation. It is difficult to tell in a few words, which
part from the second order terms is exactly the polarization of moving
magnetism. If the r¢ are so chosen that ¢(*) vanishes in stationary
points, then we can say that the greater part of

O | ONeguoe

dac  ° T Oac
figures in the polarization tensor. A small fraction of it (in as much
as dN is no scalar) appears, however, in the magnetization tensor,
together with

dp® duwe
_—— X QG —
da'4) o€

Ne [9“ — G0

+ Ne Zoc = dN.cops.

— 3 Ne6rid

dald)
as the polarization of moving magnetism. But we refrain from
entering into detail here.
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