Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)
Citation:
J. de Vries, A Congruence of Orthogonal Hyperbolas, in: KNAW, Proceedings, 22 II, 1920, Amsterdam, 1920, pp. 943-947
This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. — "A Congruence of Orthogonal Hyperbolas". By Prof. Jan de Vries.

(Communicated at the meeting of February 28, 1920).

1. In any plane through the given point C lies one orthogonal hyperbola o^2 , resting on the four crossing lines a_k . The congruence $[o^2]$ defined in this way will be examined here.

Any straight line k is a chord of one o^2 . If however k passes through C, it is a chord of ∞^1 curves; it is in this case a singular chord.

Also the four lines a are singular; for the plane through C and a_1 contains a pencil (o^2) , having for base-points the intersections of a_2 , a_3 , a_4 and the orthocentre of the triangle defined by them.

Finally also the two transversals b_{1234} of the lines a are singular chords, for in the plane Cb_{1234} any line cutting b_{1234} at right angles, forms with it a figure belonging to $\lceil o^2 \rceil$.

2. To determine the order of the locus of the curves o^2 which have a straight line l through C as a chord, we first consider the surface formed by the orthogonal hyperbolas passing through two points P_1 and P_2 and resting on the lines a_1 and a_2 .

The scroll which has a_1 and a_2 for directrices and a plane perpendicular to $l \equiv P_1 P_2$ for director plane, contains two straight lines resting on l; for this reason l is a component of two figures o^2 . From this it ensues, that the surface in question is a dimonoid O^4 , with triple points P_1 , P_2 and double torsal line l. Through P_1 and P_2 pass therefore four curves o^2 resting on a_1 , a_2 and a_3 .

Let us now consider the locus of the o^2 which have l as a chord, rest on a_1 , a_2 , a_3 , and pass through P_1 . There pass four curves o^2 through any other point of l; hence l is quadruple on the surface in question, which is for this reason a monoid O^6 with fivefold point P_1 . From this appears, that the locus of the o^2 resting on a_1 , a_2 , a_3 , a_4 and having a line l as a chord, is an axial surface O^8 with sixfold line l.

According to a wellknown property the axial surface O^s contains twenty pairs of lines. To these belong the eight pairs each consisting of a transversal of l, a_l , a_l , a_m and the perpendicular to it inter-

62

Proceedings Royal Acad. Amsterdam. Vol. XXII.

secting a_n and l. Each of the other twelve pairs consists of a transversal of l, a_k , a_l and a transversal of l, a_m , a_n perpendicular to it.

3. Through any point P pass six curves of the congruence $[o^2]$. For the locus of the o^2 which have CP as a chord and which rest on the lines a, has CP as a sixfold straight line.

Any point A_k of the line a_k is singular. The curves o^2 through A_k form a monoid O^s with vertex A_k and fourfold straight line A_kC . It contains fourteen pairs of lines arising in the following way. Three pairs consist each of a transversal through A_k to a_l , a_m and a straight line intersecting a_n and $l \equiv A_kC$. Two pairs consist each of a transversal of l, a_l , a_m , a_n and the perpendicular out of A_k to this transversal. In order to find the other pairs we consider the cone formed by the perpendiculars b_k out of A_k to the transversals of l, a_l , a_m . As two of these transversals are perpendicular to l, b_k coincides twice with l. The cone in question is therefore cubical and has l as a double generatrix. Consequently there are three orthogonal pairs of lines of which the line b_k passes through A_k . In this way the nine remaining pairs are found.

4. Also the point C is singular. The determination of the order of the surface Γ formed by the curves o^2 passing through C, comes to the determination of the number of orthogonal hyperbolas through C resting on five straight lines 1, 2, 3, 4, 5. Using the principle of the conservation of the number we can suppose the straight lines 1, 2, and 3 to lie in a plane φ . Through C and the point 12 pass four o^2 , resting on 3, 4, and 5; analogously we find four of them through C and 23 and four through C and 13.

All the other figures satisfying the conditions are pairs of lines of which one line, s, lies in φ , while the other, t, passes through C. To these belongs in the first place the line s in φ intersecting 4 and 5, in combination with the perpendicular t out of C to s.

Let us now consider the plane pencil (s) in φ which has the intersection M of 4 for vertex. The perpendiculars out of C to the rays of (s) form a quadratic cone; the two generatrices t resting on 5, belong each to an orthogonal pair of lines (s, t). As we can interchange 4 and 5, the group considered contains four pairs (s, t).

Finally we find the figure formed by the transversal t through C to 4 and 5, combined with the line s in φ cutting it at right angles. In all we found $3 \times 4 + 1 + 2 \times 2 + 1 = 18$ figures o^2 ; the curves o^2 through C form consequently a surface Γ^{18} .

5. Any ray through C is a chord of $six o^2$, belonging to Γ ; hence C is a twelvefold point.

The transversal b_{12} through C to a_1 and a_2 is cut at right angles by two transversals of a_3 and a_4 ; the six lines b_{kl} are accordingly double lines of Γ . To them 12 single lines are connected.

To each t_{123} of a_1 , a_2 , a_3 we draw the perpendicular b out of C and we consider the cone which has the straight lines b as generatrices. Let γ be a plane through C and a straight line c of the scroll to which a_1 , a_2 , a_3 belong. Through the intersection D of t_{123} we draw in γ the straight line d perpendicular to c. As c is cut at right angles by two lines t_{123} , d coincides twice with c, envelops consequently a curve of the third class with double tangent c. The three lines d meeting in C are generatrices of the cone (b); this is consequently cubical and there are three pairs of lines (b, t_{123}) . In all we find twelve pairs of lines o^2 of which one of the lines rests on three straight lines a.

Finally there lie on Γ the two transversals b_{1234} each connected to a straight line through C.

Each of the four o^2 which have a line a as a chord, is a double curve of Γ .

6. To find the order of the surface Λ formed by the o^2 resting on a straight line l, we try to find the number of curves o^2 , in planes through C, which rest on six straight lines 1, 2, 3, 4, 5, 6, and again suppose 1, 2, 3 to lie in a plane φ .

Through the point 12 pass $six o^2$ resting on 3, 4, 5, 6, while their planes pass through C. Analogously six pass through 23 and six through 13. All the other figures degenerate into a straight line s of φ and a line t cutting it at right angles.

The plane through C and the intersections of 4 and 5 with φ contains a figure (s, t) of which the line t rests on 6. We obtain here a group of three pairs (s, t).

If s is to pass through the point $D \equiv (4, \varphi)$, t must rest on 5, 6 and CD_4 . The orthogonal projections t' of the straight lines of the scroll $(t)^2$ envelop a conic. Let the perpendicular r out of D_4 to t' be associated to the ray s joining D_4 with the intersection T of a line t; r being perpendicular to two lines t', hence associated to two rays s, there are three coincidences $r \equiv s$. We find therefore three pairs of lines (s, t) satisfying the given conditions; in all a group of 3×3 figures o^2 .

From this it ensues at the same time, that the straight line r cutting the ray t in T at right angles, envelops a curve of the fourth

class, for through D_4 passes also the line r at D_4 perpendicular to the ray t of which D_4 is the intersection.

Finally we have to consider the case that the line t rests on 4, 5 and 6. If we now also project the scroll $(t)^2$ orthogonally on φ and draw through the intersection T of t and φ the line r perpendicular to t, r envelops, as appeared above, a curve of the fourth class. From this follows, that also the plane (rt) envelops a curve of the fourth class, so that through C there pass four planes in each of which a transversal of 4, 5, 6 is cut perpendicularly by a transversal of 1, 2, 3.

In all we found $3 \times 6 + 3 + 3 \times 3 + 4 = 34$ figures o^2 ; the locus of the o^2 resting on a straight line l, is consequently a surface A^{34} .

The curve o^2 in the plane (Cl) is apparently a double curve. The four lines a are sixfold on A; for the curves o^2 through a point of a form a surface O^3 .

7. The planes Ca_k may be called singular because they contain ∞^1 orthogonal hyperbolas. This will also be the case when a plane through C cuts the lines a_k in an orthocentrical group. Now the orthocentres of the triangles $A_1 A_2 A_4$ of which the planes pass through C, form a surface; there must therefore be a finite number of singular planes of the kind in question.

In order to determine this number, we first consider the locus of the orthocentre H of a triangle CA_1A_2 , when A_1 lies on a_1 , A_2 on a_2 . The plane through a point A_1 perpendicular to the ray A_1C contains one point A_2 , hence one triangle A_1A_2C of which H lies in A_1 . Consequently the surface in question contains the straight lines a_1 and a_2 .

In the plane Ca_1 lie ∞^1 triangles $A_1A_2C_1$; their orthocentres lie in a conic H^2 through C and the intersection D_2 of a_2 . The intersection of the surface with Ca_1 consists of a_1 and H^2 ; we have therefore a surface H^3 . Three times H lies on a_1 , or, in other words, through C pass three planes in which the orthocentre of $A_1A_2A_3$ lies in C.

We consider now the surface formed by the orthocentres of the triangles $A_1A_2A_3$ of which the planes pass through C.

If H is to get on a_1 , A_1A_2 must be perpendicular to A_1A_3 . In each plane through a fixed straight line A_1C we draw through A_1 the line l perpendicular to A_1A_2 . If this plane is perpendicular to A_1C , l coincides with A_1C ; hence l describes a quadratic cone. Two of the generatrices intersect a_3 ; through A_1C pass consequently two planes in which H coincides with A_1 . But then a_1 is a double straight line of the surface in question.

A line A_1C is cut at right angles by two lines A_2A_3 ; it contains therefore two points H, which as a rule lie neither on a_1 nor in C. It has appeared above, that there are three rays A_1C on each of which one of the points H lies in C; the pairs of points H form consequently a curve H_5 with triple point C.

Finally the plane Ca_1 contains a conic which is the locus of the orthocentre of a triangle $A_1D_2D_3$ (where D_3 is intersection of a_2 and Ca_1).

We may conclude, that the orthocentres of the triangles $A_1A_2A_3$ lie on a surface H^9 with double lines a_1 , a_2 , a_3 and triple point C. From this it ensues, that there are nine singular planes in which the four points A_1 , A_2 , A_3 , A_4 form an orthocentrical group.

Any straight line of such a plane is apparently singular.