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Physics. — “On the Course of the Values of a and b for Hydrogen
at Diflerent Temperatures and Volumes?. 1II. By Dr. J. J. van
Laar. (Communicated by Prof. H. A. Lorexrz).

(Communicated in the meeting of Febr. 23, 1918).

Continuation”of § XVI.

The factor by which the double integrals (7) are multiplied, now
becomes, with n—= N:»: 3
2
Jrna® X MN =13 X % aNe X MN X % y%,
ie, as gaNs*=dm= (b, ., MN =«
a® 1 a® 1
FXC XaX g X =0 X5 X~—.
$ v $ v
With omission of 1:» we gef, therefore, for *the constant of
attraction a:
90 a

_ 2a* l:
a= wxs(a"’ —s%) b,{

a* at
Do*mq l—w—ﬂsm 6+(p(;‘?-1 B ,5-_"’—1)

when also for I'(#) and — F"{r) their values according to (8) and (8a)
are substituted. When to abbreviate we wrte Z* fors* - (a*—s®*), the
above becomes :

ot [ [ 648 e
a d d
1= o >< : : ':ff r X s ‘!"‘fﬁbid"]""(fz")
s(a*—s") J Vet Zatsin® O Bg(a—r7) .
‘N P 0 s

+ in which, therefore, o =4 X (b,),, X .
Let us first discuss the first integral referring to all the molecunles
that pass the molecule which is sapposed not to move, without
ecoming in collision with it. We may write for it:

90 a .
7 __ff dr>< sin 6d8
' _—0 ™ a® cos® B—(a* —*) (1—L2¢p) '
0 Tm

As was already remarked above, the above calculations only hold
for temperatures ahove a certain limiting temperature 77, defined

O a
f dr sin 6d0 n Jfbid ] ’
S a’ .
0 s
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by 8, =090°% sind, = 1. This is namely the lowest temperaiure at
which a value for 0, is still possible. From ({6) follows namely
s? s

2
sin® 0, = — (1 - o), sothat — (1 4 ) can never become greater than
a a

1, hence ¢ never greater than (a’—s*): s* =1:4"
When we represent this limiting value of ¢ —= M: Luu?® by ¢,

i 9 we get therefore

3
e . 1 1—n?
mﬁ% ¢0:F: — e e . N )]
p_,g: iy {5 n
bl . . .
;,Lﬁ when we put the ratio s:a =mn. Accordingly, as long as ¢ remains

< g, (I'>T,), the quantity 1—A%p also remains >0 in the above
" integral.

0, 1s=90° in the limiling "case ¢ = ¢,; then all the entering
molecules colhde, also those that strike at an angle § = 90°, which
just reach the rim of the sphere » =13, and will yield there a
minimum value for r for the last time.

But as soon as the temperature becomes still lower, and ¢
becomnes > ¢,, all the enitering molecules collide without previous
minimum, i.e. they all strike at angles < 90° with the normal. For
these values of ¢ we shall therefore have to execute a separate
integration later on, i. e. for all the values from ¢ > ¢, top = (T'=0).

Now the integration with respect to » yields:

am
S

fu,

P

T
)
&5

S e ‘Eé’él
e = y

4.?&3'

P

R

a

a
dr 1 2,322 3
f . _ (Bgtgl/}” a*(p*—cos”6) ’
9 l/p%-“—a" (p*— c0s*B) «a Vp”— cos* @ a® (p*—cos® 6)

Tm Tm

3
X

&

%

1

. s < . .
- when we put 1—Lp =p*. As sin’0, = — (A 4+ g), cos*d, is therefore
-_— a

v

o~

a®—s? a

] 2__ o2 2 al—sz?
= 1—% 1+ =2 a,s (1 S (p) = ——— p*. Hence the quan-
2

¥ RN
=

tity p* is also = c0s*6,, so that p’—cos’d always remains

at—s?

_positive. For cos*@ is at most = ¢0s*0, in 1.

At the limit =, the quantity under the rootsign, viz. p** —a?
(p*—cos'8) is always = 0, because then dr: dt =0 (compare (39)).
Hence we have after introduction of the limuts:

0 )
> sn @d6 cos 8 1 da &

9
1
I '—-_—'—J — B ————=— ——_:Bgtg———_,
' “; Vp'— cs' 6 ¢ V p*=cos*6 “0 Vp—a? Vipt—a?
X .

when we write — dcos@ for sin”d0, and z for cosd, so that cos0,

is, represented by x, Now dBgty = du:V p*—2?, so that we find:
1%
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J—lBﬂt %o —lB’t1
T Vg 2
0
H a, 2 B l 2 2 S’ 2 2 H
8 P=o (see above), hence p'—u, =% =k'x,’.
. 24
Mualtiplying by the factor o X (—2——5, we have therefore for the
s(a"—s
first part of a:
a® 1 1 Vi ’
= By tg— = Bg*t .. (10
& wxs(a”—s’) 79 wxn(l———n“) A - (10)

Hence we find for this a value which no longer contains ¢ (hence 77),
so that the part of the constant of atiraction which refers to the
passing molecules, appears to be wndependent of the temperature.
This seems somewhat strange, because near the limiting temperature,
given by ¢, 6, gels near 90°, so that then the limits of /, with
respect to & gel nearer and nearer to each other, and finally coincide
at 8, =90° (¢ = ¢,). It would therefore be expected that a, would
become smaller and smaller according as 7’ decreases, and that it
would disappear at the limiting temperature. However, this is not
the case according to (10). The explanation may be found by an
examination of the paths of the molecules, which shows that with
the diminution of the velocity w, they occupy an ever larger portion
of the path within the sphere of attraction ; to which the circumstance
is added that the frequency for the angle, which is proportional to
sin 0, renches its mawmum exactly in the neighbourhood of & = 90°.

When n is near 1, i.e. @ near s (very thin sphere of attraction),

3

n
—, s0 that then a, approaches w:n®=w. As

Bg*tg approaches

2 SZ
stn?0y is = Z—’ A+ p), cos?0, = &> =1 —= (1 + o), so that . will

2_ gt

a
lie between = 1—n*==0 at bigh temperatures (p =0), and

a
(0) at lower temperatures (p = ip,). 0, lies, therefore, in both cases
in the neighbourhood of 90° hence the limits of infegration of I,
will almost coincide, viz. # between = 90° and 90° at high temperatures,
resp. (90°) and 90° at lower temperatures.

In the case n=1 the limiting value ¢, = (1—n’) : n* will lie near
0, i.e. T, near o, so. that the available range of temperature is
exceedingly small.

If, however, n is near 0, i.e. « very much larger than s {very
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large sphere of attraction), then Bg*lg approaches')!/, n*—an, hence

1 1
a, approaches o X — X 1 n* = w. Now z,° lies between 1—n*= =1
n

at high temperatures and (0) at low temperatures, so that at high
temperatures ¢ will lie between == 0° and 90°,, and at low
temperatures between (90°) and 90° And the limiting value of ¢,
is near oo, i.e. 7, near 0, so that the available range of temperature
is very-large in this case. That a, now becomes infinite, is not
astonishing, for o obtain a jinite value, F(r) should decrease much
more rapidly with » than is the case on our assumption (8) — viz.
in inverse ratio to #*. This assumption, however, only holds for not
too large values of a:s.

§ XVIL. Calculation of (a,),.

Now we must carry out the second integration in (7¢). This
applies, therefore, to all the molecules that cau come in collision,
as ¢ now rvemains smaller than {le limiting angle 0,. It should be
carried out in fwo stages, viz. from 2 (= cos ) =p to * ==, and
from #=1(0d=0) to a=p. For in the general integral with
respect to r (see § XVI), viz.

f Vi p'—a? (p—cos 6)

p* —cos* @ =p'—a*® will be positive in the first case, negative on
the other hand in the second case. Accordingly the first stage gives
rise to a Bgly, the second to a log. The first stage, integrated with
respect to r, yields:

1 N 2,9 P j,z
prt—a’ (p*—a*)\¢
Byt l/ =
aVp— (9 4 @ (p—a") )

because p? (1 -— j?) is=wa," (see § X¥I). Hence we have:

p

(1) = 1 [ du f B . ‘/.'vT—mo’]
— B L g9 ————|.
! Vp‘ Y I/—-—*—- Vp’—.’v’
Zo
V1t 1
1) Byty " s namely = Bgtg; = Bg cos n = L7 —n, hence Byg =
=t al—nn,

-10 -
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) ; » 1
The first integral yields % (Bg tg v ) =1 [—7 — Byl ]
Vo — k

da
as d Bgtg is again = =
l/ps_mn
But the second integral cannot so easily be integrated. As then
) & du cy s
d Bgtg is = , the said integral becomes:

2

& —a? Vp"' —a?

V- —
f——"Bqtgdegtq= J Vo= o BqtgdeBatyJ,
& Vp

29
when we put (z'—a):(p* —.u)_—.g/ , which causes 2* to become
Py’ +2:1+y"), and +*—=a,’ to become y*(p'—uz,*):(1-4+y?.
With Bgtgy:tp the last integral passes into: N

Yam

f f sin lp _
Vtg 1"+( o : [/sm lp—}— €os IP
Ypw s
—k _ﬂ WP d,

JVITE

3

as V'p*—a,*:p in consequence of p* = ; %", hence p'—ua,’ =
a —$8
2

. § .
e ¥,?, can be replaced by = and x,*:p* by (v*—s*):a?, while

further

2
3 al

. al—s* —s* st a®—¢? st -
sin® P + o cos’ P = ——+ pr st — pr 1+ s sin? P

a

and s*:(a* —s*) = &*. The last transcendental, quasi-elliptical integral
can now easily (see appendix) be developed into a series, and then
be approximated. Previously we may observe that x,, hence ¢ (and
therefore also 7"), no longer occur in it, so that the result — like
that of the first part of ([,), — will not be dependent on
the temperature, as little as this was the case with [ (see § XVI).
It is fucther easy (o see that the said integral approaches

Yam
k sin

Vi sin? P

I

wdp = (97,

+ X 4+ a* in the limiting case n =1

-11 -
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(a =), hence £ = oo; and in the opposite limiting case n==: (a: 5= o),
Yy

hence %£=0, approaches £ f sin P X p d :k(— P cos P -+

0
—{—fco.np (ltp> = i (—y cos ¢ + S?:?l‘lp), which yields the value %

between 0 and '/,7.

Hence the integral in question lies between'/;n* and k=s:V 0’ —s* =
=s:a=mn (as in the latter case s is infinitely small with respect
to a), so that we can represent it by

en X '/ n?,
in which & will lie between 1 (when n=1) and 8: a* =0,811
(when 7n=0). Accordingly the factor & is little variable. It appears
from the expansion into series (see Appendix A), that & becomes
= 0,845 for n =10,6 (i. e. s=20,6a).

We now have:

1 1
(Iz)lz_ %ng—qutg_ —‘5n><%“= ’
2a : k

so that taking the factor o X (2a:s(a*—s") into account, the fol-
lowing equation is found:

@), =0 X

n

. V1—n? .

Ifnisnear1 (a=s), this approaches w X [17*(1-n)-(1-n*)]=

1—»n

1) = 10,234 w. The limits of integration p and z, are

=au X a’

2 2

2
determined by «,* =1 —8—2 (l4¢)= ¢ = 1 —n'= =0 at bigh
. a

a7

temperatuves (¢ — 0), resp. (U) at lower temperatures (¢ =¢,), and
2
3

2, = (1), resp. (0); so that & lies between (0°) and = 90°

p
a
at high temperatures, and (90°) and (90°) at lower temperatures.
And if n s near 0 (a great with respect to s), then (a,), approaches to

11

1
o X — X [Ga*—2n)--@GF*—an)] = o X (#—2) = 1,14 w. Then we
n

have as limits of integration =1 for a, (p = 0), resp. (0) at p = g,
and (1), resp. (0) for p; so that 8 lies belween (0°)and = 0° at high
temperatures, and (90°) and (90°) at low {emperatures.

When (a,), is added to a,, we find for the part of the constant
of altraction a that is independent of the temperature (coming from

-12 -
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the passing molecules and from the (not central) colliding molecules):

1—en

a, = a, +(a,)1=w><;(‘1—_:;;)—]4—ﬂz v e (12)

According to the above this part comprises the almost totality of
the angles of incidence, from 90° to near to 0°, at 4ig/ temperatores ; and
only a wery.small part, from 90° to near to 90° at lorv temperatures; i. e.
in the limiting cases n — 1 and n - 0. But also in intermediate cases
this continues to hold, because at high temperatures p* always lies in

a” a”—S8”

S X = 1, and at low temperatures
a*—s? a’

the neigbourhood of

a2

x 0=0.

always in the neighbourhood of ——
a”—s$§

Hence the vregion left for the part of a that is dependent on the
temperature, is the greater as the temperature becomes smaller.

l—=n
n(l—n®)

b J—

Now the quantity a_ in (12) lies between w X ta

1
ta'=ow X §a* forn=1,and © X — X }a* =0 for

1
= >< n(l—}—n) e n

n=~0.
§ XVIII. Calculation of (a,),.

We finally come to the calculation of the part that is dependent
on the temperature, and corresponds with the wmore central collisions
of the second stage of I, We now have for the integration ith
respect to r (cf § XVII):

a
.

‘f d
7V p*® 4 a(cos® G—p?) ,

5
in which cos* 0 ~— p* remains positive between the limits & = 0° and
8 = By cos p. The integral yields:

1 ( Vp*ri+a?(e'—p*)—a l/w’-——p“)
log
al/a;’ _p’ r

a

s

1 — a
== log (& — Va'—p*) — log— (V& —u,? — V> —p l
“l/m’—p"’\: g ( r*) 98 P

when cos¢is put again = w, and cos 7, = x,, 2,* being =

=p (1__‘;_2) (Cf. § XVI). Hence we have:

[y

-13 -
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() ll: da log a— at—p? f l/.q;“—a;o’—l/a;z—p’]
T Vi —p Vo' —p? Sa p '
P
We have written — dx for sin 0dt9:—-d cos 0. The minus sign
has—again been removed by reversing the limits of integration.
Besides — for the sake of homogeneity — a factor p has still been

introduced under both log. For s/, p we may also write Vp"——.v02~
The first integral can again be easily. integraled. d log is namely

d that we find for it:
= ———, so that we find for i
Vs
a:—Va:’—p’)l' ' 1—V1—p*
gl ————— | =— 4l ———=—13 Do
2 g( p 1 - .q p g 1 + |/1_
LV 1—p? may be

for which with a view to log* also — § log*

written.
The second presents again the same difficulties as the correspond-
ing Bgtg in § XVII. This becomes namely, d log now being =
& dz

V.'v’—q: 3 V’v’—p’ .

__[VL i Ionglog__[V I [/—Xdlog,

seeing that

l/’l, —&, —V'L ——]J & _-p
log I/p = = log [/(1——-— Q ( + l/% o )

while from (2*—p?®): (@°—=a,*) = y* follows a® = (p'—y’x,") : (1—y")
. 1—y

and “"——-.'o’.__—’ ”——.'0’ s (1—2). N 1 /——::———B 1 7 y

nd a*—a (p*—a,") : (l—y*). Now ogl/ Ty qtg hyp y

so that we find with Bgtghy =1:
1

Vo —a,’ P
ol f Pdp = kf—————cos i — P dip,
VT £k cos’h
]l — — tg’h P g 6o: e
at—g° a’—g?
because —— —|——— cos*h ¥ can be substituted for cos*sp — X
a’

X st hp, with sin*h p = cos*h p—1; ands (a’—s")is =k (see § X VII).

For ,*:p* we wmay namely wrile (a*—s*): a*, and (p*—a,?): p’

-14 -
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1—p?

is = s*:a% The limits for & are 1 and p, hence [/

, 2

_w 2

and 0 for y, i.e. for fghy. Thus T—
p—a,

= 1:y/(1—tg*hw), or ty 0,: k and 1; p*—a,’ bemg = f*x,?, and a,*

Ve VI

l/p’——.'vu’ o

and 1 for cos hp=—=

being cos® 0,. Evidently the limuts for ¢ are log

tg 0 tg?
= log 9}6 "—I—‘/g]Cn °—1)and0,

as

Vo oy —Va—p  Veo—ai4 Vg
Bytghp = - log i sl =log v e 2
. l/]og—;b‘oﬂ sz_woz

In this #g0,: kis > 1, because now p <1.

Thus we obtain an integral of quite the same form as that of
§ XVII; with only this difference, that now hyperbolical cosinus is
put instead of the former sinus. When again we expand into &
series (see Appendix B), it appears that both at Aigh temperatures
(p = 0) and at low temperature (p = ¢, = 1:4*%) all the terms with
higher powers of log with respect to the first term disappear, so
that with close approximation we may write:

VLo + VA4 )y
V1—Fk ¢

— V1 + @log?

1

. .
in which ¢ is determined by the relation i:; sin* 8, =1 4+ ¢ (cf.
equation (6) of the previous paper), in consequence of which ¢y* 0, : &
becomes = (1 + ¢): (1—4"¢). (n has agam been written for
sra=~k: VJ_——H,’)

. o L VIp
When we now add the found inlegral to the first, viz. § log* ————

2

then (p* being = —~a— @,? == (L4-4%2,?, and »,* being = 1 — sin*0,
a?—s?

1+%

1[;5 , 14k Vp

=1— (L +), so that p* becomes = 1—%* ) we get:

V - V(IR
—|« n |/1—|—(p log* 1t _l__f___i_ )‘P:\,
l/ —k V31— ¢

so that taking into account the factor w X (2 a*: s(a®—s*), we get
the following form:

([:)z :T‘)_‘Z

-15-
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T Vit V(A+E)p
— v 2 —
(@), = o X n(l—n)"’lfl L b log Vi=i ¢
1+% [/(p:l
— log* ———— . . (18
og ViF g 13)
Viteo+ l/(1—|—-]c2)(p ! \
As  log —— =
VI1I—i @
(1+7)p

[

14 SE—
144 1447
—} log Lf:l/( :L P 4 b () +ete.
1._[//£1ﬂ22 4

14
L4k vV 14k v
log —M8m8 — — L log—-—————:]c [/(/) -+ 1 ( )2 -+ etc.,
VT rg 1=k i

(a,), will evidently at high temperature (¢ near Q) approach to
CLI
1+¢ '

1
(az)a =w X -W(T'-Ta) [JZ l/]. +(p

i.e. with 4* =n*: (1—n? to

. 1 n @ n’
@), = X n (L—n?) [1—n’ VI——]——fp T 1 (,0:|,

@) =oXx
n

(ll—n’)xl-T—n(p (p=0 , . . . . (139
when ¢ is simply written for ¢: V1 4 . This becomes thevefore
properly =0 for 7'= . Then the limits of the original integral
(1,);, viz. p and 1, are equal, viz. = 1, which causes the limits ot
the angle of incidence ¢ to lie between (0°) and 0° (see also the
end of § XVII).

For low temperatures (p near ¢, = 1: %% we shall have:

1 |:l . ( 1 2 ) log? 2 :I
0 — o | — 09" ——— |
n(1—n?) J m VIi—E g V1&g
because then nV1f¢ is =1, and V{IF+E)p=VIito=1:n.

(aﬂ)! = ><

12 1 2
And as log| ——= ) = log — — i ] i
nd as log (n V) 09 ~ + log vz we may finally write with
i 1.
omission of Jog®>— in comparison with the infinitely large terms:
n

(p=1p, = 1:%) . (13)

1 1
@), =0 X — X loq; X log

2
nd—m) Vi-F g
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This gets near to logarithmically infinite. Now the limits p and 1

arve evidently =0 and 1, so that ¢ lies between (90° and 0°, hence

comprises the whole region. .
When n =1 (@ =-3s), (a,), does not become = in [3 For
as ¢ can never become greater than 1:4*=(1—n*):n? (a,), remains

evidently smaller than o X 1e. <wX 3. Then (n=1—d)

1
n*(1+n)
log (L: n*) becomes 2 (1—mn) in (13%), so that (a,), will approach

w X log

Vi—kg

If on the other hand n =0 (a large with respect to s), then (a,),
approaches w X @ in (139¢), whereas this quantity will approach
" infinite X (log-infinite)® in (13%), i.e. will greatly increase, when the

temperature becomes lower.

§ XIX. Calculation of a.

When we finally add the part of a that is independent of the
temperatare, viz. a, = a, -} (a,), according to (12), to the part that
is dependent on the temperature according to (137), then we get at
high lemperature, taking o =} X (§,), X @ into account (compare
§ XVD): N

— w 1 )L n —
a_n(l-——n’) (—enjgor +1-{—n(p -

1 n
= B (L) (by), @ [(1~E")% a" + T (P:lv

or also
n

(p = 0) a:aw[l -}—’(1_872) TRy (p] =a, (1 +v¢), (14a)
in which therefore
&, = -/—5:”—(1——;82)-([),,) a, and y= . .
2n (1—n?) ® (1—en) (1 +n) /, n?
We remind the reader of the fact that the coefficient ¢ (see § X VII)
bas the value 1 for n =1, the value 8:x2* =0,811 for n=0, and
the value 0,845 for n=0,6. Further ¢ = J/V, in which M is the
maximum value of the function of force f(r) at contact of the
molecules, and NV the total number of molecules in the volume wv.
At low lemperatures (p = ¢, =1:%*) we get according to (13%):

logl/,,n 2 ]
-4 a=a_|l lo ... . (14b
(@ = ) w[ +1/‘n,(1_5n) ng_k,rp (14%)
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That for ¢ =, the value of a becomes logarithmically infinite,
and does not get mnear exponentially infinite, as is the case on
agsumption of Bormzmanw’s temperature-distribution factor (for

Sfla)y=(e /RT—l):“/RT becomes of the order e® for 7'=0), is

already to be esteemed an advantage. But the above found logarithmic-
ally infinite will lead to an ordinavy finite mavimum, when we
consider that only the very definite velocity w,, which causes ¢ to
be = M:}pu=1:%, leads to this log ®. When we iake
MaxweLr’s Jaw of the distribution of welocities into account, the
adjacent velocities will not lead to log o, and this will accordingly
pass into a finite maximum. We shall come back to this later on.

We will, lowever, point out alveady here that ihe logarithmic
infinity for ¢ = ¢, is not bound o our special assumption (8) concerning
F(r). We shall see that this log-infinite value of a for ¢ =, is
found on amy supposition concerning X(r).

But the numerical values of the quanlities a_, and y in (147)e.g.
will of course be dependent on the said supposition. We possess a
kind of control for the case ¢ = 0,n = 1. According to (144) a_ then
becomes =1/, n* X (,),¢, because (1—en) then becomes — 1—n,
hence (1—-en):n(l—n*)=1:n (1 4+ n)="1/,. But according to the
ordinary (statical) theory, the attractive virial (see § 1X) must be

a

dP, .
=13/, rva‘zﬁ"’ —dr. When a=s, 7*=2s" can be brought before
”

the integral sign, and we have /& Nns* (1’,): =1/, Nns* (0— (—M)=
=,w Ns* X MN :v@sn=V:v). Hence we tind with /N = « for
a the value (b,) X @, so that the factor by which we have to muldiply,
would have to be =1, and not =/, ;2" = 0,617, as we have found.
In my opinion this conclusion can only be drawn from if, that
even in the limiting case 7'== o (p = 0) the factor of distribution
at the molecule surface (the sphere of attraction is infinitely thin
on the assumption @ =s) is not =1, as we assumed above in the
application of the statical -method, but slightly less in consequence
of the influence of the passing wolecules, which does not disappear
even for n =1, which is the cause that the full maximum value
M of the funclion of force is not reached. And the difference will
depend on the nature of the function of force used.

For n = 0,6 the facior of (b)), will get the value

2,467 % 0,483 1,192
1,2 0,64 0,768

= 1,55, which comes to this, that the attraction
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might be thought concentrated at a distance s1¥71,55 =1,16 s from
the centre of the considered molecule (the sphere of attraction
extends between s and 1,67 s for n = 0,6).

We saw alveady that ¢ rvepresents the quantity M :'/, pu,® In
this w, represents the mean relative velocity with which the mole-
cules penetrate the spliere of attraction. But this velocity is augmented
by a certain amount within the sphere of attraction, so that w, will
not be in direct relation with the temperature. For very large volumes
we may, however, entirely neglect this slight modification in the
velocity in comparison with the much larger part of the path passed
over with the velocity w,. Only for small volumes this is no longer
allowed, and in consequence of this new complications will make
their appearance.

We may now write:

M _ MN a Y
= wut YuNug 2% °,RT RT'
because the mean square of the relative velocity is twice that of
the squave of velocity U, iteelf, and */, B7’ may be written for
1, uw N Up. Acecording to all that was developed above,

_ L LAY
a=a, 1'%/1ﬁ+¥2 RT +" e e (15(1)

may therefore be wrvitten for a, according to (147) — at least for
not too low temperatures, and when also higher powers of ¢ are
taken into consideration; whereas for low temperatures (p near
¢, =1:%* an expression of the form

a=a_[1—2log Y l/l—-i N 1))
°° 7 s RT

will better answer the purpose, according to (14%).Inthisx =4* X /,e=

2

n

- X '/, @ in which it should be borne in mind that the log

1—n
is now negative, so that the minus sign before A becomes positive
again.

We have already pointed out before ihat the supposition of an
e:cceedz'ngly thin sphere of attraction, as is sometimes assumed, must
be entively excluded for several reasons'). To this comes the circum-
stance that for n = 1 the limiting temperature 7, in which a will become
logarithmically infinite (or at least maximum), is given by ¢, = 1 : 1? =
= (1--n*):n*, which for n =1 would give the value 0 for ¢,, i.c.
T—=w. And as it has been ‘experimentally found that the said

1) Cf. our first paper. .
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maximum lies at very low temperatures (a continues namely to
increase, for H, for instance, up to at least '/, 7%), the assumption
n - 1 must be quite rejected.

As the valne 0,08 (about) is found for '/,¢ with H,, the value

0,36
of RT, ="/, «: ¢, would become 06l X 0,08 = 0,045 wiihn=0,6

(.e. s=?%,a or a=1%,s), i.e. T, about 12°3 absolute. This is
very well possible, as we have seen that for H, the value of a is
still increasing up to 16° abs. (from a_ =370 X 10-6 to a;p =
= 740 X 10—6 about). What is very remarkable, is the fact that the
limiting temperature seems to he so close to the zriple point of H,.
viz. 14° abs.).

Fontamwent, Janunary 1918. (To be continued).
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. Physics. — “On the Course of the Values of a and b for Hydrogen
at  Different Temperatures and “Volumes”. 1V. (Continued).
By Dr. J. J. vax Liaar. (Communicaied by Prof. H. A. LoreNTz).

(Communicated in the meeting of March 23, 1918).
§ XX, The value of a below the limiting temperature.

In this case the integrations need no longer take place in different
slages, since a minimum distance 7,, which is dependent on 6, need
no longer be reckoned with, so that first the integration with respect
to 8 can be carvied oul, and then with respect to . All the entering
molecules, from 0 =0 to 0 = 90°, will now come in collision; for
{he limiting temperature 7, the molecules that strike under an
angle € =90° will just pass the mm of the molecule that is
supposed not to move. We have, (herefore, now (o integrate
(see § XVI):

a l/n
0 >< ff dr X sin 6 d6
a="/, 7)o ¢ 2 o2
1 (a*—s*) Via cos* 8 + (a*—2*) (k? ’/’_1)

in which &% is now always > 1, and in the limiting case p =, =1:4* ,
assumes the value L. When we pul (@*—2*) (#*p—1) = ¢*, we get

therefore:
X () >< fdaf d (a cos 6)
a="1, P ~
/ s) ‘/j Fatcos* 8

in which we may wrile for the second mlegml:

at+1¢*-a’
q

log (a cos 6 + /¢ -+a cos® gif/ﬁ = log

so that we have slill {o integrate:

2 (dr et
a:l/nX(b,l)w(tx‘;@(-—l——_:s?)f—z;log(g_l_l/l —*—%) . (\6)

If in the first place ¢ is near ¢, then ¢ approaches 0, and the
integral approaches (o .
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fd'z fdo L 2 ] l/atp_:'
— log —=— — — lo .
g Vk“' p—1 T

because ¢is =V i gp—1 X V'a*—*. Hence we have for the integral:

a

a Ve— d

—— log— — |log
V]s, (/2 s 1 s a

8

i

log

»
»

We have for the last integral with r:a =g, s:a=mn:

1 dx a* 1
log (1—=2%).— %( —}— + —}— ) o5 ®° (1—e'n?),
& n
n

in which s’ =1 for n=1, zmd 6:2*=0,608 for n=0. For

n

1 oot n® af
—-+ + + . —ﬂ,fmd + +3 + - “'"2(1 l—z+§+--)
is = ;— a? for n=1, and =n*forn=0. (Forn =0,6 ¢ = 0,674).

Hence we get finally:

1 1 | 9
T) a=_——— L [~—:ft2 1—&'n?) 4+ lo —lo —————J 17
(@S¢ om (I )( ) ( )+ log - 9”2(/)_1 7

When we compare this with (14%), where we found for values
of ¢ in the neighbourhood of ¢, (but < ¢, while ¢ remains

> ¢, in (16):
1 1
(P9 a= o (1 )( Deo a[ 7 (1—en) 4- log® —~+Z0g———log

7o)
Viegl
we observe with regard to the member that is independent of T a
discontinuity appearingatp = ¢,. [We have added, for a comparison, to

1 .
the first (finite) term the term log® —, which was cancelled in §18in
n

form. (130) by the side of the infinitely large logarithmic term].

1
- from the factor before the
- N

For n =1 we find (with the factor

1—n?

1 1
sign of integration)in the first casel—z— n? =1 a*, in the second case

1—n?
1 . 1 —n

4

1
:g 7.

1
And for n=0 we ﬁndl—?—‘n’, resp.

1 1 1 .
T x* 4 log"';:z a* + . This difference can be partly accounted

for by the sudden disappearance at ¢ = ¢, of the terms which refer
2
Proceedings Royal Acad. Amsterdam, Vol. XXI.
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to the passing molecules, and which, therefore, do not occur any
more in (17). But in any case the difference is of no im}-)ortan‘ce,
as these terms, which are independent of ¢, remain finite with respect
to the term that depends on o, and logarithmically approaches infinity.
(In the case n=—=0, where — for infinitely large spheres of attraction —
the entire quantity a would become infinite, and accordingly our
derivation is no longer valid, the fact that Zog“}—l becomes infinite,
is of no importance at all).

We will still point out that for ¢ = ¢, a does not only become
logarithmically infinite with the form of f() assumed by us, but
with any arbitrary assumption about this. Compare for this Appendix C.

We suppose in the second place in (16) ¢ near oo (i.e. 7 near 0).

For the integral in (16) we may then write, as ¢ becomes very
large:
a [

fdrl ( 41 ) fdrxa a f dr
— log i —_ X —= .
T T 9 VEEp—1JrVa—r

s 8

i.e.

1 (l a-— Va’—r‘“)“ 1
0 =
V]c’q)—— g r s VI p—1

log 1 — log——-—

8

( a—Va—s

1 a+t Va—s
log .
Vigp—1 s
When the factor before the sign of integration is taken into
acconnt we get therefore: g

P - 1 1 14+ V1—nt
b, ] . (18
(T, 0) a= n (1—n?) X( 1o X Vigp—1 g n (18)

This approaches O therefore, when ¢ approaches o (7 approaches 0).
We may write for £*¢—1, after substitution of the value for ¢,
2 1 2 1 -
the expression ——; T . e 1/33’1‘ —1= 1—:;" —J/el;’ when 7" js near O.
Hence after the mawximum for a at ¢ = ¢, the atiraction steadily
decreases, and disappears at 0° abs. This result was to be foreseen.
In the original integral of the virial of attraction the radical quantity
in the denominator becomes namely — oo at 0° abs., when ¢ becomes
= oo. This radical quantity expresses the relative increase of velocity
in the sphere of attraction, and as this increase remains finite with
respect to u, =0, the relative increase will become infinitely great.
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And this relative increase of velocity entirely determines the densi
in the sphere of attraction, which is in inverse ratio to it.

We observe once more here, that the earlier Bonrzmann theos
would give an exponentially infinite value for a at 0° abs., where:
in 1eality it is = 0.

1+V1—p
n

1
For n=1 (a==s) the limiting value of e will be = log

l/l—n With l/

1:m, so that then a will approach (b,) , a X

i

— in Vidp—1 (see above) this become

/RT

A2

For n =0 (a great with respect to s) the absolute zero coincide
with the hmiting temperature, given by ¢, =1:4*=(1—n?:n

1 1
For then ¢,—w (7,=0). In (18) Lim — log becomes further — —log Gl
. n n n
. 1. 2 1
so that then a will approach (b,),, & X ~ log ;)( , whic

Vo
RT

again becomes =— 0 for 7'=0, so long as n is not absolutely = (
which of coarse would be practically impossible.

Summarising we can therefore state, in agreement with the abovi
developed exact theory concerning the quantity a for very larg
volume, that a, from a limiting value at 7'= oo, steadily increase
to a mazmimum wvalue at T = T,, after which it decreases again
till a has become = O at the absolute zero. The mentioned limitin
temperature 7', is then determined by R7T, =1/, @:p,, in whicl
¢, =1A—n*:n*. (n==s:4a, in which s represents the diameter o
a molecule, and @ the radius of the sphere of atfraction). For H
T, is about= 47}, the ratio of the values of a,, a, and a,.bein
1:1%,:2.

In the next paper we shall briefly discuss the influence of MAXWELL’s
distribution of velocity, and then treat the course of the quantity
b from T'=w to T=0, likewise al large volume. Then the values
of a and b for small volumes will be considered, so as to make a
complete theoretical insight possible concerning the whole course of
a and b along the boundarvy line, both along the vapour branch
and along the liquid branch.

Fontanivent, January 1918. ~ (To be continued).

3

Q¥
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APPENDIX.

Uom

A. The integral % f
VIE¥E sin in P

sin P

wdy. (addition to § XVII).

—

When we expand this into a series through repeated partial
integration, we get:
W’ P dP  idyp ¢ 4P

sin P
— ' ydyp=|P.pdp=— P— — T,
V147 sin® lpq V= = 6dlp+24dlp2 120d’1p“+

in which (through w) all the terms at the lower limit O disappear.
And for the upper limit all the odd differential quotients of P will
disappear, because in this cosy occurs as factor. Indeed, when we

. dw .
ut 144* sin P = w, so that — becomes = 2 £* sin vy cos 1, we have:
p Y v !

aP smu cos P — It sntyp 1
—_—— 15 (2lc sin W cos P) + ok = cos Y i + — o
2 w'le b

av
= cos tp( —w —) cos
o',

da*P , 08 y stn P 3&* cos® P 1
—d_E‘; =— (’]c2 stn P cosP) — T stn P ( it o) =
. (3 (14+%%) 2 )
=—sPp| —F— ——— |,
wh w2

because £* cos®p = A'—ksin® ¢ = A*—(w—1) = (1+4*)—w. We have

further:

aP ) 15 (14+%7) 6 e 3(1 —}—k’) 2
d—lp—‘; = —sn (7/2 — m) (—&* stnap cost;)—cosnp( o oh
D 15 (14+4) 6 3(A+4) 2
= — cos P l:( ( T )_ />(1— )+< ok T/;):I
1 k 2 6 4
— o 51+ )_12(1+7c)+ +2).
w2 s s
And also:

d‘,P__ 105 (1% 60(14+%% -+ 30 12 2
ap—‘ = —cosY ( o7 — o + 6‘7«) (—4&? sin W eosp) +

15 (142 12 (144 46 4
+8M( (L4F) 13048+ +m)

w’fs
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/105 (14%?) 60 (1+4) + 30 12
=y | (2D REHIER L D) — ot
w2 w'i2 w2z )

54+ 12(14-# 6 4
NI R )]

w'h w’ls w?la

'l 'l w’l ’h

) [105(1+/c'~)"60(1+/c2)=+x20(1’+k2) 60(144") +24 8}
=smnYP + .

Ete. Etc. As has been said, all the odd differential quotients dis-
appear for ¢ =1/,7, and as o becomes =1+ £ for p="1/,7,

we keep:
&P\ 1 1
e
di P 15 12 6 4 9 8 . 1—8 &*
(W)vf of: o ok ok (QLEE - (LEEE (L+E)h

For the sake of brevity we have only taken the part with sin ¢
into account in the last calculation of the two differential quotients:
that with . 1 0. I ¢ *P v ¢ sin P

at with cosy is namely = 0. L. e. of — only the part ———,

Y J e J p o'/,

4

and of e only the part with sinp in the first of the three lines

belonging to this. The other parts have every time been necessary
for the determination of the next higher differential quotient. Proceeding,
we should have found:

ap 225 360 136 1-—-88%*-136%*

ap = \@Rh R { +k“-)%) N (SN

The coefficients of the highest powers of 1 4 £* are in all these
results resp. = 17, (1 X 3)*, (1 X 3 X 5)*, etc. The sum of the
coefficients is always = 1. (9 —8=1; 225 — 360 + 136 =1).
Hence we get now, taking into consideration that k: V' (1 4 A% =
R n, and (P)yx =1:V14%%

Val—s* Val—s* a

4

S a

Yy . ) . . .
k __izﬁw___q) dp = n[( /1) — 1 - (/s7)
VI4E sin® 2 1-+&* 24
0

1— 8k (/)  1—88K*136% (*/,x)°

+(1+k”)’ 720 (I+#)° 40820

in which we may also write 1 —n? for 1: (1 4 #*) = (a*—s*): a’.
The above series is convergent, as is easily seen from the structnre
of the factors (1 —84%:(1 4 A*'h =9:(1 + &) =8 (1 4 &), etc.

+ etc.:|,
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For large values of k(a =3, i.e. » =1) it converges very greatly,
and rapidly approaches the first term, i.e. n X '/ @’

For small values of % (near 0, i.e. a large with re_si)ect tos,n=0)
the series becomes:

n 13 (3)nt— & (1. + 75 (/)n* — etc.] =n (1 — cos & n): n.

For the two limiting cases n =1 and n =0 we, theletme find
back the same values as we had already found by direct integration
in the text of § 17.

When n~=0,6, we get 1—84* = 1—45=—35, 1884 4
-+ 1364 = 1—49,5 + 43,0 == —5,5, 1: (1 + £*) = 0,64, so that
with '/, #* = 2, 4674, the integral being put = en X */, 7 (cf. the text
of § 17), we find from
1 (/07 1—8k (/,n)* 1—88i* 4186k (/,x)°

e=1—10 % 12 T({iky 860 (L& 20160 T ot
for &« the value
1—0,1316—0,02425 4+ 0,00107 ...=0,8452 ... = 0,845.
B. The integral ]'If SR wdp (addition to § XVIII),
VI+E coshp

by %
In entirely the same way as for the above treated integral we
find through repeated partial integration:

t9°6,
1 g0
' cos kP g — — tgb, log & {‘1-‘/_7_3
V147 cos® hp sech, 2 sec® 6, 6
g k

3145 2\ log*
AL ( sec* 4, —‘sec“t90> 24

tg*d, 15(1+%)  12(1+%)+6 4 Y\ logt
—k [/ i ! ( sec’f,  sec, +sec“t9 )E(—) 1 efe :[

a,
in which log represents Zog( 96 °+ I/t(] )

In this it has been taken into account that d cosh ¢ = sink ¢ and
d sitnh @ = cosh ¢, and that further — £* cos*/ ¥ can again be replaced
by 1—w (when namely 1 -+ £*cos’h ¢ is put = w) and — £* sin*h ¢
by — £* cos’h ¢ + &' = (L + £*) — w. Now the terms with odd powers
of 9 do not disappear, because at the lower limit the factor sink 1,
which occurs for these powers, does not disappear (as for the above
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19°0,
9 —1,

tl eated integral cos ¥ at the upper limtt), but becomes = I/

because coshp then is =190, : k. At the upper limit evexything
disappears, because then ¥ = 0. (Besides, the terms with odd powers
of w still contain the factor sinky, which now likewise becomes
=0, because coshp becomes —1 at the upper limit. (Cf. further
the text of § 18)). We may, therefore, write:

Zoq rO3(L-+-EY) 2 log*
]cf [%n 8, | —+ ((I—}—tqlﬂn)“ I —i—tg?ﬁo) -+ etc.
l/tgw -7 log? (15(1+k’) 12(1 4846
N 1+1g°6, 3“&9’9 5 T (L+1°0)"  (1+tg°0,) *

4 log*
T 1—|—tg’00) 120 (]

Let us now introduce the quantity ¢, determined by equation (6)
of the last paper but one, viz.

—_— 87:1 0 — 1 + 0 — 1 + (
1] ]
32 ' l/zyfuo2 p

in which, therefore, ¢ depends on the femperature (determined, by

becanse £* (1-}-¢):

Yuw®). For 1 4 tg*0, we may write 1+L£’

: (1—~£4%p) may be substituted for #g*0, _—_Z-; A4} (] ——% ¥ —|—(p))

U

with azb == k*. For tg*0,—4i* we find A*(1 44 : (1—A%p), so that
we get:
k log (L—#p) (1 —3% )log ‘
k| = — V1igq — + - etc
f [l/ 142 7% 1+ i
ke z 1k (plog ((1—7{:"’(;)2 (9—15/c'(f) .
144 6 FEwDY
_ (L=Fq) (8—12k¢)\ og
1+5 )Tz_o +ete. ”
in which
‘/ 3
log:log( oL tq(/ _1) |/]+(p+ (l—l-lc)(p
Vl—k’rp

Let us now examine, what are the limiting values to which the
found integral approaches at high {emperatures, and at low tempe-
ratures (p near ¢, =1 - 4.

At hyh temperatures (p = 0) log draws near to log1l =0, so
that all the terms with high powers of log are cancelled by the
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side of the first term, and besides the whole part with £} ¢ disap-
pears. That in this case only the first term with [og® remains, follows
also from this that ig 0, = &* (1) : (1—4i%p) approaches % for
¢ =0, so that in case of equality of the limits of the original integral
the factor & coshy:V 15k cos’hw =k :V'14-4* does not change
between them (with respect to the log that becomes O at both the
limits), and can accordingly be brought outside the integral sign.
At low temperatures (but higher than the limiting temperature

T,, determined by ¢, =1:%* the whole second part of /of will

again disappear in consequence of the factor 1—£%*p, which approaches

0, whereas of the first partagain only the first term with log* remains.

In this case coshyw=1g0,: k= at the lower limit, and the

factor of wdy in the integral can again be placed outside the integral

- sign at this limit, which now prevails since the log becomes infinite
there. At the other limit the log is namely —O0.

With close approximation we may, therefore, write (n has been

written for £:V1+1' =s:a):

G
with neglect of all the terms with higher powers of log. Only at
intermediary temperatures the omitted part can have any influence
— but the difference brought about by this might possibly be made
to disappear entirely on a somewhat modified assumption concerning
S (@) between a and s (see § XVI).

C. The quantity a for ¢ = ¢, = 1:%*. (addition to § XX).
The original integral was (cf § 16):

alfgw

_ (£ e )drXsin 048
a=1} X (by), ¢ X s(a —&* )ff |

|/1—~sm0+fpf(7)

We may also write for the 1ntegml

r?*(— f'(»)) dr d (acos0) 170 , (a a’)_
=— | (—f'(»))drlog{ — 14 —
ff‘/,) (/)f(")—(a — ") +-a’cos’0 GJ ( f( )) 09 ¢ + V + gn ,

when Mo f)—@—r?) =¢* is put. When f(r) is generally
i

_—:i;, so that this duly becomes =1 for»=s, then — f'(») =
.

al dqg = ad *—?)., H 1
— —_— e — ), 1 R
e and ¢ pr; (@*—*). Hence we now have
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a

ta? st—1 dr a al
— (b l — _|_ l/l +. — |
2= (e X a*—s? fv"—l Og(q q’)

s

in which the quantity ¢ for the lower limit passes into ¢s* — (a*— s%),

. a*—s* 1—p?
which becomes — 0 for ¢ = —=——=— as before. The
s? n? &

value of a will, thevefore, again approach to logarithmically infinite
for o =1¢,==1:4*. This is, accordingly, entirely independent of the
exponent ¢ in the assumed law of force f(r)..r—%
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Physiology. — “On the Peripheral Sensitive Nervous System.”
By Dr. G. C. Herivea. (Communicated by Prof. J. Boukg).

(Communicated in the meeting of February 23, i918).

When we endeavour to snmmarize our knowledge of the peripheral
sensitive nervous systew, which is a time-consuming experience as
it involves the perusal of an enormous number of periodicals, we
shall find amidst & mass of controversial matier a number of facts
received by various controversialists, which, when put together, make
up a gratifying whole.

In the neurological clinic the doctrine of neurons in still all but
paramount, but in the neuro-anatomic literature it is quite a different
thing. There, in spite of this same doctrine of neurons, experiences
come to the front pointing to the existence of a very extensive
continuous retiform structure of sensory nerves close to the periphery.
As has been insisted upon by Aratmy there exists a highly delicate
texture of anastomotic nerve-fibers close under the surface of the
body of invertebrates. This view has hardly been disqualified. It
is now getting more and more evident that such a network is also
to be found in vertebrates.

Many data regarding the ‘“rete amielinica subpapillare” we owe
especially to Rurridr and his school, who based upon them his
theory of the “circuito chuiso delle neurofibrille.” According to the
descriptions given by Rurrint himself, the fibers of this network
spring from different sources:

1. end-branches of the ordinary medullated fibers;

2. ultraterminals of endorgans;

3. sympathetic fibers;

4. ultraterminals of fibers belonging to the Timorrzew-system.

From all sides (Borwzar, LeontowrrcH, Prentiss, Sramuni, Docier)
much evidential matter tending in the same divection, has been
brought forward, so that no room is left for any doubt as to the
principal facis, though there remains some difference of opinion
regarding the components of the network, and though several
inquirers will not go the length of subscribing to all the inferences
of RurpNUs “teoria unitaria.”

Two recent publications from the Italian school seem to me to be
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interesting in this connection. StepaaNELLI') describes an extens
network of nerve-fibers, which he found in the skin of reptil
This network built up of non-medullated fibers is easily distingui
able from the familiar subepithelial plexus, which lies deeper a
in which only an interlacement of nerve-fibers, for the greater p
still medullated, takes place. The relations of the non-medulla
network to the subepithelial plexus are also described minutely
him. In the former, which spreads diffusely as a true network
nerves in the skin, he describes by the side of very few otl
endings an “organo di senso in stato diffuso,” a conception wh
is the more plausible since the network is immediately connec:
with an intrapapillary extension of the same nature.

Here lies the link that joins StepmaNuLLY’s publication to that
VirawL ?) ‘

Virant examined the skin of the nail-bed also after Rurrmvi’s go
chloride method. Hijs results correspond completely with those
similar researches by Rurrint and others. In succession he descril
the presence of many free endings easy to differentiate by the ve
melodious Italian names: gomitoli, alberelli, espansioni ad ar
avoiticciati, fiochetti papillari, grappoli, and also of Rurmw
Mrssner’s and Varer-Pacinr's corpuscles. The principal interest nc
hinges about the fact that he lays particular stress upon t
occurrence of anastomoses between the terminals reciprocally a
upon their contact, as a whole, with the rete amielinica subpap
lare, therewith emphasizing the importance attached by Rurr
long since to the ultraterminals as expounded in his teoria unitas
previously mentioned.~ Finally Viranr comes to the conclusion th
all those terminals together with the rete subpapillare form o
connected amyelinic meshwork. When following up the Italian schc
a little further, we shall see that this meshwork must be placed «
a level with Srepranerir’s diffuse network. Then also the vario
endorgans of the higher vertebrates will be found to be points
differentiation amidst less developed surroundings. “Eche cos’alt
sono,” as Simonelli puts it rhetorically, “quello che noi denomigniai
espansioni, se non il condensarsi in punti limitati di nn simi
reticolo diffuso periferico: in altri termini se non punti nodosi

) Aveusro StEPHANELLL. Nuovo contributo alla cognoscenza della espansic
sensitivi dei Rettili e considerazioni sulla tessitura del sistemo nerveso periferic
Intern. Monatschrift. f. -Anat. u. Phys. XXXII 1916. — Sui dispositivi micrc
copici della sensibilita cutanea a nella mucosa orale dei Rettili. (Ibid. XXXII 191

#) G. Virau. Contibuto allo studio istologico dell unghia. Le expansioni nervo
del derma solto ungeale dell’ uomo. (Ibid. XXXII 1915).
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maglie piu serrati di una rete generale, che intimamente involge e
compenetra i tessuti, per meglio localizzare e precusare gli stimoli
periferici P

Thns, according to this view an unbroken series of anastomoses
must be traceable in numerous varielies of free endings from the
rete amielinica on the one side to the tactile corpuscles inserted in
a rete intrapapillare on the other.

It would perhaps be premature to consider this highly pregnant
-hypothesis as proven. Still, undoubtedly it is equally true that anyone
who will take the trouble to look into the literature, will find
attestations from other authors also pointing unmistakably in the
same direction. It is evident that the border-lines demarcating the
various forms of end-organs, classified into various-groups, are by
no means established. Nearly coeval with the study of the end-
organs itself ave the efforts to establish a phylogenetic pedigree of
the various end-organs, in which the intricate forms are reduced to
more primitive types (Mrrker, Krauvsg, and others). Certain it is
also that the more forms are brought to light by modern researchers,
the more the border-lines between the various groups are fading out.

With this we are impressed forthwith when looking at the illus-
trations accompanying the several publications (see e.g. CECCHERELLI ')
v. D. Vmrpg).?) The leading modern authors (Borezar, Doerr,
Srament and followers of Rurmni) endeavour to demonstrate anasto-
moses between the various endings. DoeirL?) says in his article
about nerve-endings in the external genitalia: “Wenn wir die Be-
schreibung der Nervenendigungen in den verschiedenen Nerven-
apparaten, den Genitalkorperchen, den Endkolben und den Meissner-
schen Korperchen, welche in der Haut der &dusseren Genitalorgane
gelegen sind, vergleichen, und zugleich die beigegebenen Zeichnungen
betrachten, so miissen wir zu dem Schluss kommen, dasz zwischen
ihnen kein wesentlicher Unterschied besteht”.

SrAMENT *) also describes the relationship between the genital cor-
puscles and Krause’s end-bulbs, Gorei-Mazzonr's corpuseles and
Vater-Pacin’s  corpuscles on the one side and Rurrin’s corpuscles
on the other.

BorezaT ®) has written a long and comprehensive paper on the
system and the interrelationship of the nerve-endorgans.

1) Intern. Monatschr. XXV 1908.

%) Intern. Mon. XXVI 1909. 3
) Arch. Micr. Anat. XLl

4) Arch. di fisiol. I 1904.

§) Zeitsch. Wiss. Zool. LXXXIV. 1906.
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But what seems to me to be more important than all this, as it
falls in with RurriN‘s views, is that also the border-lines be-
tween the corpuscles and the “free” endings are gradually falling
away. Here the only differential diagnostic is whether or not a
capsule is present. The same._characteristics of the nerve-fibers, of
the supporting tissue, ‘tactile-cells” or whatever name may be
given to the cells found in the endorgans are equally peculiar to
either group of end-organs. This may be gathered from the illus-
trations and the descriptions in all papers. Borezar makes particalar
mention of this, adding that a capsule round a nerve-ending is not
a question of vital importance for it,' either functionally or morpho-
logically. On the contrary BotrzaT very often finds by the side of
a capsuled ending its fellow deprived of a capsule. Thus the free
“Knivel” are found side by side with the capsuled “Knsuel” and
the bulbs of Krause; side by side with MeRrkeL’s cells GRANDRY’s
and Mgissner’s corpuscles etc. Moreover Botezatr distinguishes all
sorts of gradations between the free and the capsuled endings.

In other authors we f{ind the same again. RurrIN’s corpuscles
are according to ViTarLi') nothing else but capsuled ‘“alberelli”.

Doaier ?) also speaks of non-capsuled corpuscles of RurrinI
SraMENI °) asserts that non-capsuled varieties occur of the same
Genital corpuscles, which, as has been observed, are allied to all
sorts of tactile-corpuscles. Of MerssNur’s corpuscles there seems to
exist a large variety of simple modifications.

SraMENT describes intermediate forms between MruissNEk’s corpuscles
and ““fiochetti papillare” i.e. free endings. Doecil’s modifications of
Mmssner’s corpuscles (Rurrint calls them Doecier’s corpuscles) are
non-capsuled at the upper-pole from which the axis-cylinders are
branching off into free endings. They are types of Rurrinr's “espan-
sioni misti”. Other modifications again of MrissNER’'S corpuscles
(Dogren, v. p. VeLpe) are characterised by their having a slightly
«developed capsule and a simplitied nervecourse. Dociel’s ‘“‘einge-
kapselte Knduel” described by him in 1903 as modified Muissner’s
corpuscles must therefore be closely allied to the free endings,
perhaps identical with them (see supra). It seems, then, that MuissNur’s
corpuscles are, in a higher degree than many other forms, closely
allied to free nerve-endings. So when observing the several findings
concerning the capsule of these corpuscles, we shall see that Lax-
g“ .

1) Int. Mon. XXXI. 1915.

2) Arch. f. Micr. Anat. 1908.
3 le.
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GERHANS ') absolutely disproves its existence. He says: “Es besitzt
der Zzllhaufen®) den man Tastkérper nennt, nicht einmal eine
eigene umschliessende Membran. Ueberal stossen die peripheren
Zellen direct an das umgebende Bindegewebe, und nur nach lidngerer
Einwirkung eines Reagenzes kann es vorkommen, dasz das starre
Aussehen der Bindegewebsschichten eine eigene Membran vortduseht”.

Likewise Rouerr, Tarani, Izquerno, HoeeaN, LeonTowrrcs absolu-
tely deny the existence of a capsule. MruissNEr, Renaur, KRAUSE,
Wourrr, KorrMan.and Lreresure consider it as a single endothelial
membrane. LerrBURE °): ‘“‘une simple lume conjoncture doublée sur
une face profonde par un feuillet endothelial”. From all this it
follows that the hypothesis brought forward by DoeEL, Rurmni,
Tromsa and Konnixer that the corpuscles are provided with a true
lamella-capsule, is hardly tenable. The very gradations (and they -
are many) between MnissNer’s corpuscles and the free endings go
far to substantiate a priori the opinion of LaNeErHANs, who appears
to have studied the organs under consideration thoroughly. They
also support BoTrzaT’s view when he puts Meissner’s corpuscles on
a level with the complicate, non-capsuled MeRKEL’s corpuscles. In
virtue of my personal inquiry I incline to LANGERHANS’s view, as
will appear lower.down.

Finally let us bestow consideration upon the problem of the
genetic connections between the free endings and the tactile bodies
with the subpapillary network.

If we confine ourselves to the more modern authors, we mention
the names of Burae, Prentiss, Botuzat, LoNTOWITCH, SFAMENI and
DoeirL ¥), who have, all of them, discussed more or less minutely
the subepithelial network and its connections with the nerve-endorgans.

Borezar differs from the other investigators in that he considers
the network to be independent of tactile corpuscles. This follows
from his opinion that the rete amielinica, is built up of fibers of the
so-called 24 sort ®). But for the rest, he sides with the Italian School,

1) Arch. f Micr. Anat. 1X 1873.

2 The italics are mine.

3) Revue gen. d’histol. 1909.

4 BrruE. Allgemeine Anat. und Phys. des Nervensystems. Leipzig 1903
PrenTISS. Journ. of Comp. neur. XLV 1904.

BorrzAT lc.

LeontowitcH Int. Mon. XVIII 1901. -

SrAaMENI, DoGIEL lc.
5 Medullated fibers losing their myelin already in the nerve-trunk. It seems

doubtful whether these fibers are still to be considered as a separate group.
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our starting point, when in speaking about certain free endings, he
says that through anostomoses they form a widely spread end-
structure, “welcher in der Form eines im allgemeinen weitmaschigen
varikosen Netzes von weithin ausgebreiter Ausdehnung erscheint”,
which continues into the papillae, and there adheres to ordinary
medullated fibers. He looks upon this nerve-complex as a “fur sich
bestehender sensibeler Appairat der Lederhaut”. He finds it again in
fishes and amphibia, so it is beyond doubt that he describes the
very network which Stepranenii discusses in his publication.

Docier, an authority on end-organs, concurs with Rurrmm that the
lateral branches of the free papillary endings blend with the rete
amielinica: “Wie aus dem mitgeteilten hervorgeht, so hat das aus
Marklosen Aestchen und Faden zusammengesetzte subpapillaive Ner-
vengeflecht, die uneingekappselte Nervenknauel sowie die Schleifen-
formig gebogene Bundel und das intrapapillaire Fadennetz einen
und denselben Ursprung”. Also the Tmioreew fibres of the Muissner-
corpuscles, which DoererL reckons among the sensory system, go to
make up according to him, the intrapapillary nerve-complex by
means of their ultraterminals,

SrameNt, though far from adhering to the teoria unitaria gives a
description of the subepithelial plexus and of its connection with
tactile corpuscles and free endings, that accords fairly with Rusriny’s.
Nor is it on the whole contradicted by Prusriss and LronTowircH in
their publications respectively of Rana and the human skin.

[t surely will not do to ignore the many differences between the
various authors, differences in theoretical conception, in appreciation
and in-interpretation of their observations. Opposed to Doeiur, who
still holds that interlacement of the fibers is the fundamental principle
governing the structure of the network, are Borrzar, Berrr, Rurring,
Luontowiren, and SraMmeNI, who are convinced of the fusion of the
fibers. Prentiss wavers. It is a fact that the network is built up of
sensitive fibers. However, the question whether also sympathetic
elements ave fused with it, is as yet unsettled. This depends in some
degree on the doubtful character of the Tmorerw fibers. Still, though
the origin of the sensory part of the network is still uncertain, there
is no denying that, also 1n this respect, observers concur more and
more. As we observed before BorrzaT considers the whole network
to be made up of anastomotic free nerve-endings. Doeinr also looks
upon them as the principal components,” but according to him also
ultraterminals of the TmMorsew system of the tactile corpuscles unite
with it. SramEnT believes there is also some connection with the
genital corpuscles; LroxrtowircH, Berne, and PrNTiss assume an

-36 -



32.

immediate connection of the network with the free endings as well
as with corpuscles. All these authors, though theoretically far removed
from RUFFINI's neurogenetic conceptions, have brought forward a
number of facts corresponding satisfactorily with those insisted upon
most emphatically by the Italian school.

In short there is in the literature about the subject a tendency
towards the hypothesis that there is, generally speaking, intercon-
nection and cobherence in the whole peripheral sensory nervous system.

It is these facts, derived from the literature, that enhance the
significance of recent personal studies made by the BizLscrowsky method
on the sensory nerve-endings.

The BieLscnowsky method differs from the methylene blue- and
the gold-chloride method in that it affords another view of the
problems. It does not present those typical appearances, which, when
comparatively slight magnifications of rather thick sections are
examined, yield a clear survey of the relations. Its efficiency liesin
the fact that when preparations countersiained in haem. eosin, are
examined under a microscope of the highest power, it brings outin
strong velief the relations between the fibrils and their surroundings.

Along this totally different path I arrived at conclusions which,
as [ hope, will contribute to lend support to the hypothesis that
the MzissNER corpuscles are more related to the free endings than
is commonly believed.

In a paper read at last year’s Congress for Physics und Medicine
at The Hague (1917) (see also: Verslagen Kon. Ak. v. Wetensch.
27 April 1917) I recorded some morphological data, hitherto unknown,
concerning the structure of the axis-cylinder. In that paper I set
forth that, when tracing an ordinary nerve-fiber from cenire to
periphery, the following changes in the structure are to be observed
in a transverse section. First we find in the medullary sheath the
axoplasm, which (in a transverse section) seems to be vacuolar in
structure and embraces the neurofibrils in the protoplasmaiic septa
between the vacuoles. As known, the medullary sheath is surrounded
by the protoplasmatic sheath of Scawann with its nucleus. More
towards the periphery the medullary sheath splits up into several
tubes. The always vacuolar axoplasma material-with its fibrils spreads
over the daughter medullary sheaths. Together they remain embedded
in one undivided protoplasmatic mass, which must be considered as
a continuation of the sheath of Scawanw. Still further towards the
terminus of the course of the nerve the medullary sheaths disappear
from the section, so that the neurofibrils lie free in the proto-
plasmatic envelopment which, now being of vacuolar structure like
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the primitive axis-cylinder, must be assimilated fo the sheath of
Scawany blended with the axoplasm. These formations are seen to
get thinner and thinner and their meshes to get ever wider according
as they approach the terminus of the nerve. To all appearance they
ultimately blend or unile with the connective tissue plasmoderms in
which we find the neurofibrils in the ultimate tract of their course).

At first I was disposed to think that the described vacuolar
dissolution of the axis-cylinder was characteristic of the so-called
free nerve-endings, because I saw the medullated nerves force their
way into the MuissNer covpuscles without having undergone any
modification. '

[ can go a step farther this time, and assert on the basis of a
profound invesligation of M=uissNER’s corpuscles that the axis-cylinders
inside these corpuscles pass through precisely the same disintegration
process, previously described by me for the so-called free nerve-
endings, and just now designated as a vacuolar dissolution.

Whereas nowadays it is maintained by many inquivers that the
axis-cylinder loses its medullary sheath, before it enters into the
corpuscles, I side with Exeeraann?), Laneurnans, Frscurr®) Key—
Rerzivs*) and Lrresure®), having been able to ascertan, in prepa-
rations treated with Osmic acid, that the medullary sheath, just as
the sheath of Scmwany, is prolonged into the intracorpuscnlar course
of the nerves. Moreover my preparations also proved distinctly that
those medullary sheaths split up inside the sheath of ScHwann exactly
as has been indicated above.

I hold with Lrresure that most likely the fact that the Osminm
method has been abandoned for the modern fibril staining methods,
is responsible for the erroneous opinions about.the presence or the
absence of medullary sheaths, prevailing in the neurological literature.

As to the sheath of Scuwany, it goes without saying that I must
contest the hypothesis that it passes into the formation of the capsule,
since to me it is an intrinsic part of the lemmoblastic sheath. (DoenL
and others™). My preparations, which are well impregnated and of
good fixation also enable me to ascertain the fate of the axiscylinders

) Gf. J. Boeke. Studien zur Nervenvegeneration I, Veeh Kon. Ak. v. Wet.
A'dam 2e Sectie Deel, XVII n®. 6.

%) Zeitschr. Wiss. Zool. XII 1863.

3) Arch. f. Mikr. Anat. XIL

1) Arch. f. Mikr. Anat. 1X 1873. .

%) Revue génér. d’histologie 1909.

6 With more justice LaNerrHAUS, KRAUSE and others assert that the sheath

of SUHWANN passes into the inner capsule of lhe corpuscles.
3

Proceedings Royal Acad. Amsterdam. Vol. XXI
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inside the Muissner corpuscles. For among the cells filling up the
core of the MmuissNLRr-corpuscles we find many of the same vacuolar
non-medullated nervve-sections, which we have described, with the
fibrils, scattered over the spongy protoplasm.

Now it was but another step to establish in well-chosen objects
that those vacuolar axis-cylinders maintain-their course in the cells
of the core 1itself. In tangential sections we were in a position to
observe with absolute certainty that from the axis-cylinder the
fibrils pass into the protoplasm of those cells, where they may aid
in making up a regular network of the fine fibrls, and where, as
a continuation of the vacuolar structure of the axis-cylinder in trans-
verse section, a reticular protoplasm serves as a substratum to the
neurofibrils. Just as 1 observed previously in the corpuscles of
GranDprY, | saw also here a similar diffuse expansion of the net-
work over the cell-protoplasm, as well as the mechanical traction
phenomena between protoplasm ‘and fibril-system, so that my inter-
pretation leaves hardly any roomn for doubt. It is beyond all
question that the core cells are indeed parts of the nerve-course
itself; consequently it fits in with my view ') to term them lemmo-
blasts together with the other elements, building up the course of
the nerve. The fibrillar networks described, are hy no means terminal.
As a rule the fibrils are seen to unite again and pursue their way
as a new axis-cylinder. This is an additional argument for classing
those cells among the structural elements of the nerve-course itself.
In this way I came to the conclusion that the entire MEIsSNER cor-
puscle is built up of compact lemmoblast cords in structure completely
similar to the free nerve-endings. Now this appears to me to be an
important conclusion, the more so when correlated with the above
data regarding the connection between the tactile corpuscles and
the free endings, as discussed in the literature.

In conclusion I will impart that in the MuissNEr corpuscles I
found hardly anything that reminded me of a capsule, certainly not
a fine fibrillary texture proper, still less a lamellar system. The
enveloping connective tissue is rather of a loose spongy structure.
I found in it vacuolar nerve-sections as well as “free” fibrils in-
vested in the plasmoderms. I often descried that the contours of
MerssNERr-corpuscles are very indistinct. Especially in the tactile balls
of the cat’s paw I rarely found typical Muissner corpuscles; often,
however, in the papillary connective tissue 1 found detached groups

) Cf G. G. Herivea. Le développement des corpuscules de GRaNDRY et de
Hersst (Arch néerl. des Sc. Exacles et nal. Seiie Il B. tome IIT 1917).
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of nerve-sections of the familiar appearance in various sizes. Together
they presented precisely the appearance of a transverse section of a
MerssNer corpuscle. Only by studying serial sections it can be ascer-
fained whether we have to do with a MgissNER corpuscle or rather
with some detached axis-cylinders of free endings. Such forms, which
must no doubt be classed as modified MrissNER corpuscles, are in
my judgment, as many proofs of the close relationship there is
indeed between tactile corpuscles and free endings.

My conclusions, therefore, are the following:

1. the cells found by all inquirers ‘f except DoeikL in the MEIssNNR
corpuscles are elements of the nerve-course itself, lemmoblasts, as
I bave endeavoured to demonstrate for GrANDRY-corpuscles.

2. As to structure and behaviour, the nerves in the MrIssNER-
corpuscles correspond exactly with those of the so-called free-endings.

3. so that it is very likely that the terminal branches of the
MEssNER corpuscles (ultraterminals) form one connected whole with
the free papillary endings.

.
H

1) TuomMss. LANGERHANS, RANVIER, MEREEL, KRAUSE, LEONTOWITCH SFAMEMN,
RUFFINE, LEFEBURE, VAN DE VELDE and others.

b1
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Astronomy. — “On the Paralloz of some -Stellar Clusters” (Second
communication). By Dr. W. J. A. ScsouvreN. (Communicated
by Prof. J. C. KarrEyNn).

(Communicated in the meeting of February 23, 1918).

In a former communication it was shown, how it is possible to
determine the parallaxes of stellar clusters from the numbers of stars
of determined magnitude in the clusters by means of the luminosity
curve of Kapreyy. The calenlation was performed for Messier
3 and A and y Persei. Now the same method is used in order to
determine the parallax of some other clusters.

’ The Small Magellanic Cloud.

H. S. Lwavirr. 1777 Variables in the Magellanic Clouds Annals
Harvard Observ. Vol. 60, N°. 4.

A preliminary catalogue containing 992 stars of the Small Cloud
and 885 of the Great Magellanic Cloud. The places of 28 stars of
catalogues in the neighbourhood of the Small Cloud are also given.

We counted a number of stars and estimated their diameter on
a photographic plate, taken at the Harvard Observatory. For orien-
tation we used the catalogue-stars the position of which Miss Leavirt
communicates. In order to reduce the estimates of diameters to
magnitudes, we

15ty counted an area of 1000 L' without the Cloud, and determined
from the numbers of stars of every magnitude the magnitude corre-
sponding to every diameter by means of Publ. Gron. N°. 27, Table 1V,

2ndly we estimated the diameters of 142 variable stars, the magni-
tudes of which occur in LraviTr’s catalogue and which are equally
distributed over the Cloud, and we have comparved’ these with the
mean magnitude, i.e. the average of maximum and minimum, given
by Miss LEeavirr, )

34y we have estimated the diameters of the catalogue-siars mentioned
above and compared these with the magnitudes in the C.P.D. and
the A. G. C.
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Finally the magnitude corresponding to each diameter was determined
from all these data by graphical smoothing.

We counted an area of 240 O’ in the Cloud. The results are
given in the table below. Tn it .V, represents the number of siars
from the brightest star to the magnitude under consideration.

Diameter | Magn. Nm Magn. Nm Am Normal | Cluster
25 10.1 1 100 | 1 I 1 —
22 104 2
20 10.7 4 10.5 4 3 — 3
17 11.2 5 110 5 1 1 —
16 11.3 6
15 11.5 13 11.5 16 1 1 10
14 1.7 19
13 120 26 12.0 33 17 1 16
12 12.2 39
11 125 55 12.5 60 27 - 3 24
10 12.8 81

9 13.1 122 13.0 122 62 4 58
8 13.4 172

7 13.7 220 135 202 80 5 15
6 . 14.0 282 14.0 305 103 8 95
5 . 143 358

4 14.6 467 14.5 438 133 . 11 122
3 14.9 568

2 15.2 810 15.0 655 217 16 201
! 156 1104 15.5 1064 409 22 381
0 16.0

The normal number of stars is calculaled for the galactic latitude
b=10°. As we always nse the lnminosity curve for whole numbers
as values of the argument m and have counted here by half maguitudes,
we may deduce from the above table the following two tables:
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m An | Amd1 / A m An | A1 / a, -
12.0 33 3.24 1.5 18 3.39
13.0 107 .81 12.5 61 2.48
14.0 194 2 35 13.5 | 151 1.79
15.0 455 14.5 270
Am+1

f
The irregular progress of the quotients is partly to be ex-

m
plained from our counting only a small part of the cluster.

These numbers give the following values for the parallax:

1 7 = 0".0004

11 4

111 7

IV 13

\ 1

VI 4
Mean a = 0".0007 £ 0’/.0002

From 142 cluster variables that are equally distributed over the
cluster and occur in Miss Leavirr’s catalogne, we find for the mean
apparent ‘magnitude of these stars m = 14.67 and 5log. w = —15.77,
so that the mean absolute magnitude of these o Cephei variable

stars with a short period is M = 8.9 according to our determination
of the parallax.

From some d Cephei variable stars with a long period Herrzserune
found for the parallax of the Small Magellanic Cloud = = 0".0001.

Praesepe.

@)y = S134m 395, d,,,, = + 20°1’, b = 4 33°, [ =169°

Dr. P. J. van RewN. The proper motions of the stars in and near
the Praesepe cluster, Publ. Groningen, N°. 26, 1916.

The measurement of 2 sets of plates,- taken at Potsdam. The
catalogue contains 531 stars. The diameters were reduced to photo-
graphic magnitudes by means of standard magnitudes, determined
by Hurrzserung. The probable error of a magnitude is == 012,

We have derived the visual magnitudes from, the photographic
ones in the same way as Van REnx did on page 10 of his publi-
cation. The correction was determined fromn the value of the colour
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index for each apparent magnitnde that is based on PARkHURST and
Searus’ researches. To this objections may be raised, as for the
cluster stars we have to deal with absolute magnitudes. As, however,
the relation between colour index and luminosity is only inaccurately
known as yet and as moreover, it cannot be decided whether a
given star belongs to the cluster or not, Van REuN’s method is the
only one possible. Vax RuiN found that the photographic magnitudes
(international scale) between m — 7.5 and m —14.5 wanted a constant
correction — 0m.5 for reduction to the visnal Potsdam scale. There-
fore by a correction — 0.7 they are reduced to the Harvard scale.

The number of cluster stars of each magnitude we find by dimi-
nishing the numbers counted by the normal number, which was
determined for this cluster from Publ. Gron. N° 27, Table V.

It appears at once that the Praesepe stars have faint luminosities.
The declivities that we observe in the frequency curve of the mag-
nitudes are partly smaller than the smallest declivity occurring in
KapTEYN’s luminosity curve. That is why we could make only four
determinations of the parallax notwithstanding the great interval of
magnitudes. These give

w = 0".024 == 0".004.

This pavallax is considerably greater than the omne which we

found for other stellar clusters.

Messier 52.

N. G. C. 7654; a,,, = 2311928, d,,, =+ 61°3’, b=+ 1°;
= 81°; class: D 3.

F. Pmesporr. Der Sternhaufen in der Cassiopeia. Diss. Bonn. 1909.
Measurements of three plates, taken by Kutstner. The catalogue
contains 132 stars up to 15™.0. The standard magnitudes have been
determined by visual observations by means of gauzes of 25 stars
by ZURHELLEN. )

We find from 4 determinations:

a = 0".002 == 0".0003.

Messier 46.

N. G. C. 2437; a0, =T 3722, d,,,, = —14°35’, b =+ 6°,
[ = 200°; class: D1.

W. Zuruenres., Der Sternhaufen Messier 46. Verdffentl. Kgl. Stern-
wartezu Bonn, N°. 11, 1909,

Measurements of three plates, taken by Kostner. The catalogue
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contains 529 stars. For standard magnitudes 47 stars were used, the
brightness of which was estimated by Ktstyur or detelmlned by
means of gauzes by ZURHELLEN.
We find from 4 determinations:
7 =0".002 = 0".0001.

Messier 37,

N. G. C 2099; «,,, = 545"8, d,,,=-+ 32°31", b= 4°
[ —=145°; class: D I.

J. O. Norprunp. Phlotographische Ausmessung des Sternhaufens
Messier 37. Inaug. Diss. Upsala 1909, Avkiv for Matemalik, Astro-
nomie och Fysik, Band 5, N° 17.

Dr. H. Guwserer. Der Sternhaufen Messier 37. Veloﬁ"entl Kgl.
Sternwarte zn Bonn, N°. 12, 1914.

NorprLuNp measures 4 plates and gives the places and magnitudes
of 842 stars. The magnitudes are derived from the diameters according
to the formnla of CrarRuIER by means of 214 standard magnitudes
that have been delermined photomeirically by Vox Zwrrn. Many of
the bright stars of the cluster are red (colour index > 0%.7), e.y.
some 50 or 70 °/, of the stars of the 10" magnitude.

GieBerEr discusses 2 plates taken by Kustner and measured by
Srrorre. The catalogue contains 1231 objects. The magnitudes have
been joined with NorprLusp’s scale by comparing those of 450 stars.
For the red stars too the photographic magniitude is given.

For our purpose it is a drawback that for the ved siars the
photographic magnitude is mentioned. This is why the brightest stars,
among which many red ones occur, could not be used by us. Excluding

these we find from 4 determinations:
x = 0".002" &= 0".0004.

Messier 36.

N. G. C. 1960; a,,,, = 542905, d,,,, =+ 34°4’, b= 2°,
[ =142°; class: D2.

Dr. S. Orpenmsivn. Ausmessung des Sternhaufens . C. N°. 1166.
Publ. der v. Kuffner’schen Sternwarte in Wien, Bd. I1I, pag. 271-307,
1894.

Measurements of three photographic plates. The catalogue contains
200 stars. The magniludes were derived from the diameters, measured
in connection with estimales of visual magnitudes found by Dr. Parisa
for the greater part of the stars. -

The interval of magnitudes is small. We find from 3 determindtions:
= 0".005 %= 0".001.
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20 Vulpéculae.

N. G. C. 6885; «,,,, = 20"7n.6, d,,,, = 26°10’, b = — 5°, [ = 31°.

H. Scrurrz. Micrometrisk bestimning af 104 stjernor inom
teleskopiska stjerngruppen 20 Vulpeculae. Kongl. Svenska Vetenskaps-
Akademiens Handlingar, Bandet 11, N°. 3, 1873, ~

The magnitudes have been determined by a photometer in accordance
with ARGELANDER’S scale.

A. Donngr und O. Backrusp. Positionen von 140 Sternen des
Sternhaufens 20 Vulpeculae nach Ausmessungen photographischer
Platten. Bullelin de 1’Acad. Imp. des Sciences de St. Pétersbourg,
Série V, Volume II, pag. 77-92, 1895. :

Measurements of 2 plates taken by Donnkr at Helsingfors. The
magnitudes were taken from SHiLow.

M. SmiLow. Grossenbestimmung der Sterne im Sternhaufen 20
Vulpeculae. Bulletin ete. ut supra, pp. 243-251.

The magnitudes of the 140 stars, the position of which was deter-
mined by Doxner and Backrunp, were found by measuring the
diameters of the images. As standards those 100 magnitudes were
used that Scmurrz had determined already. SmiLow uses CHARLIER’S
formula m —= & — ylog D — 2D. The probable error of a difference
M—Mgepurrz 18 £ 0m.25.

We have not reduced the magnitudes based on AreELaNDER’S scale,
to the Harvarp scale, because SHILO\\j’s magnitudes differ considerably
from those of Scuurrz. We find for the parallax from 7 determinalions:

7 = 0".005 == 0".001.
Messier 5.

N.G.C. 5904; a,,,,=15213n.5, d,,,,—=-42°27', b=} 45°, [ =333%
class: C3.

M. Smwow. Positionen von 1041 Sternen des Sternhaufens
5 Messier, aus photographischen Aufnahmen abgeleitet. Bulletin de
I’Acad. Imp. des Sciences de St. Pétersbourg, Série V, Vol. VIII,
pag. 253-312, 1898.

Measurements of 2 plates, taken resp. by BrLororsky and KosTINSKY.
The magnitudes have been determined in a rather inaccurate manner,
viz. by comparing the diameters with the images of stars of 20
Vulpeculae, the magnitudes of which are known.

S. I. Bamwey. Variable Stars in the Cluster Messier 5, Annals
Harvard Observ., Vol. 78, Part. 11, 1917.

Ninety-two stars are dealt with. For 72 the period is mentioned.
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Among these 3 have long periods. Moreover the magnitudes are
given for 25 comparison-stars.

In SmiLow’s catalogue the magnitudes of 1006 stars are mentioned.. ~
The interval of magnitudes is small and the magnitudes are iuaccurate.
Nor did we succeed in reducing them to a more exact scale by
means of BaiLry’s magnitudes. We find the-results # — (0".0002 and
n = 0".0009; consequently as average value:

a = (0".0005° £ 0".0002.

According to SHaripy the average photogr. magnitude of the
variable stars is 15225 and we found 5log. n==—16.3; therefore
M=15725—11m.3=4".0. So we get for the mean absolute magnitude
of the variable cluster stars 4.0.

If we determine the parallax from the variable stars with a
known period, we find, when making use of HerTzsPruNg’s numbers :

N x = 0".0002.
Messier 13.

N.G.C. 6205; «,,,,=161387.1, d,,,,=36°39, b= + 40°, [ —=26°%
class: C3.

J. ScmpiNer. Der grosze Sternhaufen im Hercules Messier 13,
Abhandl. Kgl. Akad. Berlin 1892.

The catalogue contains 823 .stars. The magnitudes are uncertain.

H. Lupesporrr. Der grosze Sternhaufen im Hercules Messier 13.
Publ. Astroph. Observ. Potsdam, Bd. XV, N°. 50, 1905.

This catalogue contains 1118 stars. The brightness is not expressed in
magnitudes; but the diameters are estimated in 16 “Helligkeitsstufen”.

H. Snarrey. Studies etc. Second Paper: Thirteen hundred starsin
the Hercules Cluster (Messier 13). Contrib. M1. Wirson Observ.
Ne. 116, 1915.

The photogr. and photovis. magnitudes of 1300 stars have been
determined; but of only 650 stars they have been published. For
the statistical investigation 1049 magnitudes and colour indices
were used.

We make use of Lubenporri’s catalogue and we availed ourselves
of SHAPLEY’s results in reducing the “Helligkeitsstufen” to magnitudes.
First we can express the “Stufen” in photographic magnitudes by
means of a table in SmaPrLEY’s work (p. 25, Table VIII) and these
may be reduced to photovisual ones by means of the Tables XIV
and XVI. No correction is wanted for the diffevence between the
scales of Harvarp and Mount WiLson, because the visual Harvard
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scale is continued only up to 127.0 and for this magnitude agrees
with the Mr. WiLsox scale.

Now we determine the numbers 4,. For the brightest magnitudes
we find then a declivity, which surpasses by far the greatest decli-
vily, found in KaprpynN’s _curve. This value, great as it is, may
perhaps be explained from the manner, in which the diameters have
been reduced to magnitudes. Excluding of these values being unde-
sirable a prior and not possible on account of the small interval
of magnitudes, we hiave smoothed the numbers observed by a con-
tinuous curve. Then we find from 4 determinations:

x = 0".00075 £ 0".00006.

From SwuarLey’s research (l.c. p. 79) we derive for the mean
photographic magnitude of the variable cluster stars which are
probably ¢ Cepheids, m = 15.2 and we found 5 log. # = —15.4,_
so that according to our determination of the parallax their mean
absolute magnitude — 4.8 ).

From 2 variable stars with known period SmarLey (I.c. p. 82)
found for the parallax the value:

7 = 0".00008.
Messier 67.

N.G.C. 2682; a,,,, = 845n.8, d,,,,—=-+12°11, b=-}34°, [=183°;
class: D 2. ‘

E. FacerooLm. Ueber den Sternhaufen Messier 67. Inaug. Diss.
Upsala, 1906.

The catalogue contains 295 stars. The magnitudes were derived
from the diameters by means of CHARLIER’s interpolation-formula,
after the visual magnitudes of 15 stars had been determined photo-
metrically.

H. Smaprey. Studies ete. 1II. A catalogue of 311 Stars in Messier
67, Contrib. Mr. WirsoN Observ. N°. 117, 1916.

For all stars the photogr. magnitudes have been determined and
also the photovisual ones for all stars within 12’ of the centre. In
this way 232 colour indices were found. SmaPLEY finds a much
greater number of back-ground stars than would be expected.

O1ssoN’s catalogue cannot be used on account of the inaccuracy
of the magnitudes.

We first make use of FagerHoLM’s calalogue. The magnitudes that
are expressed in the P..D. scale, are reduced to the Harvard scale
by adding a correction —0n.2.

1) The values of the parallax and the mean absolute magnitude given here, are
to be preferred to the preliminary results published in the first communication.
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Now we derive from 2 determinations (the interval being only 2
magnitudes):

a = 0".001 == 0"0007.

According to SHAPLEY (l.c. p. 10) the difference Fac.-Mr. W. is
constant — - O».24 and as Harv. = M1. WiLson photovis., we have
also: Fag.-Harv. = 4 07.24. We have taken Fae.-Harv. = - 0.2,
so that the magnitudes used should be correct. Upon closer inquiry,
however, the difference Fac.-SHAPLEY appears not to be constant,
but to vary with the magnitude. We have determined the errors of
FaeceraoLM’s scale by comparing the maguitudes of 156 stars, and
. afterwards we have calculated the numbers 4, for the corrected
magnitudes. Now we derive for the parallax from only one deter-
mination that can be used:

m=(".002.

By telling off SmaPLEY’s catalogue we find for the parallax the
values & =10".001 and 7 =—0".002. Summing up, we may assume
for the parallax of this cluster:

a=0".002.

For this cluster SnaPLEY determined the colour indices of all the
stars, perceptible on the plate within a circle with a radius of 12'.
But here, too, no great value can be attached to a comparison of
the distribution of colours, found by SuarrLry for every M, with
ScrwarzscHILD’s table. For it is not certain that all stars up to
1370 are visible on the plate, and just here the separation of cluster
stars and back-ground stars offers great difficulties. According to
SuarLeY the distribution of colours, expressed in percentages of the
numbers of stars of determined absolute magnitude, is as follows:

M
+ 4.0 | 4+ 3.0
B 0 0
A 0 15
F 38 30 \
G 51 20
K 11 30
M 0 5
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Messier 11.

N. G. C. 6705; a,,,, =18% 45m.7, d,,,, = — 6°28’, b= —4°,
[ = 355°; class: C31).

W. StraTONOFF. Amas stellaire de I’écu de Sobieski (Messier 11),
Publ. de ’Observ. de Tachkent N°. 1, 1899. )

The catalogue contains 861 stars. From the estimates and measu-
rements of diameters the magnitudes have been derived by means
of the Southern B. D.

H. Smarrey, Studies efc. IV. The galactic cluster Messier 11,
Contrib. Mr. WiLson Observ. N°. 126, 1916 (A. P.J. Vol. 45,1917).

For 458 stars the photogr. and photovis. magnitudes have been
determined. For slatistical research 364 stars were available, after
the uncertain magnitudes and the stars upon which the EBErRHARD-
effect may be of influence had been excluded.

We tell off StraroNorr’s catalogue and we determine the quotients

Ap +1

. It then appears that the magnitudes are too inaccurate and

m
cannot be used.

Now we reduce STRATONOFF’'S magnitudes to SHAPLEY’s scale. In
order to do so we compare the magnitudes of 293 stars. The results
are given in the table subjoined.

M SuapLEY | Sh—Strat. crglg;)?esl;a?i

10.0 + 1.53 30

5 1.94 4
11.0 1.68 38

5 1.39 | . 26
12.0 1.45 11

5 1.21 14
13.0 0.91 50

v ~ 5 0.80 27

14.0 0.70 53

Afterwards we determine by interpolation 4,, for the corrected
" magnitudes. In this way we find for the parallax from 2 determinations:

a = 0".00055 + 0".00003

1) SuarLEY reckons Messier 11 among the open clusters.
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The mean parallax of the globular clusters is 0".0006: and that of
the open clusters (Praesepe excluded) is 0".003. )
The number of parallaxes, determined at present, is still too small ~
to derive conclusions from them as regards the distribution of clusters
in space. Perhaps this will be possible, when we shall have extended
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our research to more clusters. It will then also be possible to
investigate, how far our results give support to the well-known
theory of giant and dwarf stars.

From the figure subjoined it is evident that the luminosity curves
of the various clusters greatly resemble that found by Prof. Kapruyn
for the stars in the neighbourhood of the sun. And so this method
of determining the parallax, proposed by Prof. Kaprery, is justified.

In the graphical representation N); means the number of stars
from the brightest star to the absolute magnitude under consideration.
As it is- only our purpose to compare the velative frequencies of
the various absolute magnitudes, we added in each curve a constant
amount to log. V.

Amsterdam, December 1917.
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Physiology. — “/Frperiments with Animals on the Nutritive Value
of Standard Brown-Bread and White-Bread.” By Prof. C.
Ewgman and Dr. D. J. HuLsnorr Por.

(Communicated in the meeting of April 26, 1918).

Owing to the scarcity of food the old problem has latterly cropped
up again whether, instead of baking white-bread, it would not be
more practical to make bread of unboltered meal, since through the
process of boltering the grain loses 20—30 °/, of its nutritive value,
according to the degree of milling. The modern technique of grinding
enables the miller io separate the flonr, which contains the constituents
of the endosperm or starchy part, nearly entirely from the bran
and the germs of the grain.

The current opinion among people that brown-bread is more
nourishing than white, 1s founded chiefly on the belief that brown
bread is more satialing and appeases the appetite for a longer period
than white bread does. Though this property must not be underrated,
it scarcely mneeds to be pointed out, that it cannot be an index for
the content of nutritions matter. The bran (inclusive of the germs)
differs from the flour by a smaller amount of starch and more
nutritive salts, fat and protein. However it also contains more cellulose,
which is all but indigestible for man, and which also renders it difficult
for the alimentary canal to utilize the foodstuffs contained in the
bran, 'since they are for the greater part shut up within thick walls
of cellulose. This is why many consider the bran to be useless for
man, even noxious, and deem it better that only flour should be
baked into bread and the bran should be given to the catile, which
can digest cellulose well and return to us the foodstuffs of the bran
in the form of flesh and dairy-products. On the other hand it has
been argued that this round-about way via the cow, is also attended
with great loss, and that, in stiiking a balance, it will turn out
that man gets more food from wheat in the form of brown bread
in spite of less digestibility, than from an.equal amonnt of wheat
in white bread.

However, it now appears that the problem requires re-consideration,
since it has been proved that, besides the foodstuffs alluded to, the
bran also contains peculiar constituents, altogether lacking in flour,
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that are highly conducive to the building up of the animal body,
nay are even indispensable for its health and growth, viz. the so-
called. accessory foodstuffs or vitamins.

Here I refer to a paper read by me (E.) some 20 years ago on a
fowl’s disease (polyneuritis gallinarum) attended with degeneration
of the peripheral nerves and motory disturbances arising from a
polished-rice diet, and resulting in death within a few days, unless
another diet was had recourse to. When {he fowl was fed on un-
polished rice, or when polishings were added again to the peeled rice,
the disease could be prevented, or, if it had already broken out, it
could be cured. It appeared namely, that the rice-polishings contained
ingredients which, being diffusible, could be readily extracted with
water and possessed the same prophylactic and remedial property
as the polishings themselves.

The fowl’s disease, which can also be produced in other birds
(pigeons, rice-birds) in the manner described, showsin many respects
a close resemblance to beri-beri, and the researches by VoRDERMAN,
and many others after him, demonstrated that much of what was
brought forward for the one was also applicable to the other.

It must be especially remembered that what has been said regarding
rice, also holds for other kinds of grain. Fowls develop the disease,
when fed on boltered meal, but not or exceptionally oniy when given
the whole grain or unboltered meal. In keeping with this is the fact
that beri-beri does not only manifest itself where polished rice
constitutes the staple diet, but is also observed among a population
living chiefly on white-bread (LiTTLE).

Also in Holland the tropical beri-beri can break out, as has been
proved by the cases that lately occurred among native sailors of the
Rotterdam Lloyd, described by Koovremans Brysex. It is well-known,
moreover, that the so-called Ship beri-beri, a comparatively mild
form of the disease, which has been seen from time to time especially
on Norwegian ships, is also attributed, on reasonable grounds,
to too one-sided and too vitawin-poor a nourishment. Nor is it at
all improbable that cases of polyneuritis among men, which do occur
every now and then, are in some degree allied to beri-beri.

Fortunately the accessory foodstuffs, playing a part here, occur
in many other articles of food, such as peas, beans, potatoes, meat,
egg-yolk ete. There need be no fear, therefore, for the immediate
appearance of beri-beri, at all events not when foods such as white
rice and white-bread are not the principal dish. However, if we
bear in mind that, as has been seen from what we said about meat,
the relatfve vitamins eform a normal constituent of the animal

4
Proceedings Royal Acad. Amsterdam. Vol. XXI.

-
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body, (not evolved in it but derived from the food), it is but natural
that, especially in.times of scarcity, a vitamin-poor food should be
deleterious to the body, even though not causing actual illness.

Comparative experiments on the nutritive value of brown- and
white-bread have repeatedly been undertaken, also when vitamins
were not thought of. As early as about seven decades back MacuNDIE
observed how a dog, fed exclusively on white-bread, lost flesh, got
weaker and weaker, and succumbed after 40 days; another dog,
fed on bread made from the whole wheat, kept in good health.
Similar results were latierly achieved in HormuisTEr’s laboratory
with mice. The evidence from such experiments may be disqualified
by contending that the laboratory animals actually starve, because
they refuse to eat white-bread much sooner than brown-bread. Those
nevertheless who believe in animal instinet will not wholly repudiate
the significance of this phenomenon.

We preferred to experimeni with fowls, first of all because they
react most indubitably upon vitamin-poor food with the typical
aspect of polyneuritis and do not succumb under equivocal symptoms;
and secondly because when the appetite lessens, they readily submit
to forced feeding. Forcible feeding is a method also employed in
poultry-yards. Infense inanition may in this way be prevented up
to the first indication of the disease, viz. atony of the muscle layer
of the crop. This canses a more tardy discharge of the crop, so
that the ordinary daily allowance cannot be gone through. The
typical weakness in the leg-musecles, reminding so forcibly of a
similar disturbance attending beri-beri, generally ensues only after
some days, sometimes weeks.

Here we also wish to observe. that fowls are no more able
to digest the cellulose of the bran than man is. The thick walls
of the cells of the so-called aleurone-layer, in which chiefly protein
and fat are contained, are left intact in their digestive canal. The
vitamins, however, as said above, are easily isolated from the bran.
The meal, from which the Standard bread was baked, was composed
according to the governmental prescription for the white-bread of
60°/, inland wheat- and (or) rye-flour, 10°/, American flour and 30°/,
‘potato-meal ; for brown-bread of 70°/, unboltered wheat- and (or)
vye-meal, 25 °/, potato-meal and 5°/, grits and (or) pollard. Potato-
meal is too pure and, therefore, too one-sided a food. The other
nutritive constituents of the potato — protein, salts and also vitamins —
get lost in the preparation. They putrefy our public waters. It would
have been much more reasonable indeed, to eke bread-meal out
with powder from dried potatoes, instead of potato-meal. On the
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other hand yeast raises the vitamin-content; it has a protective and
curative effect with respect to polyneuritis. An accidental advantage is
that during the baking the internal temperature of the dough hardly rises
above 100° C. As has been shown by Grisns for rice and has been
corroborated also by myself for other cereals, vitamins are destroyed
by moist heat only at much higher temperatures.

In the writer’s laboratory two sets of three fowls have been
subjected by Dr. HurrsHOFF Pol to feeding-experiments on brown-
and white-bread; they were young, strong animals of about the
same age (= 2 years) and weight. The best fed animals were taken
for the white-bread experiment, their body-weight averaged ca.
1550 grms; that of the brown-bread fowls was ca. 1400 grms. The
bread-ration was ca. 100 grs. '

The results of the experiments are given in the graphies. S denotes
the moment when forced feeding commenced. P that when the
typical symptoms of polyneuritis (disturbances in the gait) made
their appearance. For purposes of accurate comparison the changes
in the body-weight are not expressed in absolute measure, but in
percentages of the initial body-weight.

When first studying the whitebread experiments, we shall notice
a fall in the body-weight almost immediately, in spite of normal
appetite, which fall continued also after we proceeded to forced
feeding. At the close of the 11th week the first fowl (III) devel-
oped polyneuritis and succumbed after a few days. A second (lI)
followed a week later. Henceforth it was fed” on brown-bread, just
as N°. I, which had lost flesh, indeed, but was not yet actually ill.
With this diet the diseased <animal recuperated and the fall in
body-weight was arrested in either of them.

Whereas with a polished-rice diet the fowls develop polyneuritis
most often inside of five weeks, not unfrequently even as early
as at the end of the 34 week, this outbreak was considerably retard-
ed in the case of fowls on white-bread. It seems probable that
this is due to a protective action of the baker’s yeast.

Much more favourable were the results of the brown-bread ex-
periments. N°. IV and V remained perfectly healthy and vigorous
up to the conclusion of the experiment, which lasted 20 weeks.
They increased in body-weight, N°. V even considerably, so that
there was no occassion for forced feeding, although a slight inap-
petence ensued, as is always the case with a uniform diet.

N°. VI fared worse. For the first fortnight it maintained its

original weight, but after this time it lost weight constantly; forced
4*
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feeding was of no avail. The animal got anaemic, showed the typical
aspect of polyneuritis in the 17th week and died a few days later.
Change in body-weight in percentages Cases in which the same dief

. of the initial weight. is wholesome for the one and
szamazen=s s injurious to the other animal are

MM EN D hakd
110 ] WIrpsgoon BRUIN ;ﬂB) not without para]lel‘. Every ﬁbl'O-
100 ::_f_“,“_‘a ] Jlogist has to take acconut of
90 T & individval differences. These dif-
o ™R L ferences also hold for, the need
50 | mip [ TTTT of vitamins. Gryns has evenknown
70 - CEEPTTH the disease to break “out after a
60 bt prolonged diet of unpolished rice,
130 though animals that have already
_ prvinbidob 1 1 LAY eon attacked, may most often be
150 7 cared with ihe same diet. At-
120 B Bt tendant circamstances, such as
110 = E’/ i intercurrent diseases, weakening
10012 \ NI influences may also come into
9 1R\ play in such cases. Many even
) o \ regard an infection as a neces-
50 ~ sary condition for beri beri to
20 P¥ break out.

Wittebrood = White-bread.

Bruinbrood = Brown-hread.  In resuming it may be allow-

able to state that brownbread yields undoubtedly more satisfactory
results than whitebread. In connection with what we said at the
beginning, we believe the same to hold good also for human nourishment.
The drawback of partial indigestibility must not be overestimated.
Besides, by improvements in the mode of grinding the wmiller is able
to neutralize this drawback by a finer distribution of the bran along
the dry or the wet path, or by removing the coarsest and least
nutritive outer layers of the grain. This method should henceforth
be more generally applied. Nature, as it were, has destined the bran
to eke out the flour; it seems unreasonable, therefore, to separate
the two and to replace the bran by polatomeal, which last should
be admixed only in the second place and preferably in the form of
potato-powder. The use of white-bread should be restricted as much
as possible. ‘

Foodstuffs that are fit for man, nay that are preferable for human
sustenance, must in times of scarcity not be given to the cattle.

The Hygienic Institute of the Utrecht University.

N
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Physics. — “An indeterminateness in the interpretation of the entropy
aslog W 7. By Mis. T. EgrENrust- ArANAssiEwA. (Communicated
by Prof. J. P. KuuNex).

(Communicated in the meeting of March 23, 1918),

I. A certain quantity of a gas may be given, so large thatit may
be divided into a greal number of portions — great enough for the
purpose we are about to discuss — without the usual statistical
treatment of the paris losing its value.

Regarding the matter from a thermodynamic point of view we
assume:

1. that the entropy of every system strives to attain its maximum.

2. that the enfropy of the total mass of gas is equal to the sum
of the entropies of the parts.

If in accordance with the kinetic theory, we take the entropy to
be the logarithm of the probability of the state of the system, we
get the following theses as the analogues of those just given: '

1. The state of every system endeavours to approach the greatest
probability ;

2. The logarithm of the probability of the state of the total mass
of gas is equal to the sum of the logarithms of the probability of
the states of its parts; or in other words: the probability of the state
of the whole is equal to the product of the probability of the states
of its parts.

At the samne time it may easily be seen that the latter theses are
only correct provided the combinations with which we reckon in
the determination of the probability of the state of the whole are
submitted to certain limitations, which are quite arbitrary from the
combinationary point of- view.

II. We will illustrate this by a simple example, which depends
only on the calculus of combinations.

Let us suppose 27 tables, each provided with three holes. In each
of the-holes a red or a black ball must come to lie. The colour
of the ball may be decided by a lottery, in which the chance of
drawing a red ball is */,, and of a black ball /,.
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In this case for each table separately — if we still distinguish between
the three different holes') — the most probable division of the balls is:
two red ones and one black one. For this the probability is?)

2 2 1 3/ . 12 i
AR R TR
We must now ask: what is the most probable distribution of the
combinations over all the 27 tables? We can here still distinguish
between: the tables. As the most probable distribution we get that
in which on only twelve tables two red balls and one black ball
lie, on eight of the others three red ones, on six 2 black ones and
one red one, and on the last one three black balls. For this

distribution the probability is expressed by

(12N (8 /BN Ly 2
“(Ei) 27) " \27 2-7)‘6!8./57'

On the other h‘a,nd, the chance that on each of the 27 tables
uniformly two red balls and one black ball should come to lie is given by

12\*7
Wy=1{=—=1] .

The ratio between the two is 2
W, 1221—12 , 678712/
W,  88.66,27/

which is very much smaller than 1?).

Let us now suppose the number of balls that can lie on a table,
and also the number of tables to be greater; the number of different
typical possibilities of division on each table separately (varying from
all red to all black) then rises, as also the number of ways in which
we can find these types of division spread over the collective tables.

The chance of the most probable division for one particular table
becomes smaller. The probability W,, that just this division will be
found repeated on every table, becomes therefore represented by a
high power of a very small fraction.

1) That is to say, if for a particular combination (e.g. 1 red, 2 black) we count
as separate possibilities the cases in which differently coloured balls lie in a given
hole. .

%) The chance of all three being red is 48, of one red and two black £, of

all three black ..

6, 8/ 127192712 g7 8/ 12 12 12
8 ' T GE T e, = A ‘_-"—.—".-.._",' i "
) For g6 ‘g8 577 5 '3 i3 T4 57 in which further
6/ < 1 8¢ 1 12 i 12 i 12 |
6 <81 8 Lo <t ig<hogw<h
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On the other hand, the chance W, for the realisation of that
case, in which the different types are found represented amongst
the collective tables in proportion to their probability, will contain
a large permutation-factor, and consequently — with a suffi-
ciently large number of tables the ratio W,/ W, may reach any
degree of smallness. It makes a great difference, therefore, — and
of course not only to the calculation of the maximum — whether
we take the tables collectively as an object of higher order in the
calculation of combinations or whether we determine the probability
for each table separately and calenlate that of the whole as product
of the separate probabilities.

III.  Suppose that the number of tables and holes for each table are
not yet given, but only the total number of hollows in all the tables
together, and that it was left to our choice to divide them amongst
the tables, then an- opinion as to what was the most probable

.division would be even more arbitrary.

IV. It is obvious, that the above considerations may be applied
to the gas, taking into consideration, where necessary, additional
conditions.

If we intréduce the restriction that in the parts only we altend
to all the possible permutations, in defining the .most probable
division, and that in the system as a whole we do not take into
consideration any further permutations between these parts, only then
does the probability for the state of the whole appear as the product
of the probability of the states of the parts.

If on the other hand the total system is regarded as a new object
for combinations, an object of a higher order, the probability of the
distribution of a special state in the whole is nol equal to the
product of the probabilities of the parts corresponding to this state.
The latter must be corrected by a certain permutation-factor, the
magnitude of .which is dependent upon the number of the parts,
that is either upon the fineness of the division to be chosen at will,
or — with a permanently fixed fineness of division — upon the
magnitude of the total system.

The question arises: with which Jlog TV should the entropy be
identified ? )

Only when the said permutation-factor is neglected can it be said
that the tending of the parts towards the maximum of their entropy
brings with it a striving towards a maximum of the entropy of
the whole.
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If we adopt the latter view, in other words if we say that the
log W of a system is almost the same as the sum of log w of its
parts, at the most a sign of inequality is changed into a sign of
equality. It is not justifiable, however, {0 reverse the sign of inequality.
But this is just what happens when, for instance, the uniform
distribution of density in a gas is regarded as the most probable
state, and in oider to calculate the probability of a distribution
slightly deviating from this the relation

log W= = log w, %
is taken as the basis, for in this way each deviating distribution
appears as a less probable one). -

V  The above analysis is by no means intended to call into
question the validity of caleulations similar to those indicated in the
preceding paragraph, as these rest on the thesis that the enfropy of
the whole is equal to the sum of the entropies of the parts, a thesis
that probably is physically better justified than the combinatory -
reasonings, at least in the circumstances in which they are applied.
The analysis is merely intended to make clear that the decision of
the question whether the probability of the state of a system has
reached its mazimum or not, depends upon the point of view of the
investigator, and that the ideas jformed from purely combinatory
reasonings do not jform a satisfactory or conclusive foundation to
direct our choice -amongst many different standpoints to any one in
particular; turther that the choice of our standpoint is made on the
ground of various physical intuitions, which are outside the pale °
of the combination-calculus as such.

That is to say, that the combinational reasonings in question
cannot be deduced from a higher principle which may be said to
rule nature.

VI. We can show this more particularly in the case of a gas.
Let us bring together two cubic centimetres of gas at different
temperatures. If it should depend upon the “probability principle”
which is to happen, it would be quite indetinite whether an equalisa-
tion of temperature would take place or not. It would depend upon
the question of which is more important in nature; one cubic
centimetre or ftrillions of cubic centimetres. In the latter case our
two cubic centimetres might just be those members of our trillion

1) R. Firra. Ueber die Entropie eines realen Gases als Funktion der mittleren
raumbichen Temperatur- wund Dichieverteilung. Phys. Zschr. 18, p. 395—400, 1917¢
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system, which ought to have different temperatures in order that
the whole may get the most probable division of temperature over
its parts (trillion tables, and upon each of them million balls). If it
is advanced against this that an inequality of this kind must
continually appear in precisely the same cubic centimetres, so that
our two portions of gas may still equalize their temperature, it must
not be forgotten that this demands that at the same moment another
arbitrary pair of cubic centimetres would be obliged to change
temperature in just the opposite direction.

Further it must be remembered that in the case when the subdi-
vision is continued as far as the single molecules we do actually
take up the latter standpoint: the momentary kinetic energy accorded
to each separate molecule is in itself not the most probable; over
a sufficiently large number of molecules, however, the velocities are
divided in such a manner that we can only talk of the most probable
distribution for the whole of these molecules (quadrillion tables with
one ball on each, or, what comes to the same, one table with
quadrillion balls).
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Zoology. — “On the primary character of the markings in Lepi-
dopterous pupne”. By Prof. J. F. van BEMMELEN.

(Communicated in the meeting of -April 26, 1918.)

On p. 136 of his paper: Zur Zeichnung des Insekten-, im be-
sonderen des Dipteren- und Lepidopterenfliigels (Tijdschrift voor
Entomologie, vol. LIX, 1915) pe Muvsre raises objections against
the comparison of the pupal stage in Lepidoptera with the subima-
ginal instar of Agnalha; a comparison, which as far asIknow, was
first made by Povrrton®), and to which I have expressed my adhe-
sion in my paper on the pupae of Rhopalocera?®).

He says (translated by me): “It is well known that many investi-
gators Dbelieve the pupa to have evolved from a flying imagolike
form, the limitation of the wings to the last instar having been
acquired later on. In these views I cannot agree with my colleague”
(viz. vaN Bommenen). “In what way one may imagine the initial
evolution of the pupal stage to have taken place, either from a
dormant snbimago, or from a dormant larva (the latter alternative
according to my view being the more probable), in any case I think
to be justified in supposing that the Tri.(:hOptera, Panorpata, Diptera
and Lepidoptera have differéntiated out- of Neuroptera, after the
latter had acquired the Holometabolic metamorphosis they possess
to-day. Now the Neuroptera generally have a faintly coloured pupa,
which leads a hidden life, concealed in the earth or in a cocoon,
and usually has a thin chitinous skin. Such also is the condition
with Panorpata, Diptera, and likewise with a number of lower Le-
pidoptera, as Micropteryx, Lymacodides and many others.

When therefore we meet with special colour-markings evactly in
the jfreeliving pupae of divrnal butterflies, 1 am inclined to regard
this as a wholly secondary feature . ... (The italics are mine).

This stalement leads me to the following remarks:

1) E.B. Pourron, The external morphology of the Lepidopterous Pupa, its relation to
that of other stages and to the origin and history of metamorphosis; Transactions
Linnean Society 1890—91. -

2y J. F. vaN BEMMELEN, Die phylogenetxsche Bedeutung der Puppenzeichnung bei
den Rhopaloceren und ihre Beziehungen zu derjenigen der Raupen und Imagmes;
Verh. d. Deutschen Zool. Ges. 23 Versamml, 1913.
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Against the use of the expression ‘“‘subimago’ in itself, for the
pupal stage of Lepidoptera and other Holometabola, b MuvERE does
not seem to have fundamental objections, for as is seen from his
own words, he declares that the pupa migh{ be considered as an
“inactive subimago,” though he himself would prefer the name “in-
active larva.”

In this preference I cannot agree with him. The conception
“larva” implies the presence of provisional organs, as well as the
manifestation of a metamorphosis, ithe moment of which fixes the
final point of larval life. Now it is clear, that this point lies at the
passage from caterpillar to pupa. Therefore the latter cannot be called
an “inactive larva”, but only an ‘“inactive subimago”. It might
even be asserted to represent an “inactive imago’, for the provi-
sional larval organs have disappeared, the imaginal organs on the
contrary being all present, though still unable to functionate.

But it is especially against the inference, that this subimaginal stage
should have been provided with a sufficient mobility to enable it to
fly about, after the fashion of the caddisflies when they leave the
water, that D MEuYERE raises objection. According to his view, it
is much more probable that in none of their phylogenetic stages the
Lepidoptera or any of their kin: Panorpata, Diptera, or Neuroptera,
were ever on the wing before the very last moult,-so before they
fully deserved the designation ‘“imago”.

Now I must admit, that this supposition of the occurrence of a
flying subimaginal instar among the ancestors of these groups of
Insects is merely a hypéthesis, whic_‘li can only be supported by argu-
ments of probability, while most assuredly important objections can
be opposed against it. One of these difficulties I will indicate my-
self: Holometabolic Insects may indeed be compared still to other
Hemimetabola than precisely the Agnatha, and moreover to Ame-
tabola also, and this comparison may lead to raising the question,
if the pupal stage might not best be compared to the last instar
but one of these groups, to which belong insects, whose different
instars are much more similar to each other than those of Holome-
tabola, because all of them differ less from the imaginal condition,
or, what means the same, because they have all deviated in a
minor degree from the original Insect-type.

In them we see the wings protrude at an early stage as lateral
outgrowths of the dorsal body-wall and increase in size at each
following ecdysis, though entering into function at the last one only.

Why should this course of development be less primitive than
that of caddisflies? Might not the curious phenomenon, that
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the subimaginal instar of the Ephemeridae, after moulting at the
surface of the water, flies about for a few moments, then to moult
again and immediately afterwards to proceed to copulation, rather
be taken as a speciality of the Agnathous life history, without any
deeper significance, and therefore of no importance for the explana-
tion of Holometaboly with its dormant pupal-stage.

On this point I dare not pronounce a definite opinion, but should
like to point out, that in trying to find an answer to the above
stated question, we must take into account various general consi-
derations, in the first place that of the development of wings in
its totality, viz. the question how Insects (at least Pterygogenea)
acquired their wings. For this decides about the question whether
we are to suppose that the ancestors of modern Pterygote Insects
never passed through a period, in which they moved about on the
wing before attaining sexual maturity, or that the beginning of the
functional activity of the wings (howsoever acquired) became more

and more postponed to the last instar. If we are right in accepting-

the second alternative, and therefore in believing that the oldest
winged insects could already make use of their wings shortly after
their birth, the Agnatha may have retained a last trace of this
ancient condition. The apparently absurd fact, that these animals
fly about in their subimaginal coat for a few moments only, might
then be explained by the assumption, that they gradually postponed
the start on the wing to later instars, under the ever increasing
influence of their secondary adaptation to life in the water. Then
the difference between them and other Hemimetabola would not
consist in a greater originality of the latter, but in a different
mode of deviation from the primitive condition, viz. by the
complete removal of the initiation of real flying to the imaginal
instar.

The supposition of such a retardation in the transition to flying
life-habits is diametrically opposed to the explanation assumed for

many other phenomena in metamorphosis, viz. that the manifesta-

tion of new characteristics is gradually removed to ever younger
instars. In my opinion the former supposition is as well justified as
the latter. When for instance WrismaNy (rightly I think) assumes
that changes in colour-markings of certain caterpillars, becoming
visible at their last ecdysis only, have been transferred to
younger stages in species near akin by a process of precession
of development, the opposite course of events may also be consi-
dered possible, viz. that a colour-pattern of the wings, which origi-
nally came into existence together with the wings themselves, now
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only appears a long time after the stage in which the rudiments of
the wings first become visible.

Now what is true for the colour-pattern, may as well be applied
to the wings themselves.

I do not intend to enter into these considerations more profoundly,as it
is irrelevant for the solution of the gqnestion, whether or no the colour-
pattern on the wing-sheaths of Rhopaloceran pupae possesses phylo-
genetic significance. @ On the contrary it seems to me that in this
way the question is made unnecessarily intricate. For the diffe-
rence-between the Lepidopterous pupa and the *mago emerging from
it, as well as between this pupa and the last instar buf one in He-
mimetabola, only consists in the limited mobility and the temporary
suspension of food-supply and excretion in the pupa. In my opi-
nion there can be no doubt athat it has lost these functions, and that
this loss happened gradually. For we are justified in considering
the sculptured and mévable pupae of primitive Lepidoptera as more
original forms than the mummie-pupae, which are hardly mobile.
Why then should not absence of colour and of markings be the con-
sequence of a gradual regression of these characteristics?

Of course this explanation may be as well applied to Neuroptera
as to Lepidoptera; DE MryEre himself concedes that the pupae of
Neuroptera “‘mostly live hidden in the earth or in cocoons, and
that their chitinous envelope is thin and only poorly coloured”. (The
italics are mine).

The causes for the regression of existing colour-patterns — viz.
darkness and absence of sharpsighted enemies — which obtain all
over the animal kingdom — may therefore have exerted their
influence on Neuroptera. But this need not involve that the primitive
Neuropterous ancestors of recent Lepidoptera already had concealed
and immovable pupae. In any case those ancestors had to pass
through a long range of thorough transformations, during which
especially the youngest larval instars deviated ever more from the
original type of the Insect, and in so doing came to differ from the
last instar as well as from the last but one.

Those two stages on the contrary remained alike in all important
points, though they came to differ from each other in minor aceessory
characters, which for the -pupae chiefly consisted in the loss of
mobility, with all its consequences. But apart from this immobilisation
it retained the old primordial characters without or with only small
modifications, and where a change still occurred, this depended more
on katabolic phenomena, e.g. partial or total extinction of colour-
markings, than on progressive alterations.

Ay
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Therefore I think that we need no more ascribe a secondary
character to the pupal stage of ILepidoptera, than we should be
inclined to do so to the larval or nymphal instar of Hemi-or Ameta-
bola. A grasshopper during the succession of its moults, passes
through a series of successive stages of colour-pattern as well as a
moth. The idea that. the last stage but one of this series bears a
different character from the preceding instars or the following
ultimate stage, would never occur to us. Neitlfer is this supposition
necessary or useful for the understanding of the Lepidopterous design.
That the latter is secondarily modified, is beyond doubt, it has been
changed in all stages, but precisely in the pupal stage less so than
in the preceding larval instar or the succeeding imaginal state, as
ScrmigrBEER has shown by comparing the pupal design with that of -
the caterpillar in its first instar. ;

As to the colour-pattern of the pupa, the same considerations
can be applied to it as to so many of its further properties. PourtoN
e.g. has pointed ont, that in the pupae of those butterflies, whose
forewings show a denticulated outer margin, the wing sheaths do
not stop at that broken line, yet clearly marked out on its surface,
but continue for a short bit and then end in an unbroken front line.
He rightly takes this feature as an indication, that the ancestors of
those buttertlies at one time possessed normally rounded wings. In
the same way he was able to show, that in those moths whose
females have only vestigial wing-rudiments (the wings of the male
sex being well developed) the female pupae differ much less from
the male ones, becanse their wing-sheaths are only a litlle bit
shorter than those of the males.

Likewise the difference between the sheaths for harbouring the
filiform antennae of the females and those for tlie pectinate ones of
the males was found fo be smaller than that between these antennae
themselves.

Would not all these features be caused by a recapitulation of
their phylogeny, by the preservation during the subimaginal stage
of former conditions which_have lost their original meaning.

On this topic pe Meyexe makes the following remark: ©It is
difficult to explain the presence of this line” (viz. Pourron’s mark)
“already on the young pupal wing, otherwise than by anticipation
of hereditary tendencies. Anyhow a sufficient number of instances
can be adduced of cases in which features of different stages are
transferred to the pupa in' both directions, as well from the imago
as from the larva . . . .. To this same influence of precocious
entrance into activity might also be aseribed the fact, that certain
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markings of the imaginal wing ave already visible on the pupa,
e.g. the submarginal spots of Vanessidae. Especially when, as vax
BemmereNn has pointed out, the imaginal wing-pattern, during the
beginning of its ontogenetic development, at first shows reminiscences
of older more generalised types, we can understand, that the pattern
of the wing-sheaths precisely reproduces these stages, without our
being obliged to assume that the imago received its colour-markings
from the pupa, and that the latter once moved about on wings
ornamented in the same style”.

Referring to these comsiderations of oz Mrvere I should like to
remark, that I do not in the least suppose the imago io have drawn
on the pupa for its colour-pattern, as may clearly be seen from
the inferences on p. 358 of my paper: On the phylogenetic signifi-
cance of the wing-markings of Rhopalocera, (Transact. 2¢ Entom.
Congress, Oxford 1912), in which I point out the facts, that:
1. only the external surface of the wing-sheaths, harbouring the
developing primaries, wear colour-markings, in conirast to that of
the secondaries hidden beneath it, while of course both pairg of
the imaginal wings develop a colour-pattern on both their surfaces;
and 2. that the primordial ov vanishing pattern on these imaginal
wings is still more primitive and therefore phylogenetically older
than the colour-pattern on the pupal sheath, so that there is as
little reason to suppose that the latter received its patiern from the
young imaginal wing hidden in its interior, as to make the opposite
sapposition.

The transference of imaginal features to younger instars seems
probable to me also, as may be seen from the foregoing remarks.
When however pe Mevure calls this transference anticipated entrance
into activity, he must have in view the aclivation of lateni hereditary
factors, and so must admit, the presence of those factors in the
genetics of the species. They therefore are connected with former
periods of phylogenetic development, or in other words: the colour-
paitern of the pupal sheaths must once have ornamented the wings
of an insect flying about (or at least walking about) with them.
Whether this insect was the imago or the subimago, is a question
for itself, but in any case DE MEYERE's expression about ‘‘anticipated
activation” includes the inference, that he also considers the pupal
colour-markings as a recapitulation of a phylogenetically older stage.

Trying to enter into his ideas, I suppose them to have taken the
following course: The imaginal instar of Lepidoptera was of old preceded
by an uncoloured pupal siage. In the ancestry of the recent bulterflies
the peeuliar habit was acquired, that their pupae no longer lived in
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hidden localities, and therefore came in need of protection by
mimicking- or by warning-colours. They provided for this need by
means of anticipated activation, viz. by transferring the then existing”
pattern of their forewings to the external surface of the pupal wing--
sheaths. -

This pattern persisted on the pupa, even after the wings of the
imago had acquired the new pattern, such as is found on them to
day, by the further modification of the old one.

Even if this view of the course of phylogenetic development
should prove right, which 1 consider rather improbable, it would not
diminish in any way the phylogenetic significance of the pupal pattern,
and so there would be no need to consider this pattern as wholly
secondary and therefore destitate of all importance for the phylogeny
of Lepidoptera. For this it would seem, is what pr MEYERE
means by his words mentioned in the beginning of this paper: which
fully cited run as follows:

“When precisely in the free-living pupae of the butterflies we find
special colour-markings, I would consider this as a wholly secondary
feature, the body having first acquired certain pigment-spots, to which
sympathetic markings of the wingsheaths afterwards were added.
That the latter show a certain connection with the veinal system,
cannot astonish us, when we take into consideration the special
importance of the veins as respiratory and circulatory vessels”.

Against this view I wish fully to maintain my own, viz. that the
colour-markings of the butterfly-pupae — those on the body as well
as those on the wing-sheaths — should be considered as an original
pattern, the whole-colour of white, yellow, brown or black pupae
of most moths resulting from the loss of this primitive design.

Regarding in particular the harmony between abdomen and wings,
in colour-hues as well as in design, we may remark that such a
similarity is a generally occurring feature, not only with pupae but
even and in a higher degree with imagines. Wilthout doubt this
harmony will often root in a secondary modification of shades and
markings, of the abdomen as well as the wings, which we may
ascribe to sympathetic correlation, but this need not oblige us to
doubt that both patterns result from a primitive one, or to abstain
from searching after the vestiges of this primitive pattern on both
those regions of the body.

What is true for the imagines, is certainly right for the pupae,
even in a higher degree; remunants of the original design may be
more probably expected on them and be found there in a more
complete state, because the imagines are exposed to greater versabi-
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lity of life-conditions and exlernal influences, even more so than the
caterpillars, their habits of moving about and resting, of nourishing
and propagating being move varied.

Both caterpillars and imagines in these respects surpass the nearly
immovable and lethargic pupae.

Dz Mzyere's views on this topic seem to be the cause, that while
attaching great importance to the differences between the pattern on
the pupal wing-sheaths of nearly related forms, such as Euchloe
cardamines, Pieris brassicae, Aporia crataegi, he only pays
very' slight attention to the facts pointed out by me, viz. the great
similarity between the pupal designs in several families of Rhopa-
locera e. g. Papilionids, Pierids and Nymphalids, a similarity
not only far exceeding the resemblance between the wing-patterns
of the imagines that emerge from those pupae, but also rooting in
the nearer connections of this pupal pattern with the primordial and
ephemeric design, which appears on the developing wings during
the course of the pupal life, and only gives place to the conclusive
imaginal pattern in the very last days before the emergence of the
imago.

These vestigial markings on the rvudiments of the wings hidden
in the pupal sheaths, moreover prove to us that a primordial pattern
may easily continue its existence in concealment; therefore such
notions as ‘“‘sympathetic colouration” or “influence of illumination
and surroundings” need not be invoked in order to explain the
manifestation of such a pattern.

Though the absence of markings may, in all probability, be con-
nected with concealed life-habits and with absence of light, it would
not do to consider these influences as the direct and unavoidable
causes of the deterioralion of the pattern. For the pattern is evidently
able also to persist hidden under the pupal sheath, though in some
forms it is retained much clearer and more complele than in others,
without our being able to find an explanation for this difference.

Now what holds good for the wings inside the pupal sheaths,
will probably also apply to those sheaths themselves. Taking this
inference for granted, we might expect, that also in some of those
Lepidoptera, whose pupae conceal themselves in hidden spots, the
original colour pattern, on the body as well as on the wings, might
have been more or less preserved.

This turns out to be really the case, as I found when studying
the pupae of Chaerocampinae amongst Sphingidae, and of several
genera of Geometridae. In contrast with the majorily of the genera
belonging to these families, whose pupae are black, brown, yellow

5

Proceedings Royal Acad Amsterdam. Vol. XXI.
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or white all over, the genera in question show a well marked and

regular design of black markings on a light background. Yet the
majority of these pupae certainly live under nearly similar circum-~
stances as those of their relations, i.e. concealed in the earth, in -
cocoons or between leaves. .

It is worth remarking that precisely the Chaerocampinae do not
hide in the earth for the object of pupation, as many other Sphingidae
do, but remain on the surface and there construct a coarse cocoon
of small lumps of ‘earth glued together with threads.

In the same way many Geometridae do not pupate inside the
earth, but above it; their tissue often being so loose, that the pupa
may be seen inside. I suppose that this may be the cause of-the
colour-markings on these pupae persisting, whereas those on their
near allies have disappeared by obliferation in consequence of total
darkness.

Yet the Chaerocampa-pupae in so far undoubtedly show the
influence of their concealed habitat, as their markings not only are
variable in the highest degree, but also show a marked tendency
to obliteration. In this respect they agree with the primordial design
on the imaginal wings inside the pupal sheath, and also with the
maculated pattern of those butterfly-pupae, in which the original
colour-mosaic is replaced by a sympathetic general hue, e.g. the
uniformly green pupae of Pieris napi, on which the identical
spots as on /P. brussicne, may easily be defected though much
smaller and less sharp than on the latter (comp. vaN BrMMELEN,
Phylogenetische Bedentung der Puppen-Zeichnung, and ScHIERBEEK :
The significance of the setal pattern in caterpillars and its phylogeny).

Therefore ihough the colour-design of the Chaerocampa-pupae
shows deep traces of obliteration, it nevertheless is clear, ihat this design
is founded on the same groundplan as that of butterflies. In my just-
mentioned paper [ have proposed a system of names (comp. fig. 6
on p. 115), according to which seven chief ranges of spots might
be distinguished, called by me the dorsal, dorsolateral, epistigmal,
stigmal, hypostigmal, ventrolateral and ventral rows of spots. In his
essay Dr. ScmrusBrek has pointed out, that the names of W. MiLLER
and WEIsMANN, who use the expressions supra- and infrastigmal,
have priority.

These rows of spots may all be met again on the pupae of sundry
species of Chaerocampa as well as on those of Deilephila (e. g.
euphorbia and elpenor) in various degrees of clearness and
completeness. '

No less striking than this correSpo'ndencq in colour-design between
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Sphingidial and Rhopaloceran pupae, is the connection between the
markings on the pupae of the Sphinges and on their caterpillars
and imagines respectively. Among the material at my disposal 1
found this similarity most distinctly marked in Deileplila celerio,
as far as general completeness goes, though for certain details or on
special parts of the body, other vrelated forms sometimes showed
the similarity still better and more complete, or in a more original
form, as | hope to point out in a following communication.
Though I still lacked the occasion to extend my investigations to
living catecpillars in their different instars, or to the development
of the pupal skin beneath the last larval coat, or the imaginal
epidermis inside the pupa, I do not doubt a moment but these
. transgressive stages will strengthen my conclusions as to the compara-
bility of larval, nymphal and imaginal colour-design, viz. that all
three are simply modifications of one and the same ground-plan,
which manifests itself clearest in the pupa.

Groningen, April 1918.
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Physics. — “Calculation of some special cases, in BINSTEIN'S theory
of gravitation”. By Dr. GusNxar Norbstrom. (Communicated
by Prof. H. A. Lorentz).

(Communicated in the meeting of April 26, 1918).

As an application of the theorems deduced in two preceding papers
for Emstrin’s theory ') of gravilation, we shall now calculate the
gravitation tield and the stresses for some special stationary systems
with spherical symmetry. '

First the state at a surface of discontinuity will be investigated.

-

_ § 1. Introductory formulae.

In a field with spherical symmeiry a surface of discontinuity
pecessarily is a sphere. Thie surface will be considered as the limiting
case of a layer of finite depth, and we shall only have to pay attention
to such surfaces in which in the limit some component of the material
stress-energy-tensor increases above every arbitrary limit so that the
line-integral across the layer remains finite. In general at such a
surface of discontinuity there evidently works a surface-tension P:

3

P:u'mfz’,jdr,. N 1)

1g—1 =0,
n

where r, denotes the inner radius of the layer, and 7, the outer one.
The radical component of the stress-tensor & on the contrary we

shall suppose never 1o pass every arbitrary limit; in other words
we assume that:
73

lim f’::;dq-:o. N €) |
0

Pq—11==

n
First we shall consider a general surface of discontinuity and
-only afterwards we shall introduce special assumptions. We start
from the first and third formulae (38) I and trom (39) 1. (From these

three formulae the second formula (38) I may also be derived, but

1) G. NorbstréM, On the mass of a material system according to the gravitation
theory of Ewsrewn These Proceedings XX, 1917, p. 1076 (cited further on as )
and: On the energy of the gravitation field in Ewsrem’s theory. These Proceedings
XX, 1918 p. 1238 (cited further on as ).
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we do not need this). The system of 'coordinales will be fixed by the
conditions:
v=r, Vviz. p=r . . . . . . . . (8)
Putting further:
(Szl/TgT:uwT, Y ()]
and applying a simple transformation, we can write for the mentioned
starting formulae:

__(1-,-27—)+1_7xT N ()

737(1_?)‘=7-=x1'§,. N ()

aT,
(7)

dr

These formulae hold for each stationary gravitation field with
spherical symmetry; the system of coordinates only is determined
by the condition (3). The quantities % and w determine (when
p=1) all components g,, of the fundamental tensor according to
the formulae (25) I.

When T,* is given, the equation (6) determines » as a function
of 7. By integration across a layer which afterwards by a passage
to the limit is changed into a surface of discontinuity with
radius 7, = 7, = R and after division by R we obtain

2 " w' & I/
— (I =T +—(Ts — T))=
” w

N g

1 1
e —Ru« zz'meidr. N )

uxg uaa rg—r=0
"
This formula shows that w changes discontinuously at a surface
of discontinuity where

‘s
lim f T dr
rg—1,=0
”
differs from zero. Such a surface which moreover satisfies the condition
(2) will be called a material surface. The system of codrdinates might
be chosen in such a way that at the surface u changes continuously,
but then p would change discontinuously. In general at least one of
the space-components of the fundamental tensor changes discontinuously
at a material surface. With the aid of formula (5) we shall now
prove, that w on the contrary changes continuously at our material
surface, when only the condition (2) is satisfied. Equation (5) gives

{ ) 2 1
2’1_—_’_‘_(1—7-%1",)—_, C e (9

24 r r
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and by integration across the‘layer we obtain

logw —~— logw,* _f

We shall only consider gxavnahon fields in which « is every where
finite and when in the limit we pass to an infinitely thin layer the
limiting value of the integral on the right-hand side becomes zero
according to the assumption (2).

Now :we shall apply formula (7) and substitute in it the expréssion )

for = and the expression (6) for 7°‘. Multiplying further by

w

7 1 "
—(l—r 2T — —ldr . . . (10)
7

urdr
——, we find -

ur d.l'r
“dr. (11)

o
=2

*dr u?

This equation must be integrated over a layer and afterwards
we must pass to the case of an infinitesimal depth. In order to
obtain as a first term on the left-hand side the surface tension P
as defined by equation (1) we must moreover multiply by w. We
shall however not continue our general investigation, but rather

w (Th—Tr)dr 44 {ud(1—r ur’) u};__ii-1(1~i) ~T,

. consider two more special cases.

§ 2. Investigation of the state at a material surface.

First we investigate the case that at the limit 7T'* surpasses any
value, so that the right-hand side does not become zero, but that

-

TT remains finite, so that on both sides of the surface of discontinuity
r

T has the same value.
In (11) we first consider the part of the left-hand side which
after integration gives
s
. 1 d 1
. I:i— {u'(l—r'uT,.)—u};a—rr(l—;’-)dr—_—

___11 1 3 (1 2y T ’d‘ ] 1
= F{u (1—=r2Ty) ~ u} lr -5 (

<.

We have to calculate the value of this expression for the limit
r,— 7, ==0. In this limiting case r constant =, = r, = R, so that

we have z (1——)£=2H~
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We thus obtain

Ug

4
iim T I—R’xT:fd 1 ”du U, — U, 1 T
— U— e =1 — — R T ).
. _1:1n=o 2% R 2xR,) v 2% R uu,

u u .

Now we have treated one part of the left-hand side of (11) by
integration and by passage to the limit. Of the remaining parts of
this left-hand side those containing 7, remain zero at the passage
to the limit according to our assumption (2), u remaining moreover
finite. The part confaining 1", on the conirary does not become
zero. The rvight-hand side has the value zero at the limit, as we
have assumed 7', to change continuously at the surface of discon-
tinuity. Multiplying our equation still by w, which quantity we
have proved to change continuously at the surface, so that at the
limit it may be considered as constant, we obtain:

P:—Z—:C%(u,—ztl)(l'———l%u’———szfl':) . (12

Together with (8) this formula expresses the laws for a surface
of discontinuity of the kind we now consider. These formulae will
be applied to the special case that all matter that is present 1s
situated in the material surface. 7" being continuous, we have 1n

this case 77 = 0. Further we have according to (6) both inside and
outside the surface

r(l-%):const. r==R) . . . . (18

When =0, » cannot be zero, so that the value of the constant
within the surface must be zero. We thus find for r < R, u=1
and therefore also

w,=1. . . . . . . . . . (14)

Within the spherical malerial surface we thus have a euchdic
space. (This 15 of course true for every hollow sphere; the distri-
bution of mass and stress on (he outside only has spherical symmetry).
Outside the material surface the constant in equation (13) has not
the value zero, but a value,- proportional to the mass of the system
which is given by formula (15) 1I:

ima

m=—=—. . - . . . . . .« (lba)
%

We thus have for Uy
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For w we have at our surface:

— l/l “_° (16)
w=—4¢ R-—u’, . . - . . .

This may be proved e.g. by putling e =10 in formula (12) II
which holds outside our surface. Also by putting » = R we obtain
the value (16) at the surface, and formula (9) shows afterwards (as
within the surface w=1 and 7' = 0), that this constant value of
w holds also everywhere inside the material surface.

Introducing the expressions w%,, u«,, and w, we find for the surface
tension P

- ¢ T a\? .
P;~m<1_[/1—1_%) A 4}

This formula expresses the relation between the surface-tension,
the mass and the radius. Expressed in the usual units the surface-
tension is ¢P (comp. I p.1079). The constant of mass « is also con-
nected with the right-hand side of equation (8). After introduction
of the values of %, and w, this equation gives

rq

a=uR Um fy'idr. Coe e L (18)

rg—r=0
”

In the enclidic space inside the material surface we have not the
same velocity of light as al an infinite distance from our system,

but a smaller velocity
¢ I/l __f__
R

We thus have a representation of EinsTrIN’s idea on the influence
of distanl masses on the velocity of light in our part of the world.
Expanding the expression (17) for P in powers of e/R we obtain:

¢ L a? L b ' .
P:—m EY{;-—]_F]?%—"' . . . . (17‘&)
NewroN’s theory gives for c¢P:

km?
Pe=m— . . . . . . . (178
’ 167 B (7
where % is the NrwToNIAN gravitation constant:
' c*x
b= —.
8n
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Introducing in (17b) the expressions for % and m, we find for
P an expression, corresponding to the first term of (17a). As to the
terms of lower order the theory of EmsreiN agrees therefore with
that of NEwTON.

§. 3. Second example of a surface of discontinuity.

Now we shall consider another kind of surface of discontinuity
viz. one in which
- ra

lan fTidr:O e e e e e (19

rgq—r;=0
L4

but where 7, changes discontinuously. Such a surface of discon-
tinuity we have e. g. when an electric charge is spread over the surface.

Formula (8) shows that in the case in question u changes conti-
nuously at the surface:

Ug == U« 0 . e .. (20

Above we showed already by formula (10) that w changes conti-
nuously. _

This time too we must multiply formula (11) by w, integrate a
layer and pass to the limit of an infinitesimal thickness. As in the
last part of the left-hand side all quantities remain finite at the
limit, this part gives the limiting value zero. As further u and w
change continuously, we obtain

R . .
P= 5 uw (T, — Ti)s
or, introducing the components of the volume-tensor T
R .
P=-2-(zg—3::1). R 1))

The meaning of this equation is trivial. It expresses the equilibrium
between the surface-tension P at the spherical surface and the
normal force perpendicular to that surface, the magnitude of which is

3., — <., per unit of surface. The gravitation has evidently no
influence.
When on the surface we have an electric charge ¢ and inside the
surface no matter, we find (II, note p. 1240)
. . uw e
(37]-1 —_ 0, E’)ﬂ - .Sj-rﬁ.
Now we shall assume that neither outside the surface there is
any matter except the electric field, and we shall calculale the mass

‘ Coe 22)
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of the electric sphere. As was proved in I[ § 1 we have outside
the sphere
uw=—c¢ >R, .. 0 0L (23)

2
? 4 ¢
T =T =

8
As inside the sphere and at its surface w=1, we find-from (6)
by integration up to an upper limit » > R

1 ' 4 Ta % el -
l—— )= T = — — " %),
7‘( u’) x‘fr Tadr 8n7’+8nR (> £)
R
1 %xe » e’
—‘=1'—'—"—" -_— . . . . . . 25
u? 8n-Rr  8ms? (25)

A comparison with equation (11) Il shows, that we must have:
e’
8n R
and (15a) gives for the mass m -
. e
T 2R
The charge ¢ being expressed in electro-magnetic units (see 11
p. 1202) this expression for m is equal to the electro-static energy
divided by c*. Besides the electro-static energy no energy occurs in
- our system. That outside the electric body no gravitation energy, is
present has been proved already in 1l § 2. The last result says
therefore that neither in the electric surface any gravitation energy
is accumulated.

o =

(26)

m

§ 4. A spheve of an incompressible fluid.

This problem has- been treated already by ScawarzscaiLp, !) but
as the formulae (5), (6), and (7) lead us by another way quickly
to the same result, it may be allowed to develop these calculations
as shortly as possible.

That the medium is incompressible means that when at rest

L . )

Te=9o - . . . . . .. @7

is a constant characteristic for the medium. The fluid character of

the medium demands further that no tangential stresses can oceur,
so that we have

Tr=Th=—p, . . . . . . . (28

1y K. ScawaRzscuILp, Ueber das Gravitationsfeld einer Kugel aus inkompressibeler
Flissigkeit nach der Einsteinschen Theorie Berl. Ber 1916 p. 424.
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where the pressure scalar p') meanwhile is a function of the place
viz. of 7. The radius R of the spheve and the mass m and ¢ are
related by an equation which is found by integrating (6) from » =0
to r=R. As for »=0 w is not zero, while for r = E it has

the value ———1———\ (see Il equation (11)), we find

1—2
R

— Op

and therefore
m=gfxl® . . . . . . . . (29)

This shows that ¢ plays the part of density.
Integrated from =20 to an arbitrary upper limit » < R (6) gives
farther » as a function of . We obtain:
7 (l — i __“Q 7%,
u? 3

4

1
W=—— . .. ... .. (30)

X0 |

l——7
3

Now s and p have still to be detérmined as functions of r. The
quantities w and p are connected by equation (7). This gives
w dp
~+p=——> - . . . . - . (8]
w dr
so that

dw
—l+pn=—

This must be integrated. The integration constant is determined
by the fact that at the spherioal surface p=0 and

w:cl/l-—-}%: l/ R’ (see II equation (12)). We thus

obtain the asked connection between w and p:

W
w (o {—p):gcl/l-——%g-ﬁ’. N ]

Now p will be calculated as a function of 7. Introducing in (5)
the expression (30) for » and simplifying the equation we obtain

2l (1% =ir(g+3p) R 11
w 3 3

) We need not be afraid that this p will he confused with the quantity p which
in § 1 has been put equal to 1.
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!

We eliminate % between this equation and (31). In this way
[£

we find
2 dp N % rdr 0 (34
(e+3p)le+p 8 o - T T
3 -

The integration gives

o+ 3p L///’ #Q
log ——1 1 — — 7" = const.
etp 7 3

The integration constant has to be determined with the aid of the
condition that for r= R p=0. We therefors find

1— X0
o+3p_ 3 ;
°o+p B 0 (35)
-5 I

Thus the pressure-scalar p is determined as a fanction of r.
Eliminating p between this equation and (32) we obtain for w as
a funetion of r the expression:

¢ %0 %0
== 3’/ -—‘-——‘—R’—l/l—m-2 ... (8
w 2( 1 3 3" ) (36)

In this way we have perfectly determined the gravitation field
and the pressure distribution inside our sphere. The formulae we
obtained become identical with those of Scawarzscuip when for »
we substitute <

8
r= — SIN Y.
*Q
§ 5. On the gravitation field as it may be imagined to exist
wn the inside of an atom.

In the theory of atomic structure of RurHerrorp-BoHr we meet
with difficulties arising from the assumption that in an atomic nucleus
of very small dimensions there’exist units of charge which-— at
least when they are liberated in the form of electrons — have a
greater diameter than the atomic nucleus. As now HINSTEIN'S gravi-
tation (heory states that the space in a gravitation field when
expressed in natural units is non-euclidic, the question arises whether
this theory leaves the possibility of the assumption that the atomic
nucleus fills a greater “space with a narrow neck or perhaps a
space which crosses itself at a certain point. This question will be
investigated here. )
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We consider again a stationary system with spherical symmetry.
In the same way as above we may define the distance  from the
centre of symmetry by putting p =1 viz. by demanding that the
periphery of a circle with its centre at the centre of symmetry is
2 x r, when expressed in nafural units. If we do so in the case in
question, the state in the field 15 not a single-valued but within a
certain interval at least a more-valued function of ». It is therefore
useful to introduce a new radial space-coordinate of which the
quantities in the field are single-valued functions. As such a
coordinate the distance s from the centre of symmetry expressed in
natural units suggests itself. In order to specialize our discussion we
can prescribe a relation between the radius defined by the condition
p =1 and s and investigate afterwards whether this is in agreement
with a possible distribution of the components 7', of the stress-
energy-teusor.

As a trial we put

P

sﬂ
e = —_— 1 . ., .. . . (87
7 8(3‘13 ) (387

where a is a conslant,-and we choose the sign thus that a positive
value of » corrvesponds to a positive value of s. For small values of
s 7 and s are proportional and the three-dimensional space is dilated
when we come farther away from the centre (viz. from the point
s=0). For s=a r reaches however a maximum and when ¢
increases still further the space is contracted and crosses itself at a

point in the neighbourhood of s =V"3 a. For stll ligher values of
s the space is again dilated.

Before proceeding we still remark that in fact the sign of
r does not play a role. Inversing the sign of » in our fundamental
formulae (5), (6) and (7) and interchanging also the signs of dr and
w’ we find from the formulae the same values as above for all
remaining quantities. For this reason we take in (37) everywhere
the -+ sign, so that » is taken negative in the interval 0 < s <<V 3.

While the following discussions will be based on the fundamental
equations (5), (6), (7), we suppose u, w,r, I, Tf,, Ti to be functions
of s. As s is the distance from the cenire of symmetry expressed
in natural units we obtain, atlending to the meaning of the quantity
u (see 1§ 3)

ds=—udr, . . . . . . . . . (38)

As (37) gives by differentiation

s‘l
dr.—:(-;—l)ds. v e e oL (39)

a
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we find for «

L (40)
——1

That u is negative for s < a, does not cause any irouble, as the
fundamental tensor depends on u* only.

Now we must mniroduce m equation (6) the expressions (37) and
(40) for » and w. Introducing to begin with the expressions on the
left hand-side only we obtain

2 7 2
_S_;(_s__6>:wx7'i L (d1a)

Introducing the expressions on the righi-hand side too we find
for 7' as a fanction of s

P i '

The formulae derived here hold evidently only inside the material
system of which the outer boundary may be indicated by s =S.
In order that the space occupied by the system may cross itself at
any point we must have because of (37).

§>V3a

In the limiting surface s =S we have according to (40) » < 1.
In order that in that- surface u may pass continuously into the
value it has in the field on the outside, © must also in the outer
field be smaller than 1 for s =S. This follows also from formula
(11) II, when the system has only a sufficient great electric charge.
Further it does not matter that u would change discontinuously at
the boundary, if only this is a material plane as considered in § 2.

Formula (41) shows that in the interval ViE g <5< S T3 is
negative, which thongh somewhat startling is not at all absurd.
Further formula (41) indicates that Ti becomes infinite for s = V'3 a.
Within a finite extension there is however only a finite mass of
matter, which follows .from the fact that 9*’Ti is everywhere finite
according to (41).

The equations (40) and (41) for u and T4 involve together with
(87) that the fundamental equation (6) is satisfied. Now we must
still determine w, 7', and Tﬁ,’ as functions of s, so that also the
equations (5) and (7) are satisfied. As (5), (6) and (7) form the
complete set of field equations for a stationary gravitation field, we
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may choose for one of the quantities v, 7', and T4 an arbitrary
single-valued function of s. When also the expressions for », w and
7% ave introduced, the equations (5) and (7) determine now theiwo
quantities. All these possible material systems give —- if only the
distribution of 7T'i is the same — a three-limensional space of the
same curvature, because the formulae (25) perfectly determine the
space-components of the fundamental tensor (when p=1). The
curvature of the four-dimensional space-time continuum on the
contrary depends also on the distribution of 7', which quantity
according to (5) influences w. The tollowing simple assumptions
might e. g. be made to obtain a definite system : w = constant, 7", = 0
ov T7 = T/ (normal pressnre in all directions). Performing the
integration of (15) and (7), we might choose the integration constants
in such a way, that at the boundary s =8 w takes the value that
holds there for the outer field, for, as was proved in § 1, w changes
continuously into a surface of discontinuity.

The purpose of our investigation being reached no further calcu-
lations will be added. We have shown that EmnsrteIN’s theory of
gravitation really admits such a distribution of the stress-energy-tensor
T, that the (three-dimensional) space crosses itself at a certain point.
We can also prove without -difficulty, that systems can exist in
which the space filled with the matter runs out into a narrow neck.

It is still of some importance to investigate the action of the
electric forces within the space which 1s just dilated and afterwards
again contracted. We might e.g. mvestigate the state, when, with
constant 13, 1", T% for the non electro-magnetic matter, a point
charge was placed at the centre of symmetry. The gravitation field
will evidently change. We have not only to calculate this field, but
also the laws of the equilibrium and the motion of other electric
(point)-chahges in the new electric field. Here we must treat the
matter as perfectly permeable. These indications may however suffice,
which show already that FinsTeIN’s theory opens wide possibilities
to explain the state in the inside of an atom.

-84 -



Chemistry. — “Determination of the Configuration of cis-trans
womeric substances”. By Prof. J.- Bogstxkex and CHr. VAN

Loox.
(Communicated in the meeting of May 25, 1918).

1. The appearance in a number of isomers of unsaturated and
cyelic compounds, has undoubtedly been a momentous incitement
to the acceptance of van r Horws hypothesis on the carbon atom,
which is supposed to lie in the centre of its valencies.

The permanence of the optical aclivity at moderate temperatures
necessitated the attribution of a rather great stability to these
valencies. Obviously in cyclic molecules the same rigidity had to be
accepted, and also around the double bond.

Apart from objections that may rise against the substance of this
supposition — objections connected with hypotheses on the internal
structure of the atom — it must be granted that a very elegant
interpretation has been given of the existence of the aforesaid isoiners.

In fact, only very seldom cis-trans isomerism could not be observed
when it was to be expected according to this theory, while on the
other hand, if identical radicles are united to one of the unsaturaied
atoms or members of the ring, and therefore no isomers are to be
anticipated, they were indeed not to be found.

2. This interpretation of the existence of cis-frans isomers is
little to be doubted; however, it is much more difficult to determine
which isomer has the cis- and which the trans-configuration.

By a happy coincidence the classical case of cis-trans isomerism,
viz. that of maleic and fumaric acid, has offered, also in this respect,
the greatest certainty.

H—C—COO0H HOOC—C—H

I : |
H—C—COOH H—C—COOH
maleic acid fumaric acid

The cause is evident: the configuration determination here is based
almost exclusively on properties that may be deduced from the
molecules themselves.

The determinalion namely .of the configuration of geometrical
isomers takes place along different lines.
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First of all the configuration may be deduced from properties
that are to be anticipated in consequence of the reciprocal influence
of the groups in the molecule; this is the surest way, if enough
(critically examined) data for comparison be available.

Among these properties -are: dissociation constants of acids, for-
mation of anhydride, resolution into optical antipodes, etc.

The formation of complex compounds is to be included in so far as the valencies,
which are the bearers of cis-trans isomerism, are not attacked.

This is seldom easily established, since the structure of complex compounds is
uncerlain. Probably we are authorized to use this method i ip judging the cis-trans
isomerism of cyclic glycols by the influence on the conductivity of boric acid,

| because the boric acid-radicle is united to the oxygen atoms

—(0—=0 and not to the carbon atoms, which determine the isomerism.

f BOH It is doubtful if it may be applied to cis-trans non-saturated

—C—-0 acids; if the formation of complex metallic compounds must

l be represented by the following formula: )

H
H-—-C—R HO—C--R
I + Hg0 = |
H—C—COOH H—C—(ITO
I
Hg -0

or anyhow, if it is to be supposed that the double bond is altacked, we can rely
upon this method as little as on all others, by which the bearers of the isomerism
are affected (see below).

Now the contrast between the two groupings H and COOH, which
are bound to the very simple skeleton of maleic and fumaric acid,
is exceptional; besides, the two carboxyl groups may enhance each
other’s acidity or react with one another under anhydride formation.
Also a muiual repulsion of the COOH groups is to be anticipated,
from which could be deduced that fumaric acid is move stable than
maleic acid.

The particularly simple st1uctule of these acids, by which the
carboxyl groups take the leading position, has rendered the above-
mentioned considerations so successful in determining the configurations.

As soon as this reciprocal influence fails or the structure becomes
much less simple, we have no longer any certainty.

We will examine a- and tso-crotonic acid in this respect:

1. The dissociation constants are: a-crotonic acid 2.10-5.

180~ ,, 3,6.10-5,

By comparing propionic with acetic acid it could be deduced that
a methyl group weakens the acidity, so that in e-crotonic acid the
‘methyl group must lie on the same side as the acid group; in fact
acrylic acid (4=15,6.10-% is dissociated in a higher degree than

6

Proceedings Royal Acad. Amsterdam. Vol. XXI.
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both crotonic acids, and dimethyl-acrylic acid (# 7 .10-6, according
to preliminary determinations of Mr. P. E. Virkape, Dissertation
Delft 1915, 274 Note, p. 66) is weaker still. Also citraconic acid is
much weaker than maleic acid.

Still one ought to be cautious, for iso-butyric acid is somewhat
stronger than propionic acid (1.44 to 1,31.10—5) and the dimethyl
succinic acids are much stronger than succinic acid (1,9 and 1,3 {o
0,6 .10—%). :

2. Formation of an anhydride is not possible and therefore cannot
help us.

3. Formation of complex compounds: BuLmaxy has shown that
maleic, citraconic and allo-cinnamic acid form salts with mercuric
acetate, which are soluble in sodium hydroxide, and from which the
original acids could not be regenerated by elimination of mercury;
in this case p-hydroxy-acids were formed and in consequence B.
surmises that the salts were complex mercury salts of these hydroxy-
acids, which are formed thus;

H—C—COOH HO—CH—COOH
I - |
H—C—COOH H C—C00
|/
Hg

In the same way e-crotonic acid remained in solution in the form
of a complex mercury salt, which could be precipitated with alcohol.
From this salt g-hydroxy-butyric acid was obtained; in consequence
one deduces from this too the cis-configuration for ordinary crotonic
acid with the higher melting point.

In order to corroborate this result we have subjected uso-crotonic
acid to the same operation and obtained an insoluble basic mercury
salt, which, after decomposition by means of H,S furnished a mixture
of is0- and a-crotonic acid.

It may be mentioned in passing, that a-crotonic acid must have been formed
during the elimination of mercury, for this acid — so far as it originally was
present in the 4so-crotonic acid — was kept in solution as a complex salt and
because H,S does not, ‘or at least extremely slowly, change free éso-crolonic acid
into a-crotonic acid.

The coincidence of the conclusions from the dissociation constants
and from the researches of BuLMaNN gives some certainty to the
configuration of the crotonic acids. It follows that the formula of
these complex compounds is probably different from the one that
has been proposed by Bnrmann. However, this method of discernment
is valid exclusively for ef-non-saturated acids; other ethylene deri-
vatives, among which are the esters of isomeric acids, cannot be
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distinguished in this way, because they all seem fo form complex
compounds with basic mercury salis?).

From the dissociation constants of angelic and #iglic acid we can
at the very best suspect that in the first acid a hydrogen atom is
gsituated on the side of the COOH group, in the other one of the
methyl groups.

The contigurations adopted here are supported by the consideration
that the most stable acid will be the one in which theﬁ relatively
positive group is situated as near as possible to the COOH group.

H——?—COOH HOOC—C—H 4 CH3—~C—H H——(li-—CH3 ’ CH3;—C—H H—C—CH
H-—(|I——COOH H——PJ— COOH H—(@—COOH H—(!I—COOH CH3—(12|——COOH CH3—(‘T‘.-——CO
maleic acid fumaric acid |iso crotonic acid ~-crotonic acid | angelic acid tiglic acid
forms anhydride no anhydride - — — —
k=12X10—2 9.3 104 3,6 X 10—3 2.0 10-5 5105 13X 10—5
complex Hg. salt - 0 0 -+ — —
stable stable stable

About oleic and elaidic acid there is utter uncertainty, because
the dissocialion constants are not known; it can only be suspected
that in the more stable elaidic acid the relatively positive carbon
chain is likely to lie on the side of the carboxy! group.

With ecyclic cis-trans isomers the importance of cis-trans situated
“radicles in relation to the ring becomes less as the last widens.
[The conception of . von Barver that the angle between the direc-
tions of the affinities of trans-situated radicles decreases as the ring
widens, is not incorrect; only voN Barver deduces this decrease
from sterical considerations and then it cannot be so very important];
this consideration lessens the certainty of our conclusions about the
configuration still more. But now here we meet with the very happy
circumstance, that the trans-compounds frequently are asymmetrical
and therefore can be resolved into optical antipodes.

If this argument is annulled, as in the case of the hexahydro-
terephtalic acids, which are both symmetrical, or if a resolution into
optical antipodes has not been tried, there is no certainty at all.
This may be backed by the following table: (See following page).

We see that the formation of anhydrides, the most important
argument with wmaleic acid, has all but lost its significance in the
case of the cyclohexane derivatives, as both 1-2-dicarboxylic acids
and neither of the 1-4-acids form an anhydride.

1) B. 83 1340, 1641, 2692, (1900); 34 1385, 2906 (1901), 35 2571 (1902); 48
568 (1910).

6%
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k Anhydride | Resolvable
cis-cyclopropane-dicarboxylic acid 1.2 | 4 > 10— + -
trans » s 12121 X104 — +
_cis-cyclobutane-dicarboxylic acid 1266 X105 + not investi-
trans " , 12728 X105 — i gated
cis-cyclopentane-dicarboxylic acid 1.2 | 1.58 > 105 -+
trans y , 12112 X105 — % "
cis " , 1354 X10-5 -+ |
trans » , 13]50 X10-5 — % ?
cis-cyclohexane-dicarboxylic acid 1.2 | 44 X 10-5 -+
trans » » 12162 X105 —+ ~+
cis ” w 130)  not + not investi-
trans ., , 13 gdetermined _ % gated
? cis " n 1413 X10-5 - % sym-
? trans y , 1446 X10-5] — metrical

~

This is the more true of the dissociation constants, whereof the
differences in the case of the cyclopentane-dicarboxylic acids ave
small already, but leastways such that from the acid with the
greater consiant an anhydride is known.

About the cyclohexane-dicarboxylic acids in this respect we grope
in the dark. The 1-2-acid, which has been resolved into optical antipodes
and accordingly is undoubtedly the trauns acid, is stronger than the
cis acid; both acids easily form an anhydride. If in this case it
should have Dbeen unknown which acid is resolvable, we should
probably have come to a wrong conclusion.

With the 1-4-dicarboxylic acids, the classical case of cyclic cis-
trans isomerism, there is no certainty at all; the one with the highest
melting point, which von Barysr hasdenominated trans, has the highest
dissociation constant aund therefore one should perhaps call it the
cis acid. As it as little forms’ an anhydride as the isomer and neither
can be resolved into optical antipodes, the only remaining argument
in favour of the current conception is the greater stability; an
argument that should be termed weak, considering the slight solubility
and the high melling point.

Still the case is not entirvely hopeless; afler having discussed the
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chemical methods that can serve {o determine the configuration, we
will demonsirate that here too there is a way out.

It is evident that, if less characteristic radicles are bound to the
nucleus, as in the cyclohexanediols 1-4. or the’ hexahydro-toluilic
acids, with which no discernment by resolution into optical antipodes
is feasible, it seems impossible to determine the configuration.

Here the difference which appears in the formation of complex
compounds, for instance of the diols with boric acid, has proved
promising; this has been evidenced by the configuration determination
of some sugars, bat on that point we will not expatiate here.

3. Secondly the configuration may be deduced from what happens
if the double bond is saturated; the so formed compounds are diffe-
rent as they originate from the cis or from the trans isomer.

The configuration may also be.inferred from the way of formation,
either from saturated compounds by elimination of parts of the
molecule, or from acetylene derivatives by partial saturation, or by
substitution of groups in compounds, of which the configuration
is known.

The last mentioned modes of determination, by which the bonds
between the atoms are vigorously attacked, have often caused con-
fusion, by which their trustworthiness has been impaired. When
applied to fumaric and maleic acid, they at first seemed to answer
excellently; we can still assert with-satisfaction that fumaric acid
is changed by KMnO, into racemic acid and maleic acid into meso-
tartavic acid.

Only, the brilliant researches of WisLickNus about ihe bromination
of both acids, followed by elimination of one molecule of HBr, by
which fumaric acid furnishes first racemic dibromo-suceinic acid and
then bromo-maleic acid, and maleic acid first meso (is0-)dibromo-
suceinic acid and then bromo-fumaric acid, have turned ont to be
correct only as far as the final products are concerned.

McKgenzie ') and Bror HorMBere®) namely have demonstrated
that Zso-dibromo-succinic acid with the lower m. p. can be resolved
into optical antipodes and this entirely overthrows the deduction.

As well at the addition of bromine to both acids, as at the elimi-
nation of HBr, exactly the reverse occurs from what we could expect,
- and this inversion appears to be rather common.

By the action of PCI, on aceto-acetic acid two isomeric B-chloro-

1) Proc. Chem. Soc. 1911, 150.
%) Journ. pr. ch. 84 145 (1911).
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crotonic acids arve formed, one of which is volatile with steam.
This one has a dissociation constant =— 9,5.10-5; the other acid
has k =14,4.10—5. From this it may be concluded with some
certainty, that in the first mentioned acid the chlorine atom lies -
farther from the COOH group than in the other. Now the relatively
weaker acid on reduction furnishes the relatively stronger iso-crotonic
acid; on the other hand the relatively stronger -chloro-crotonic
acid gives rise to the velatively weaker a-crotonic acid; in both
cases an inversion must have occurred and we come to the conclu-
sion, as well as in the series maleic acid — iso-dibromo-succinic
acid — bromo-fumaric acid, that an inversion has taken place atthe
attack of the valency, which governs the configuration.

By -catalytic hydrogenation only of phenylpropiolic acid in the
presence of colloidal platinum 80 °/, of the theoretically possible
amount of allo-cinnamic acid was formed; on the other hand,
by the action of zinc dust and atetic acid, resp. alcohol, ordinary
cinnamic acid was almost exclusively obtained'). As the catalytic
hydrogenation of acetylene compounds appeared to warrant some
certainty, we applied it to tetrolic acid, which ought to give chiefly
a-crotonic acid.

However during a microchemical investigation, which was executed
some years ago with the collaboration of Miss*O. B. van peEr WEIDE,
a-crotonic acid could not be found among the reduction products of
the sodium salt of tetrolic acid.

By hydrogenation of the free acid under the influence of palladium-
sol, crotonic and #so-crotonic acid are formed in the proportion of 2 : 1.

We see, therefore, that no move than with the reduction of phenyl-
propiolic acid, this chemical method is capable of giving us sufficient
certainty about the configuration. ’ *

4. To cyclic cis-trans diols also this unsafe mode of determining
the configuration is generally not applicable, because the correspondent
satarated diols cannot be obtained.

The hydro-aromalic glycols form an exception, as they can be
obtained from aromatic diphenols, which may be considered as cis
diols. Of course this case is not quite to be compared to the hydrogen-
ation of acetylene compounds; it is known with rather great certainty
that the OH groups of the phenols are situated in the plane of the
benzene nucleus; on the other hand it is to be supposed, considering

1) Houeman and Aronstein B. 22 1181 (1889): Liesermany and Trucasdss B. 42
4674 (1909); E. Fiscuer, Ann. 386 385 (1912).
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the number of isomers, that in acetylene derivatives the substituents
lie in a line with the carbon atoms of the acetylene skeleton.

The researches in this field, wviz. the catalytic hydrogenation of
diphenols with the aid of nickel, show, that a muzture of the cyclo-
hezanediols is formed; a reduction under the influence of platinum
or palladium at a low temperature apparently has not been executed yet.

Now there are general syntheses of these diols, viz. from the non-
saturated cyelic hydrocarbons, either by direct osidation by KMnO,
or via the oxides; we have made use of them to prepare the hydrindene-
diols. According to current ideas the cis diol should be formed
exclusively by this reaction?):

) OH
H
0 o
-
H
H H
Fig. 1.

Indene oxide was hydrated as mildly as possible, that is to say
at the ordinary temperature in aqueous solution with a very little
acetic acid, and still we could isolate a considerable proportion of
the trans isomer too. At this hydration likewise a valency of one of
the carbon atoms that determine the configuration, is violated and
a partial inversion {akes place.

In judging the cis-trans isomerism in this case, the determination
of the acidity is left out for the present, as the methods of investi-
gation are not sensitive enongh. The forming of an anhydride too
cannot yield a good result here, because the bearers of the stereo-
isomerism are brought into play, which is not the case with the
formation of anhydrides of acids, as of maleic or cumaric acid.

Here are only left 1. the resolution into optical antipodes, but
this will not be easy and has never been successfully accomplished ;
2. the formation of complex compounds, which has proved effectual
with the sugars, as we came to know by it the configurations of’
a- and B-glucose, of a- and B-fructose and of a- and B-galactose. In
the case under consideration too the last method has been to the
purpose; the isomer melting at the lower temperature namely,
increased the conductivity of boric acid, on the other hand the
isomer with the higher melting point diminished it in some degree,

1) Versl, Kon Akad. v. Wet 26, 1272 (1918).
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and from this the cis configuration could be deduced for the first
mentioned diol. If this method had not come to the rescue, the case
would have been almost hopeless, because a resolution into optical
antipodes cannot enlighten us:

o) 4 - oK oF

oK

For 1t is evident that both isomers are asymmetrical and therefore
can be resolved into optical antipodes. .

It has been our intention to draw attention to the fact, that as
soon as valencies are attacked of atoms which determine the stereo-
isomerism, the arrangement of the groups runs a risk of being
changed. Of course the phenomenon going by the name of WALDEN’s
inversion ought also to be included here. In many cases the possible
isomers are both formed and very often principally the one, which
we should not expect.

This will not occur only with reactions as have been mentioned,
by which stereoisomers are formed; in consequence of the formation
of stereoisomeric substances, which can distinetly be discerned, the
pbenomenon was observed here as well as with the inversion of
WarpenN. Buat it stands to reason that it is of a general character
and that we may compose the rule:

i}

During a chemical reaction, by which atoms are added, eliminated or substi-
tuted, there is always a chance that the arrangement is changed of the
valencies of the atom or of the atoms, at which the reaction takes place.

It deserves further consideration to establish whether the arrangement
around adjacent atoms or around remote atoms is disturbed, when
such a change occurs with the valencies of some atom.

This is not probable fortunately, as it would highly aggravate
our task to determine the configuration of compounds, for every
relation between optically active substances would fail. Besides the
formation of anhydrides of maleic or citraconic acid would be worthless
and the differences, that may be observed in the influence of compounds
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on the conductivily of boric acid, would lose all significance for the
determination of the configuration.

Therefore, if this improbability be excluded and if we assume that
an attack of the valencies somewhere in the molecule leaves unaltered
the arrangement around the atoms, which are not immediately
concerned, then we shall be able to obtain a solution in some
apparently hopeless cases.

We have seen that with the two isomeric hexahydro-terephtalic
acids a comparison of the dissociation constants does not answer
the purpose; neither is resolvable into optical antipodes and besides
from neither an anhydride could be obtained.

Of the A*-tetrahydro-terephtalic acids (see accompanying diagrams)

i COOH cooH COOM

COOH H H Vel
Fug. 2.

the trans acid should be resolvable into optical isomerides and it is there-
by to be distinguished from the cis acid, which cannot be resolved.

Now 1t should oe possible to change these acids into the corre-
spondent hexahydro-terephtalic acids by catalytic reduction, without
altering the arrangement of the carboxyl groups and therefore the
configuration of the last mentioned acids may be definitively established.

eA case bearing an essential relation to this one, is:

Benzoquinone furnishes maleic acid by careful oxidation; from
this we may conclude with rather great certainty, that this acid
has the cis configuration, as this arrangement is contained in the
quinone molecule and because at the elimination of the —CH = CH-
group, the bonds that bear the isomerism, are not interfered with;
if in the case of maleic and fumaric acid we were as badly equipped
as with the hexahydro-terephtalic acids, then this mode of formation
would have been of preponderant importance for the determination
of the configuration.
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Chemistry. — “The Addition of Hydrogenbromide to Allylbromide”.
By Prof. A. F. Horreman and B. F."H. J. Marraus.

(Communicated in the meeting of May 25, 1918).

In the many cases that in wy laboratory I had trimethylene-
bromide prepared by the introduction of HBr gas into allyl-bromide,
I was struck with the fact that now an almost quantitative yield
was obtained, now a much smaller yield, without our being able to
indicate the cause of this varying yield. When now my assistant,
Mr. pen Horrnanxper, had obtained almost exclusively trimethylene-
bromide in this addition in a very brightly lighted room, whereas
a few years ago Mr. Wurre observed by the side of it considerable
quantities of a product that boiled at a lower temperature (propylene
bromide) in the ordinary work-room, the supposition suggested itself
that daylight exerts an influence on this. Mr. MarTRES undertook to
inquire more closely into this matter.

For this purpose a quantity of allyl-bromide was divided into two
equal parts; one part was poured into an ordinary bottle, the other
in a botile that had been perfectly blackened on the outside with
lacquer. The liquid in the ordinary bottle was exposed as much as
possible to the sunlight during and after the introduction of HBr.
Every time that no HBr was absorbed any more, it was closed, and
left to itself till the next day. After some days no further HBr was
absorbed. The blackened botile was treated in the same way. The
absorption of HBr took place a great deal more slowly here, so that
the process had to be continued for some weeks, before complete
saturation had been attained.

When the contents of the two bottles was afterwards subjected to
distillation, the preparation from the ordinary bottle almost entirely
went over at constant temperature and at the boiling point of
trimethvlene bromide. After distillation in vacuum its boiling point
amounted to 167°.1 for 760 mm.

The contents of the other bottle, on the other hand, presented a
very considerable boiling range, viz. from 100—190°. On fractionated
distillation a fraction of about 7 gr., guing over hetween 140°—150°,
was obtained, “while between 155° and 165° a fraction of 22 gr.
went over. The former had about the specific gravity of propylene
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bromide, viz. 1.9259 at 23°.2; the latter had the spec. gr. of
trimethylene bromide, viz. 1.9801 at 23°.2. Between 100° and 105°
a few drops had also been distilled, which were still unchanged
allyl-bromide, as appeared from this boiling point. Hence the
conclusion is that on addition of HBr to allyl-bromide in bright ¥
daylight trimethylene bromide is almost exclusively formed; in the
dark, beside this compound as chief product, also pretty much
propylene bromide.

Amsterdam, May 1918. Org. Chem. Lab. of the University.

-96 -



Physics. — “The variability with time of the distributions of Emulsion-
particles”. By Prof. L. S. OrnsteiN. (Communicated by Prof.
H. A. Logrentz). ‘

(Communicaled in the meeting of March 31, 1917).

SmorucHowskl discussed this problem in different papers and
gave a complete survey of his work in three lectures ad Gottingen. )
He deduced a formula for the average change of the number of
particles in an element, which at the moment zero contains n particles.

This formula is: )
Ly=@—n)P, . . . . . . . @1

where P is the probability that a particle which lies in the element
at the time zero. may lhave come outside in the moment ¢; whilst
v is the number of particles which at a homogeneous distribution
over the whole volume would come to lie in the element in con-
sideration. .

Also for the average squdfe With & given number of particles
n at the time zero SMOLUCHOWSKI gives a formula; viz.

Ln=[n—v)+n] PP+ @4+v)P,. . . . (2
from which follows — if the average also is determined according
to n —

A* =2y P.

These relations are deduced by SmorucHOWski with the help of
calculations of probability, which ‘“nach Ausfithrung recht kom-
plizierter Summationen (yield) merkwiirdigerweise das einfache
Resultat”.

It goes without saying, that it must be possible to attain such
a simple result also by a less complicated method. That this is indeed
the case I want to demonstrate in this paper. At the same time it
will -be possible to give some extension to the result.

1. Let us think the space divided into a great number of
equal elements, which we shall mark by the indices 1 . . » . . &.
Let there be at a given moment ¢=0 n, . . n, . . ng parlicles in

) Cf. Phys. Zeitschr, 1916, p. 557 and also Phys. Zeilschrift X VI 1915, p. 323.
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these elements. After a time ¢ has passed these numbers have become

changed. Let py; then represent the chance that a particle which

at the time ¢=0 is in the element 1, is found at the time ¢ in

the element %, and let p,; represent the probability of the reversed

transition. Then, if there is no predilection for any direction in the

movement of the parlicles, it goes without saying that P = pa.
=k

Further = p,; = P if the sum is taken according to all values 2

=1
except % = 2, for the sum represents the probability that the particle
has come after the time ¢ in one of the £—1 other elements, i.e.
outside the element x.

If an element 2 contains n, particles the number of particles
having passed from 2 to x in a given case will be A,,. I shall now
calculate first the average values of 4;,, A%, and A, A,,. The
number of cases where A,, has the value s and thusn,—s particles
have remained in the element, amounts to:

—?L!,jpus L—p) M= . . .. . . 3
,-—8!8!

n
as is easily seen; to determine the three average-values (his expres-
sion must be multiplied by s resp. s* and summed from zero to n,.
Then after quite an elementary caleulation of these finite sums, we
find

D) =pi =) +Fpons o o . o . . (5)
and

A,=p,m . . « . . . . . @

To determine the average of a double prodact we need only replace
(8) * by wp and s by ¢ (where ¢ represent the number of emitted
particles in a definite case).

If the result obtained in this way is multiplied by (3) and summed
with respect to » from O to n; and with respect to ¢ from Oto n‘;,
we find

b, A///:}?//_P‘uy ARy 0 » v o 0 ., (6)

With the help of the relations (4), (5) and (6) SmonucHOWSKI’S
formulas can now immediately be deduced. The change ,4,, i.e.
the total change of the number of particles in the element x may
be represented by

nA/:Al/+A2/--.+Ak/——(A71+...A,k). . e (7)

Now we can write &, for 4,1 ... 0., ie. the total number of
particles that leaves the element in the time i.
Then we must delermine the average of (7) with constant n,,
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while all possible values must be given to the number n, ...n, in
the other elements. If now we first take the n,...n, constant and
determine the average, we find

WD, =pun + -0 Py —n P
If then we proceed to determine the average accordington,...n,
and keep in mind that 7, =...=n, = », we find
WD =0 (P e PR — M P= (v —n)P.
In order to find ,A,* we proceed in quite an analogous way, we
bring (7) into the square. Then we find
A= A4 .. 4"+ A2
+2A1, Doy + ...
— 24, (8, A . D). T
If now we apply (5) and (6) and determine the average with
given n,...n; and n,, we find

N (n1* — ) p® + px1 + ... + P, —n) 4 a0, P
+ 2 ny ne p1, pac + ..
—2n -P(P1, n -+ Pk, ng) .
Here the average must be determined keeping constant n, with respect
ton, etc. And we must bear in mind that n* =n,*=...n =v'+»?),
that further n, = » and n,n, = »*. Consequently we find

WBA= 0 +0)(r’+ . )
+ 29 (prepac + ... )
—7P (th’ +. . )
—2nv P+ P(n® —n) 4 nP.
The three first terms together yield P*»*. The result becomes thus
;:_Z—;,, ={(n—v) PP—n* P} 4 (n + v) P,
from which by determining the average according to n the relation

AP =9p P
arises.

2. The extension of the given formulae may be obtained to the
case that the deviation of density in the various elements of volume
are not independent, where however concerning the emission of the
particles we must still presuppose independence of the events.

In order to introduce the correlation of the densities I make use
of the function g, which was defined by Dr. Zermixe and myself. ?)

1) We have n1=u+§,nl_2= B2y S32 =84y

Ny = (v - 37) (v + &) = v2 v (31 + 35) + 37 3 = 1~
%) Chance deviations in density in the critical point of a simple matter. These
Proc. XVII, 1914, p. 582.

-99 -



95

If d, is the deviation in density in a point =0, y =0, z=0,
then we get for the deviation of density ¢ in a pont 2, ¥, z:
d=g(@y,2)0,dv . . . . . . . )
where dv is the element of volume.
Further
30 =gy 9d dv=g(@yze . . . . (9
where ¢ is the number of particles per unit of volume.

~

We now have
Dy =np1, + ... .0 ppy —n P,

Now 7, =v» - d, dv,, if then we introdace (8) and consider

— Ny

v
p,, as function of wysz bearing in mind that d, = , we find

v

n:A:l == (‘D~1l) { P +fg)’ P dv }

The influence of the second part may become considerable with
a strong correlation

Also in determining ,A?, the correlation can be (aken into con-
sideration. Then 1n the first place we get the old terms, but moreover

(9) yields still new terms in n,’, n, and 72, 7, n.. These terms are:
2v(v—n) fp;, Gz AV
== poav
—2 nP(v—n)fp;,g),dv

+ 2 vfp,, Pux Gop B0y, d vy,

If then A*®, is determined, only the last term remains and a part
of the term before last, so that we get

E:Q”(P—f— Prr Ppr Qov dv‘udvl

‘l‘fp« Qi d ‘D)-

These considerations may also be applied, as least approximately,
to the changes, which accidental derivations in density undergo in
result of diffusion. Qur formulae show then that close to a critical
point the deviations in density as a result of their correlation, are
not only stronger on the average, but also more strongly changeable.

Utrecht, March 1917. Institute for Theoretical Physics.
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Physics. - “On the Brownian Motion”. By Prof. L. S. OsnstrIN.
(Communicated by Prof. H. A. Lorentz).

(Communicated in the meeting of December 29, 1917.)

Von SmorucHowski ') observed that the function which gives the
probability, that in the Brownian Motion a particle accomplishes
a definite way in a given time is a solution of the equation
of diffusion. For cases in which an exterior force also acls on
the particles, he deduced a differential equation for the above-
mentioned function of probability by a phenomenological method.
Some time after Mr. H. C. Bureer *) deduced this differential equation
following a method, which takes the essence of the function of
probability more into consideration. Both deductions do not stand
in direct conneetion with the mechanism of the Brownian motion;
my object in this paper is to demonstrate, that starling from a
relation which Mrs. pE Haas— LoreNtz®) has nsed in her dissertation,
to determine the average square of the distance accomplished, one
is able to determine the function of probability of the Brownian
motion. It is worth observing that the way in which different averages
depend on the time may be calculated from the results obtained
by Mrs. pr Haas—Lorentz by a slightly more careful transition of
the limit than was necessary for the object she had put herself
(viz. the determination of the stationary condition). First I want to
determine these averages by a new method, < which will offer the
opportunity of “demonstrating, that the opinion, from which Dr. A.
SNETHLAGE *) starts in the theory of the Brownian motion that EiNsTEIN'S
theory is in conflict with statistical mechanics, is incorrect.

Besides the function of probability for the distance I shall also
dednce that for the velocity. The chain of thoughts which lead to

1) Compare e.g. M. v. Smorvcaowsxi. Drei Vortrige uber Diffusion, Brown'sche
Bewegung ete. Phys. Zeitschr. XVII p. 587 1916. ’
) H. C. Bureer, Over de theorie der BRowN'sche beweging. Verslagen Kon. Ak.

XXV p. 1482, 1917.
3) Mrs. Dr. G. L. pE Haas—LorENTZ. Over de theorie der Browwn'sche be-

weging, Diss. Leiden 1912.
4) Miss Dr. A. SnerHLAGE, Moleculair-kinetische verschijnselen in gassen etc.

Diss. Amst. 1917.
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the results given below shows great similarity to the deductions
which Lord Ravreien') gave utterance to already years ago. Kindred
ways of regarding the stationary condition are also found in the
work of Dr. Fokker?*) and M. Pranck?®).

§ 1. In the discertation Mrs. pg Haas—LorenTz starts from the
equation of motion for a emulsion particle, which she brings in

the formula )

. d
md———::——wu—}—mF B ¢

Here u is the velocity of the particle, w =6 = u a the resistance
which according to Stokes’ formula the spherical particle (radius a)
would experience in a liquid with internal coefficient of friction u.
The force expended by the shocks of the molecules is divided into
two parts, of which one is that according to Stokks, the second is
quite irregular, so that F'=0. The determinaticn of the average is
to be understood in this- way that it is (o be taken at a given
moment for particles which all have had the same velocity u, a
time before. ~

Now we are able to integrate the equation (1), if we introduce

w
—=p, we have
m
4

u:uoe—ﬁt—{—e—ﬁtﬁﬂfﬁ'(t)dt. B )
0

where u, is the velocity at the time ¢ =20. X
‘If then we determine the average of this equation in the way
indicated, the result is

) wu=w e . . . . . . . . . (8
or expressed in words: when we start from a great number of
particles of given velocity, the average velocity decreases in the
same way as with large spheres; the damping coefficient also is
dedunced in the same way from radius and coefficient of friction
of the fluid. Let us now calculate also’ the average of the square
of the velocity. For this we find:

) Lord RavrergH, Phil. Mag- XXXII, p. 424. 1894. Papers IlIl. Dynamical
problems in illustration of the theory of gases. :
%) Dr. A. Forxker, Over de BrownN’sche beweging in het stralingsveld. Diss.
Leiden, pg. 523, 1918.
%) M. Pranok, Ueber einen Salz der Statistischen Dynamik u.s.w. Berl, Ber.
p. 324. 1917.
7

Proceedings Royal Acad. Amsterdam. Vol. XXI
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2

t
W=, 23 - g~ ;‘feﬁt F(t)dt 4)
0

In order to determine the integral in the second member we
proceed in the following way. We write for it

ot
f f F (§) F (n) P&+ dy dE,
00

-

Now F(§ F () is only differing from zero if % and § differ very
slightly, i.e. there is for short periods a correlation of the forces F.
If we introduce u = § 4 ¢, it is allowed to replace % in the exponent
by & and to split up the integral into a product of integrals according
to & and w where we may integrate from — o to - co. If then
we assume

+ =

fl/’(g)F(g-l—w)dw::& .o N )

— o
which is a constant characteristic of the problem and if we
perform the integration towards & then (4) is transformed after
substitution into

- \ . (1—e—28t) §
W =, 9“2@’—}-——26 N )
When applying this equation for ¢t = o, u’ = — and thus we get
m
kT
=—28
o m

Y

In the same way we are able to determine the average square
of the distance accomplished. From (2) or by direct integration from
(1) we, get namely

¢
u——zcoz.-—ﬂs+det

L
g5 = () + f’dt’. L ®
0

For the last integral we find in a quite analogous way
>t
If we calculate the first average with the help of (3) and (5)
we obtain

-~
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B s = u,* (1 —2e—P 4 e—260) %(— 3 — et 4 de—At) + 9t . (7)

Consequently for very long periods we find
— 2T BT
. - s' = 3 :3ay
which is the well-known formula for the average distance in the

Brownian motion. If we determine the average of (7) with reference
- D
to all possible initial velocities and if we consider that w,* = ;—B,

we find for the average square of the distance accomplished as an
arbitrary initial velocity :

— ¥
ﬁ’s’:E(tﬂ—l—i—e"ﬁ‘) N (£

®)

As long as Bt is large in relation to 1—e—#t the formula of
EinsTeIN is thus the right one. For the cases, considered in experi-
ments, the lowest limit for ¢ to be obtained in this way is of the
order of 0.01 second.

3

§ 2. On the basis of statistical mechanics objections have been
raised by Prof. J. D. v. p. Waars Jr. and Miss A. SNETHLAGE') to
the application of the division which has been applied to this case
upon the example of EinstrIN and Hopr in their treatment of another

problem.
Starting from the supposition than in an “ensemble”.
* Ku=0
whete K is the active force, they work out another fundamental
formula viz. (with a slight variation in notation) )
d’u:—o’u—l—w B ()]
dt? Y )
where w has to been taken zero. We can again integrate this
equation and obtain then

t

. l.
u==1u,cosQt —}-@singt+—-fw @) sino(t—8)d§ . . (10)
0 0

0
If taking the average we get :

- i
u==u,c080t + —sin gt
¢

The average velocity would in this way possess a definite period.
If however we work out u* we arrive at an incompatibility.

1) Gf. Versl. Kon. Ak, v. Wet. XXIV. 1916. p. 1272.
ki
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Because for u* we get .
t

fw(§)sing(t——§) agr . (11)
0

— u |
ul = uocosgt—i—a—amgt +E

For the 1integral, if again we make a double integral of it and
if we introduce the constant & /
+ =
0= |w@uwiE+pde. . . . . . (12)

—

we can write
i
7 ot
—z[sin’ o (t — &) d¢ = — |- periodical “terms.
0 207
0

Thus we find ’

— bt
, u' =9 ~+ periodical terms . . . . . (13)
9

This formula shows that u* increases indefinitely with the time,
while it is evident according to statistical mechanies that u* must

7

approach —.
m

Consequently if the equation (9)-is treated as a differential equation
we arrive at results which are not right ).

§ 3. Miss Dr. SxeraLAGE and Prof. Dr. J. v. . WaarLs Jr. have observed,
that the theory of the Brownian motion must be in accordance With
a general theorem of statistical mechanics. For the case that we
consider a particle, that under the influence of the impacts of the
molecules of the liquid executes a movement, the force which the
molecules exercise does not depend upon the velocity, but only upon
the coordinates. Consequently the produet of force and velocity must
on the average be zero, as well in a canonical as in a microcanonical
as in a time ensemble. Now they are of opinion that EINSTEIN'S
formula comes into conflict with this. I shall demonstrate that this
is only the case to a certain extent.

If we assume in a canonical (or micro-canonical ensemble) all
systems selected in which the velocity of our particle at a point of
time 0 is equivalent to 1w, and if then we follow this group of particles,

1) An analogous question is treated by M. Pranck (Ann. der Phys. 1912. Bd.
37 p. 462) where it is demonstrated that the energy of a 1esonator subjected to
the irregular field of black radiation increases in piopoition to the time; the f of
PLanck agrees here with v. p.- Waars® u.
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we can work out an average of every arbitrary quantity for the
group of systems which after a time ¢ has developed from the group
considered at first. The value of the quantity considered varies for the
different systems of our group (part ensemble), because the systems
where at ¢t=10 the velocity of the particle is u,, may still show
considerable differences, so that e.g. the impulses which the particle
gets will be widely different. I shall call this average the case-average
with a given wnitial velocity. Moreover the velocily u, may be varied
and again the case-average may be worked out and then by making
u, run through all possible values all systems are taken into con-
sideration in determining the average at the time 7. If now the
cage-average of a quantity g¢(u) for u, is g(u,) and if the number
of systems of the group is NV (u,) then — if N represents the total
number of systems in the ensemble — the quantity

EN(u)g_@Q
N

is the case-average for the entire ensemble.

However, as the ensemble is stationary the case average for a
quantity is equal to the average of the corresponding quantity
in the ensemble. If in particular g(x) for every w is equal to zero,
the average in the ensemble is also zero. I shall now demonstrate
that if we start from EmnstaiN's formula the case average of Ku
for every initial velocity w, is zero, and from this it follows imme-
diately that Emsreiv’s formala does not come into conflict with the

theory of the ensembles, more particularly that Kue=0, (—e¢
means determining the average of an ensemble, which — is used every-
where here for the case average).

EinstEIN’s equation comes into conflict with the theory of the
ensembles if we select al t==0 a group of particles with a given
velocity u, from the ensemble. For if we determine the average of

du
the equation it yields mazK: — wu,, whilst according {o the

theory of ensembles X is independent of the velocity. If however
we leave the selected group to itself and if we apply to its motion
EivsTRIN'S equation which is not right in the first moment, it is
evident that in the long run the group moves in such a way that
in the long run EinNstriN’s equation can be applied ‘to it. Moreover
from the group with particles with a given velocity w, those systems
can be ‘selected to which (1) applies. From what follows it becomes

. apparent that for this group in the long run the usual relations
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with regard to the averages in a canonic ensemble become the
right ones.

. . du du -
Instead of Ku=—0 we can also write m = u=—20 or u% = 0.
¢ .

If now we multiply the Einstuin-Hopr equation by v and work out
the case average, we get -

du ~

b = - Bu + u F
« Furthér we shall demonstrate that for sufficiently long periods
the second member is identically zero.

For according to (5) we have got for the first term — :2% gor ——,22. We
shall now determine the second average For this purpose we mulnp])
(2) by F and work out the average, and arrive at

—_—
wF=u,ePF e hF feﬁf F(f)dt
O -

In this formula the first average in the second member is zero.
To determine the second average we must consider that # for the
integral refers to a definite time Z And so only those parts of the
integral where the argument differs only slightly from ¢yield distributions
to the average. In the exponent we can again take the argument
equivalent to 7, so that we can write for the second term

f FOFEndn o f FEFG—mdn
t—y

Now this integral is just half of the integral of (4a), as it covers
half the region of integration, whilst the integrand is of course
symmetrically with regard to &.

And so in the end we find for the second member identically zero
as the two averages first neutralize each other. If now we take (5)
into consideration for shorter periods the second member becomes .

w,1 e -2t — > e—2ht
8

This result is also obtained by differentiating (4) with 1espect to

the time.

. du ] . .
The case average of U for finite times not large with reference

1 .
to g is consequently not strictly zero. Now we can however determine
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the average according to the initial velocity w, and so find the ensenible

du
average of u T Then we obtain

. du ¢ '—23 19‘
. u— = (u? — —]e W =0
dt 28

as {Ee possesses the equipartition value. Thus it 15 proved that also
for short periods the average value of the case average does not
come into conflict with statistical mechanics.
4. I shall now deduce the law of frequention for distribution of
_ velocity. If we integrate the equation (1) for a short time r, we can
write for it :
u—u,=—PRut+a or u=u (1 —pr)+a . . (14

where = :fﬁ'(t) dt and 2 = 9.
0

Now there is for x a law of frequention (z), so that

+ o 4+ +
f(p (®)de =1 |, fv(p @) de =0 and |2* ¢ (#)de =9z . (15)

If now a particle starts with a given velocity w,, the number of
particles, for which in the time ¢ the velocity lies between u and
% -+ du, may be represented by

Sty 1 t) du
or shorter
J (@, t) du

Let us now consider the distribution of velocity al the time (-7
and again fit our attention on the particles whose velocity lies
between u and w« - du. These particles have had at ¢ a velocily
%’ in such a way that

W(l —Br)==u—u
or

Wv=u(l +By)y—a . . . . . . . (16)
whilst an interval duw' = (1 4 Br)du corresponds to the interval du).
The number of particles that is at ¢ in du' and at ¢~ in du
consequently amounts to

f@, ) o (x) do du'
and thus we get
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- F @yt 4 )y du = (1 4 pr) dujf(u', Yy p () da . . @7

If now we work this out and retain the terms up to the first order
in = and 1f we take (15) into consideration and if afier division
by t, we make v approach zero, we obtain

df (u, t) 0 D d*f L as

o Put Yy

To the function of frequency for the velocity the extended equation
of diffusion is thus applicable, where ¢ plays the part of coefficient
of diffusion. The equation is quite of the same form as that for the
Brownian motion under the influence of a qnasi-elastic force (— u
or —s) (cf. also § 4). If we apply (I18) to determine the stationary
condition we have

0— 0 . 0
——Bb_z;(uf)—*'gﬁ

from which follows

B — £ r B
f=Ce % 4+ C,e 9fe9 du.
0

This last term becomes infinite for v = oo, consequently the inte-
gration constant must be taken ¢, = 0.

For the law of distribution we thus find the MaxwriL division
of velocity quite independent of the initial condition. Moreover
Ravyieien has carefully investigated this question for his particular
example. He has deduced a similar equation for a particle in a

. o
highly rarefied gas, where only the constants g and 3 have another

meaning (cf. loc. cit.). It goes without saying that if one starts
from the equation of v. D. WaATs-SNETHLAGE, one arrives at the
conclusion that the division after, long periods isnot that of MAXWELL,
and that there does not even exist a stationary division of velocity.
And on this point also these investigators thus come into confiict
with the statistical mechanics of Grsss, which is the starting-point
of their reasonings.

It may further be observed that for a particle beginning with &
velocity zero, as long as u is still small with respect to the velocity
of the particles, which collide against it, we get as Ravieien has
demonstrated

aéf:l)—az.
0t Ou®
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For the change in velocity we get then at each impact according

to Ravreien

W =u=%x 2 v,

where ¢ is the vrelation of the masses of particles and molecules,
v the velocity of the molecules. Now the problem treated by Rayruien
in this way may be connected directly with the theory of the function
of probability for the way in the Brownian motion. If we take the
velocity marked as vector, the termmnal point is removed = qv
after every shock. The terminal point of the vector consequently
executes a Brownian motion at least according to (he scheme which
is often given of it {cf. e.g. Mrs. bz Haas—Lorentz’ dissertation). 1t
is ceriainly remarkable how Lord Ravieien had already so long
ago deduced these results, which came to the foreground only by
Smorvcsowskl’s work, whieh opened so many new views.

It may bave its advantages now it has become apparent that
EinsteiN’s formula is the right one to say something further on the
kinetic mechanism. Let us first direct our attention (o a single shock
of a particle of a great mass with a particle of a small one. If
the velocity for the first is before the shock ', after the impact u,
the velocity of the small particle v and the relation of the masses

g, where we have g<1, then we get for every impact:
u—u'(1—gq) = gov.
If we assume then that again and again after a time r a collision
takes place, then we have

# u_u—_—-____g__u'j:iv
T T T
for every impact. We can only make a differential equation of this
equation of differences by taking v infinitely small. if ¢ is of the
same order infinitely small and then we getl
W Bu o )
de ’

where ' may be written for gv. Thus we see here by a (not
very strict approach to the limit) Einsrmn’s equation arise as it
were. If now we' do not go to the limit, but avail ourselves of the
following graphic representation, its meaning becomes even more
clearly visible. On one axis we measure out the time (and to make
things easier we take again equal intervals between the impacts),
on the other the velority. Between two collisions the velocity is then
constant, at an impact the velocity suddenly jumps to another value
and this jump consists in every case in two parts; one part pro-
portional to the velocity of the particle before the shock with which
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the velocity decreases and one part which ma./y be either positive
or negative (and in general may posses all sorts of values dependent
upon“the conditions of the impacts, which in the simple case investigated
by Rariuien is = qu). The velocity-time curveis thus a discontinuous
curve. If the velocity has become large it has the tendency to
become smaller by shocks owing to the first part, whilst the second
part exercises no systematic influence in a contrary sense. If now
we imagine a combination of curves drawn starting from a given
velocity, RinstuiN’s equation will represent for each of these dis-
continuous curves the differential equation. At the same time if we
introduce the curve u == wu,e—f into the scheme, this line will atall
times be an average of the discontinuous velocity time-curves in the
diagram.

§ 4. Finally 1 will deduce the function of probability for the
Brownian motion under the influence of an external force. We
take this force Am, where £ depends upon the place (s).

The equation of motion for our particle is then the following

ul du

"lﬂ =Bt Fh. . R (19)
" If now a particle has n the time =20 a velocity »’, if in a
i time t—rv the velocity has become #' and a way s' is accomplisbed,
; and if v and s represent these magnitudes in a tume {, we get

t t
i u—u = — g (3—¢) —}—fﬁ' dt —}—fk dt.

Wr N

We now consider the time so small that the way accomplished

i in that time is small enough to treat K in the last integral which
depends upon s as a constant.
m We have thus
. 11
u—u' = — f(s—¢) +det+7ct N 10
_ i—x
II; Now we want As=s—s’ and As’. In order to determine these
"’m we apply (3), this yields
Il u—u = u, e (1—etFr)

i 8

as we have to take the mean value of As for all possible values
of u, the average of us beng zero we get
Bhs=k . . . ., . . . (21)
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and in the same way
A =9r. . . . Ce L (29)
In order’ to arrive then at the differential equation for the function
of frequency we reason again in the same way as before. Let
Jf(s,5,t) represent the chance that a particle that at the time O has the
cobrdinate s, possesses at the fime t the codrdinate s (with margin
ds) where we determine the average according to the initial velocity.
Now we follow the movement for a short time = and build the
function of frequention at the time /-7 from that on fime s. If
As again represents the mean deviation during the time z, and
@p(Ls) the function of frequency, we know for this deviation that
we have

fp (As)dDs=1, fAsq (As)dDs=kr andj(As)’ i (Ds) dDs=91 (220)
We then obtain
F o5t + ) ds :‘st'f(s',so Hplydhs . . . (23)

where s’ = s — As.
If now we take (20) into consideration we find for the connection
of ds’ and ds

>

Developing according to (23) up to the first order with respect
to =, we find :

. of 9 0%
TR Bas(f)+2()’ cooe o B
If we introduce the value for ¥ and g we obtain
of m m ’f
9 6zpa X( A+ 6a pa *0s @4

This equation agrees with that of SworucHOWSsKI, if we take D

ey
o

). The factor

(coefficient of diffusion of the Brownian motion
) wud

is the ¢ of SmoLucrOwsk: i.e. the factor with which the force
rua

mk wmust be multiplied in ovder to calculate the velocity which in
a stalionary condition was caused by this force.
By Dzeyr and his pupil Dr. Tummers?') a differential equation for

1y Desye, Zur Theorie der anomalen Dispersion. Verh. Deutsch Phys Ges. X,
p. 790.
J. Toumers, Qver electrische dubbelbreking, Diss. Ute. 1914,
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the function of the frequention of the axes has been deduced for
the case .of molecules (particles) which turn in a liquid, which is
acted upon by an external couple and by a couple resulting from
the molecular impacts. The deduction of the results obtained there
follows immediately from our formulae. We mneed only split up
the couple exerted by the molecular movement into two parts, the
one — oa (¢ be the angular velocity of the particle) o = 8 & pa?®
(v radius of the particle) and inio a second part of which the average
value (case average) is zero. For the motion of the axis we get then
Po=—ga+ X

where /° is the moment of inertia of the particle.

If we take (}:u,%:ﬁ,i:ﬁ’, we get for u equation (1), from
which appears that the function of frequention can be deduced from
a differential equation of the form (24a).

Finally it may be observed that it offers no difficulties to extend
our considerations to the Brownian motion of coordinates in systems
with an arbitrary number of degrees of freedom.

Utrecht, Dec. 8 1917. Institute for Theoretical Plysics.
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Physics. — “The Theory of the Brownian Motion and Statistical
Mechanies”. By Prof. L. S. Orngremy and Dr. F. Zernike.
(Communicated by Prof. H. A. Lorentz).

(Communicated in the meeting of January 26, 1918).

Prof. J. D. v. . Waaws Jr. and Miss. Dr, A. SNETHLAGE have
raised objections derived from statistical mechanics against the usual
deductions from Emsrrn’s formula of the Brownian motion. These
objections may be formulated as follows:

Firstly: It is not right to introduce a resistance on an emulsion
particle, which is proportional to the velocity of that particle, as
according to a well-known result of statistical mechanics velocities
and forces are independent of each other, as is appearent from

PK=0 . . . . . . ... @

Still more clearly this independence is visible, if one considers

that the above equation is not only applicable to the average over

a canonical ensemble, but even for any group of systems from that
ensemble for which the particle considered has a definite veloc1t) v,

so that for such a group K =0.

Secondly: It is not right to apply to this force of resistance the
formula of Sroxrs, as it supposes that the liquid around the particle
has a motion dependent upon the velocity of the particle. This comes
into conflict with statistical mechanies, for these teach, that

R P )
where e.g. for v the velocity of the particle, for v, that of a molecule
(both e.g. in the a-direction) in its neighbourhood may be taken.
And so Miss SserHLaGE bas assumed for the calculation of the
persistence of a particle in the Brownian motion, that the surrounding
molecules have the usual Maxwellian distribution of velocity.

The authors mentioned have tried to give a theory of the Brownian
motion which escapes these objections, by starting from (l). In what
follows we wanl to show, that the equations (1) and (2) are much
less far-reaching than it seems so that the objections to the usual
theory may, be considered to have fallen away, and on the other
hand the reasoning given is proved not to be the right one.

In order to deduce tbe differential equation, which she waunis to
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put in the place of the equation of Laneevin-EinstuiN, Miss SNETRLAGE
differentiates equation (1) according to ¢ This yields
dK dv K*
P = — K — .
dt dt M

(3)

dK ‘
From which she rightly concludes that = is not independent of ». The

nature of this dependence will be kmown, if for each value of v

i
dK
one knows the average = = F (v). Then there may be written for

one system :

dK -

E;:F(v)+w 4)

where 1w is an accidental quantity which on the average is zero

v

If we want to determine /' (v)itis apparently necessary to consider
the group of systems with a definite value of ». We shall further
on indicate an average in such a ‘“w-group”, the same as above
by —wv, i.e. the average over the systems where in one definite
moment » has a prescribed value, whilst the symbol — will indicate
the average for the whole ensemble. As is proved by the following-
calculation equation (3) in not applicable, as (4) and (2), to every
v-group in particalar; and this Miss SNerRLAGE has left out of
consideration. )

Let K represent the force acting in the a-direction on the particle,
v the velocity of this particle in that direction. Equation (1) is then
found for the canonical ensemble, when A does not depend upon
the velocities, and is exclusively a function of the coordinates
q - - - @
Let ¢,
we have

be the x coordinate of the particle, so that ¢, = v. Then

dK oK 0K . 0K .
E;:azv‘{‘a—q;gz‘f‘-"gq:gn
and for the average at definite v
dK° 0K’  3K"—
E:az v-|—&-l—2 g, + ete.
In order to reduce the last term we have made use of the well-
known independence of ‘the extension in velocity and configuration.

These terms fall out because g}—,v = 0. The same independence
has as its result that
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0K* 0K
0,  0g,
The last average, is easily calculated from Gisss’ formulae.
&
S (0K T
S 7 N d “ e d n
oK dq, ¢ o 7
aq, &
e @dql...dgn

Integrating by parts the denominater yields
&
lj‘lf—?—ﬁe qu, o dgn
() ¢,
as the integrated part falls out (¢ = oo at the limiis).
Now

0s 0K 1 —
—=-— K and therefore — =—=—— K*
agl L dq, o
Considering” that @ = M v*, we obtain
dK” v —
—_ = ——K*. . . . . . . . (5
dt Mv? .
And so F'(v) has been found; equation (4) becomes
IK K*
g —v4w. . . . . . . (5a
dt Mot

i. e. the very form given to this equation without further proof by
v. D. Waars and Miss SnuTHLAGE, (Miss SNETHLAGE equation 24, sees
however the note of these Proc. 24, 1278 where a calcnlation
remotely analogous to ours is found, without however our conclusions
being drawn from it.)

5 S T ]

The fact that 2 =0and £ = — L B 0™ = — K_v

dt dt Mo? ag M ?
has great inportance for the theory of canonical ensembles. If
at a given moment one chooses a group of systems in which the
suspended particle has a definite velocity-component », then the
formulae found are applicable to this group. Now one ought to
consider, that, if one follows these systems in the time, the veloeity
of the particles does not remain the same for all of them, but that
different velocities are going {o arise. Moreover our formulae indicate
that, if we take the average velocity a very short time =
after the selection of the group, it has become smaller than v. By
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substitntion of the above results in a series of TaYLoR we find namely:

—~v _Eﬂ
- vt:v(l—- —_—t”...) -
2 M3 0? .

Now it is remarkable that, if we follow the systems back info
the time, i.e. determine the average for a moment — = for a group
where at ¢t=0 the velocity of the suspended particle is v, exacily
the same formula can be applied. So that we get a reversible
process and questions analogous to the problem of the tops of
H curves solved by EnrrnrEsT arise. Our reasonings consequently also
give in principle how the objections may be put aside, which Zrrmero
has raised to the statistical mechanics of GiBes (as well as to the
molecular theories of BoLrTzMaNN concerning the H theorem ?).

The result obtamned may shortly be formulated n this way: the
properties of a group of systems, chosen so that in all of them the
suspension-particle has a velocity » — a v-group —, are dependent
on the time elapsed since the selection.

L4 —0
We may also ask now after the change of vK with the time for
the w-group selected at the moment 1=0. From the preceding
calculation results that

v D
d—, dv dX K* v?
SR = K4y = (1 ——
't =a kg =7 p) ®)
from which it follows that the relation
WK=0. . . . .

which is the right one for the moment in which the group was
selected in the ensemble, is nof right when this group is followed
further.

It is true that the average for the last member of (6) for the
ensemble is equal to zere, as is necessary with regard to the
stationary character of the whole ensemble, which was already used
in the deduction of (3).

Consequently we should be very careful in interchanging differen-
tiation and determination of the average. So equation (5) will only
be right for the first moment (just as (4)) and consequently also

1) One ought to bear well in mind that the series-development given here is
only tight for a short time after the seleclion of the v-group from the ensemble.
If one follows the gréup during a long time then the systems of which it consists
will have spread themselves over the whole phase-extension with the density that
belongs to a canonical ensemble.

For the importance of the Ewstew-Lancevin formuala for this process compare
the paper of one of us (OrNsTEIN), (preceding paper).
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(5a), which accordingly must not be looked upon as a differential
equation, Or: if we do consider (5a) right for later moments, we

do mot get in connection with it w=0, as it is made use of by
Miss SNETHLAGE.

We are able to refute the second objection, viz. that statistical
mechanics should not allow that the flnid moves with the particle
in an analogous way. For this purpose we shall calculate the
derivatives of

vy v:: 0
where o' is the a-velocity of an arbitrary molecule situated in the
neighbourhood of the particle.

We have

v v —_— —
d (lv av' I( - X’

2 @ el
e il TRl 7

B
as v’ as well as K’ are zero. Further

oAy Gded @ 14K KK o dK
e mE Vet E Ty VT
The average of the first term yields
oK oKL 1 BK —_ KK — KX’
v v -{—— et ———
M| g ~ MUy’ ) MM
and of the third term
v ———— —
A LLSONCY S z v 0K o* KK' »* KK'
—_— — “ . ——— o ——
w9 "o i 6q ) 5 MM
so that

d? * KK' v?
e = (1<) . ... @
& MM e

For the change of o' with the time we have according to the precedin
g g p g

o’

&t

Fo KK
a T MM '
Now K is the sum of the forces in the a-direction, which all
other particles exercise on the first, K’ the corresponding sum for
the second particle.
If we develop the product of these sums, we shall obtain the

average of the product of action and reaction that may be assumed
8

Proceedings Royal Acad. Amsterdam. Vol. XXI.
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to preponderate, so that we may expect that KX’ is negative. The
' — * ~
second derivative of v’ consequently has the same sign as v, i.e. the

movement of the surrounding matter with the particle, which does not
exist at the moment of selection, arises after a short time. According to
(8) there is on the average no question of a movement of
the surrounding particles with the Brownian particle in an ensemble,
as may be expected.

When we want to investigate statistically the qualities of .a
stationary system of molecules, we can make use of a siatistically
stationary ensemble and identify the qualities observed with the
qualities of the most frequent system in this ensemble or with the
corresponding averages. -

The system that we consider at an investigation of the Brownian
motion — a liquid with a particle suspended in it — is, it is true, not
stationary, but all the same it changes only slowly: the moving
particle changes its velocily only slightly by a great number of
impacts. Consequently, in order to make use of ensembles for the
study of the Brownian motion we must start from a “quasistationary”
ensemble and deduce the qualilies of the real Brownian motion
from the properties of the most usual system in such an ensemble.

The calculations given show, that the groups chosen with definite »
from a canonical ensemble do not form such quasi-stationary ensembles.
However it seems probable to ns that such a group, when we follow
it a short time, will get to fulfill the requirements, though it will
be difficult to show this by direct calculation. The v-group, which
has become quasi-stationary at a later moment, would then correspond
to the ensemble selected from the canonical ensemble, by selecting
those sysiems in which the particle has already got the velocily »
during a short time.

An indication with regard to the length of time required was found

along another method by one of us in a former paper!).
- The above quoted statistic-mechanical objections to the application
of the law of Srokus thus probably have no justification for a real
gystem, but only for the first moment of a v-group, i.e. at the very
time when it cannot yet be made use of to represent the pnopemes
of a real system.

Groningen. Utrecht, Institute for Theoretical Physics.
L) L. S. OrnsTEIN. L. ¢. — This time must namely be of the order of the time

during which there is a correlation bhelween Lhe irregular impulses, i e.
F(E)F(E + 7) differs from zero.

-

- 119 -



Physics. — “The Scattering of Light by Irreqular Refraction in the
Sun”. By Prof. L. S. Ornsteix and Dr. F. Zernike.
(Communicated by Prof. W. H. Jurius).

(Communicated in the-meeting of April 27, 1917).

By the investigation of Dr. J. Sewkrrsorr in his dissertation
“Scattering of Laght, and Distribution of Intensity over the Disc of
the Sun’, the -supposition of JuLiwws '), that besides the scattering by
the action of the molecules also the scattering by irregular bending
of rays owing to accidenfal gradients of the optical density must
play a part in the origin of the distribution of light over the disc
of the sun, has been corroboraied.

In this paper it is our object to show, that a mathematical
treatment of the problem of the scattering of light by curving of rays
is possible. For it is possible to put up an integral-equation for this
phenomenon and to transform this with suitable and plausible
suppositions into a differential equation with boundary conditions.

The problem treated here is the counterpart of the problem of
molecular diffusion in a flat layer of gas, which was solved by
Scrwarzscamp. The deduction of the integral equation resembles his
train of thoughts, but in our case we have the advantage, that the
peculiar nature of the problem allows that a differential equation
can be deduced from it, which makes mathematical discussion so
much easier. It seems to us, that the irregular reflection and the
irregular double refraction may be f{reated in an analogous way,
which is important for the theory of the extinetion of liquid crystals.

In a medium, in which accidental gradients of the index of
refraction arise, a ray of light will be curved in an irregular
fashion. If a broad bundle of parallel rays runs through the medium,
the different rays will be curved in different ways. And so, if the
bundle is broad with regard to regions of a constant index of
refraction, a bundle of initially parallel rays will be spread plume-
shape. Now we fix our attention on the action of a volume-element
on a ray, which goes in a given direction, and imagine that the
nature of the irvegularity of the index of refraction in the medium

) W. H. Jurws. Verslag Kon. Akad. v. Wet. 18, 195 (1909) and 22, 64—75 (1913).
8%
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is sucb, that after running through the element. in question the
diffusion of the 1ays has only taken place over a small cone. A
characteristic difference with molecular scattering is, that with the
scattering by refraction not a great part of the bundle goes on
unimpeded and a small part spreads to all sides, but that the chief
bundle 1itself gets continually broader.

And so, expressed in mathematical terms: let us follow light of
a given direction over a length [, then, if this bundle has an
intensity of one per unit of square, the intensity of the light which
is found in a cone of the opening dw, of which the axis formed an
angle « with the direction of incidence, will be possible to be
represented after running through [ by a function: :

$lal)dw or y(v)do

By making use of a particular image the form of the function g
may be determmed. This form will be analogous to the law of errors;
it i3 however unimportant for what follows. What is impo1tant is the
supposition that the function x possesses a perceptible value only
for very small values of «.

If we take the meaning of y into consideration, we see imme-

diately that of course
fx (@) dw =1

where the integral, just as everywhere else in what follows, must be
taken over the whole unity sphere.

Now we shall deduce the integral equations for the intensity of
radiation, Let f(z,y, 2, &, o) represent the intensity of radiation in &
point (2, y, z), whilst the direction is given by the angle & with the
z-axis and . If now we know the radiation in & point (2, y, 2),
we ask this quantity in a point that is situated [/ further in the
dirvection of the ray &, . The coordinates of this point are:

st+leosd , y+lsindesy , z-+lsindsing

And so the intensity of radiation may be represented by:

S(@-+ leosd , y+lsindeosep , 2 +1lsindsing , &, ¢).

This intensity must now be equal to the intensity which by the
bending of rays comes in the given direction. When 9’ and ¢’ are
the angles which determine a ray in 2,y, 2, then, if « represents
the angle of this ray with the ray 9,p, the intensity in the second
point will also be given by:

f’l( (@) f (g, 2, %, ) d o
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so that the required integral equation is:

Flo+ e )= [ 1(@F o159, o) do

Now it is easy io transform this integral equation into a differential
equation, if we bear in mind that y has only perceptible values for
small values of «. We express by o the integration-element de’
and the angle ¥, which the plane through (9', ¢") and (&, ¢) makes
with that through (%) and the a-axis. So that the value of dw’is:

smudedPp—=adadp .

For the difference of the angles % and J' and that of the angle
¢ and ¢ we find going to the second order to ¢ and after elementary
reduction :
cotd sin®

LY =Y —9=—acos P + } sin & cos & Dp* = — acos P + o’ 5

Now we can develop in the integral f(z, 7, z, ¥, @) with respect to
A9 and Agp and get in this way:

f(w1yv 2,9 ) |7 () do’ 4+

—f fA&ax(u)a’adlp—}—g—fffAlpax(a)dadlp-{—
la’fff(mw dedp+~—2— | [ A9 Apay(w)dud
26.‘}’ ) oy () dee dp b a f p ey () dee A

“2‘an (89) ax (o) de d
" The first integral is equal to unity, the second yields

7
7 cot ﬁf‘as () de,

the third is zero as well as the fifth, whilst the fourth &n('i the
seventh yield:

:rfa‘x(a)da and .” fa‘x(cz)dw
stn? 9

Now we can introduce the mean value of o' according to

o = |ty («)do = 2:1]1:“)((0:) da

And thus we obtain at length, — if we also combine the first
term of the second member with the first member and develop
according to / — for the differential equation of the diffusion of
light by irregalar refraction:
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o of of < (s 90f OF 1 ¥f
Y oss Y sing Ll sindsing == — | et
w""’s + Jy S oS p - dz s s p 4l (sin 90 09®  sin? &afp’) .

For the case important in practice that f only depends on z
and ¢ consequently :
f o J )
sina‘}cosﬁ—a‘—;:%(wsﬂé‘%+ain8§—l£) Y.

For this case the boundary conditions are, if we have at @ =20
a layer,; which radiates according to the cosinus law and at d a
plane layer throngh which no inward-radiation takes place:
f=c for: =0 cos 9 >0
f=0 for: x=d cos & < 0,

- - 0 827
For =0 and all values of «:/ and I— continuous, — =0; for
09 09*
0
cos =1 or—1 I—: 0.
09

It is worth observing that the diffusion is determined by the

quantity %—, i. e. the average square of diffusion per length-

unity. This magnitude is specific for the problem, does not depend
upon the length, as «* is doubled in doubling the length /. The
magnitude is related to the nature of the irregularities. It is a
constant which still may be different for different layers of the sun.
The stady of the distribution of intensity over the dise of the sun
will be able to supply us with ithe knowledge of the average value
of the characteristic constant of the san. )

Utrecht, April 1917. Institute for Theorvetical Physics.
1y For the two dimensional problem:
of  «®d'f
9=
O e T 1 09°
/

-123 -



Meteorology. — “On the diffraction of the light in the formation of
halos. 11. A research of the colours observed in halo-phenomena”.
By Dr. 8. W. Visser. (Communicated by Dr. J. P. vaN DEr
Stox).

(Communicated in the meeting of June 29, 1918).

In the first paper on the diffraction of the light in the formation
of halos ') a survey of colours observed has been given on pag. 1175
taken from “Thunderstorms, optical phenomena ete. in Holland”.

Prof. Dr. H. van EverpingeN liowever informed me, that these
records are altogether insufficient because only a small number of
colour observations are dealt with in “Thunderstorms”. On his
suggestion I have studied a number of records seni in to the
“Koninklijk Nederlandsch Meleorologisch Instituut”. In the first place
I hope to have set right a neglect against the sincere voluntary
observers of the Institute; in the second place this research gave
valuable malerials for the answer to the question how far and in
what manner _the diffraction works in the formation of halos.

In this paper a survey of the research is given; the resulls will
be discussed and it will appear, that indeed the diffraction has an
important influence on the refraction of light in ice crysials.

’ 7/

I started with all the colour records in the years 1913, *14 and '15.
Then the research was extended to the years 1911, '12 and ’13.
In the first part I soon found, that great prudence was necessary.
As an example | take the observations of “rainbow-colours”. 1In
the three years 1913—'15 I find “rainbow-colours™ 12 times recorded
by 9 observers. There are however 7 who have never sent in
another record during all this time. They “were evidently led by
suggestion and fancy more than by observation power. The personal
character also comes to the front. Therefore it was resolved to make
a very careful selection and only to use records of those observers
known to the Institute as wholly reliable. In this manner the notes
are studied of eleven observers, who are mentioned in this paper
with the numbers I tot XI.

1) These Proceedings Vol. XIX.
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Omitted were all incomplete observations and those about the
moon. 550 Observations were at my disposal, divided over the six
years as follows:

1910 1911 1912 1913 1914 1915 Total
colour-records 125 (6) 107 (7) 114(7) 81(8) 66(8) 57(7) 550 -

total 473 480 399 283 325 377 2337

/s 26 22 29 29 20 15 24

In parenthesis is mentioned the number of observers.

The row ‘total” gives the total number of records taken from
“Thunderstorms”.

The fourth part of all the notes gives reliable records.

31 Colours and colour-groups are mentioned, among which three
very anomalous ones: blue IX; 'violet, red VIII ; red, violet, green V.
In the first communication are mentioned!) golden brown (red),
yellow, green, violet (3 times by two observers); yellow, violet;
golden brown, clear white, blue.

All the colour observations (divided over the two circles, the
tangential arcs and the circumzenithic are) are contained in the
table I. (See table following page).

In the table the personal character comes out strongly.

144 observations of red by 10 observers (among which 115 of
VII and IX), and 133 orange by 5 (among which 130 of V and
X) where in most cases the same colour is meant, this clearly points
to the personal estimation of this colour. The same is evident in
the groups red-white and orange-white.

The table II also gives an idea of this individual opinion. (See
table I page 122).

All the colour records of each observer, separately for the ordinary
circle, the parhelion and the tangential arcs have been collected
without further observations in this table. From this it appeavs, that
the records of V, VII and X are limited to green (V has one
observation of violet on a total number of 158). III also mentions
blue, but never violet; VIII notes mneither green nor blue, but
in 22 records 12 times violet.

This phenomenon however interesting from a physiological point
of view, greatly diminishes the value of the records, but without
doubt green and blue colour shades often occur, as is further
evident in the percentages of the separate colours in the following
table (in which parhelion and tangential arc are taken together).

1) Le. p. 1330 seq.
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TABLE I
]
circle 22 |parhelion|tang. arc.|circle 46 C’rg‘rﬁ‘f“'i total
white 51 (8) 73 1(1) — — 59 (8)
red (brown) 119 (10) | 14 (3) 9 (4) 2(2) — 114(10) )
orange 123 (4) 7(2) 31 — — 133 (5)
yellow 15 (6) 4(3) 1(1) — — 20(6)
blue — — - 1(1) —_ 1(1)
red, white (brown, white) | 20 (6) 8 (1) 1(1) — — 29 (6)2)
orange, white 27 (1) 1(1) 1(1) — — 29 (2)
yellow, white 5(2) — — — — 5(2)
red, orange 4 (1) — — — — 4(1)
red, yellow (brawn, yellow), 10 (4) 2(1) 1(1) — —_ 13 (6) 3)
red, green 22 (3) 9 (5) 5(2) — 2 38(5)
red, blue 10 (3) 2(1) 2(2) 1(1) — 15 (4)
red, violet 1) 2(2) 1(1) 1(1) — 11 (2)
orange, yellow 1(1) — — — — 1(n
orange, green 1(1) — — —_ — 1(1)
orange, violet — 1(1) — —_ — 1(1)
violet, red 1(1) — — — — 1(H9
red, orange, white — 1(1) — —_ — 1(1)
red, yellow, white 1) 1(1) 1(1) ¢ — — 3(2)
red, green, white _ 11 — — - — 1(1)
red, orange, green 1) — - - — 11
red, orange, violet —_ 1 (1) — — —_ 1(1)
red, yellow, green 4 (3) 2(2) 1(1) —_— 4 (1) 11(3)9)
red, yellow, blue 8(3) — L(1) — — 9(4)
red, yellow, violet 1(1) 1(1) — — —_ 2(2)
red, green, blue 3(2) — 3(2) — — 6 (2)
red, blue, violet — — 1(1) — — 1]
red, violet, green — 1(1) — — — 1(1)
red, yellow, green, blue — — 2(2) — — 2(2)
red, green, blue, violet — - 1(1) — — (D)
rd., or,, vl, gr., bl, vi. 1) 1(1) 1(1) —_ 2 (1) 5(3)¢)
436 65 36 5 8 550
1) Ameng which brown 10 (2).
2) » » brown, white 11 (3).
3) » brown, yellow 3 (1).

»
4) 1911, April 12: “on the outside reddish, inside violet”. VIII. — April 23 VIII
records: “on the outside common red”.
% An observation of an arc of Lowitz by Hissink 1910, Sept. 7 at Zutphen was

neglected.

8) Colours mentioned 2 times.

“All colours” once

‘rainbow-colours” twice,
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TABLE L.

]
Circle of 22° Parhelion Tangential arc -

w| rilolylgldblv|lw|riolylglblvlw rlolylglb|o
1| 1) 3| 4|—|—=|=]=|=|=|=|=I=|~|=I=|=|=|=]=]|—-
H| —| a4l = 1|=|=|=|=| 1|=|=]| 1|=|—|—]| 8|—|=|—] 4]|—
m{ 2] 21| —| 5| 2{15] —|—=|—|—|=|—|—|~[—]| 3|—]| 1] 3] 1|—
W —| 1| =f{—|—|=l=1-15] 1] 3] 1] 1| 1]=] 1|—=|—|—|=]1
v| 61| 44| 821328 |—|—|—| 6]—|—| 6/—| 1| 2] 5] 1]—| 4] —|—
vi| 1] 6] 1] 4] 1] 4] 2|—[{—|—|=|=|~|=|—|a|=]|=|=|=]|—=
vit| 23| 60| 1l 8] 4|—|—|—]| 5|—]| 2| 2/ —|-{—| 5[—| 1] 2|—|—
vit| 2| 13| 1| 2|—[—| 8] 1| 3| 3| 1|={~|8]—=| 1|—|—|—| -] 1
IX| 1] 50| —| 7] 1]—|—]14|23] 2| 4] 1] 2| 2] 2| 6|—| 3|—] 1]—
x| 3| 4|3 2] 1]{—|=] 2| 1] 6] 1] 1]—|=[~|=]|3] 1|=|—|—
i) 1| 1| ~| 1] 2] 1] 1]=|=| t|]=|—=|—]| 5] 1] 2] 4] 5| 2
105 |213[158) 46|33 | 22| 10| 18 45 12;11 13| 3| 7| 4|30 5| 8l13|11] 4

°

white red orange yellow green blue violet

circle 22° 179 363 269 7.8 56 38 1.7
parhelion,tang.arc11.9  40.8 92 103 141 ~ 76 6.1

Surely the figures for violet ave strongly flattered (21 observations
of violet among which 12 of VIII). Without lhe records of VIII
the percentages for violet are respectively about 0.3 and 3.8.

Evident is the great variety of colour of parhelion and tangential arc?).

By adding red and orange, green, blue, and violet the personal
influences may be destroyed to some extent. Then I find

white ved orange yellow  green blue violet
TN TN ——

circle 22° 17.9 63.2 7.8 111
parh. tang. arc. 11.9 50.0 10.3 27.8

Against a decrease of white and red we see an increase of the
other colours. In more than '/, of all cases colours are recorded
approaching green and blue for the parhelion and the tangential arcs.
This also happens with one in nine ordinary circles, where colours
are made mention of.

1) Without doubt in the first communication I have slightly misunderstood

PerxTER: the predomination of fixed erystal positions must at all events be very
important. ’
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Some colours and groups occur relatively often.

yellow; yellow, white . . . . . . . . . . . . . 2btimes; 6 observers
red, yellow; red, yellow, white. . . . . . . . . . 16 6 »
red, green; red, blue; red, violet . . . . . . . . . 64 8 "
red, yellow, green; red, yellow, blue; red, yellow, violet 22 7 "
red, green,blue. . . . . , . . ., . R 2 »
Spectrum colours . . . . . . . . . . . ... . B 3 »

Green, blue and violet, to escape from personal influences, are
again added.

The yellow takes a peculiar place. Yellow circles seem to occur.
It is clear, that the yellow i3 often missing between the red and
the green, but on the other hand it is often met with.

As regards the rainbow colours; 5 observations of 3 observers
remain in six years.

Separate mention deserve the estimations of breadth by Henwes at
Arnheim in the ordinary circle and the tangential arc.

1911 Dec. 29  red 1° yellow 4° blue 1°
1912 Feb. 18% .

March 3 ¥ ., ¥ , ¥

May 10 |

March 8 . ,, 4° ,,  2° especially at the lop also blue.
1912 Jan. 6

. 10 X 10 10
1913 June 14 red 1° green 1° blue 1

1911 Dec. 3 red 1° yellow 1° green 3° blue {°.

-

The fact that the breadth strongly varies also appears from the
detailed tables on the circumzenithic arc by Besson!): 17 times on
91 avcs BrssoN measured the colours. The distance from red to violet
varied from 11° to 3° (14°: 3 times; 2°: 6 times; 24° (wice; 3°:
3 times). Three times blue and violet are wanting; among these is
one arc, with which the breadth of the inside red to the green is
5°. BessoN notes: “trés large, trés brillant”.

These variations of breadth are very important for the theory of
diffraction.

Summing up I find as the results of the research after eliminating
the individual influences:

1. the pretty large wealth of colours,

2. the variation of colours,

3. the variation of breadth.

) Sur la Théorie des Halo's. Paris 1909. p. 62.
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These results are not expected by the, simple theory of refraction ;
they demonstrate the actlion of diffraction. It is these very properties
which, for the rainbow, made the ordinary refraction-theory insufficient.”

Evidently the conditions for the development of these phenomena
of diffraction are present rather frequently. With great certainty this
research has established the conclusions-drawn in the first paper.
The observations however difficult by the small power of the colours,
which generally are to be taken as mixed colours, the records,
however often delusive by personal influences sufficiently show, that
mn the formation of halos the diffraction plays an important part.
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Mathematics. — “Nowuvelle démonsiration du théoréme de JorRDAN
sur les courbes planes”. By Prof. Arnaup Denjoy. (Commu-
nicated by Prof. L. E. J. Brouwer).

(Communicated in the meeting of June 29, 1918).

Le théoreme fondamental de JorpaN sur les courbes fermées peut
g’énoncer ainsi:

St les points d'un ensemble T et ceuv d’un cercle se correspondent
réciproquement et continument, chacun & chacun, Uensemble I' divise
le plan en deux régions.

L’hypothese faite sur I' caractérise une courbe de JorDaN. Je me
propose dans cette Note de donner une démonstration du théoréme
ci-dessus énoncé. Je rappellerai d’abord certaines définitions et résul-
tats connus.
~ Nous caractérisons comme il suil les edtds positif- et négatif
en un pomnt I dune ligne HIK formée de deux segments de
droite H/, IK, dont I est le seul point commun. Décrivons, dans
le sens direct des rotations, un arc circulaire inférieur & 2, de
cenire /, ayant son orvigme sur /X et son extrémité sur AL Cet
arc borne, avec HJI et IK, un sectenr de cercle w. Soit /. un
ensemble continu, tel que, & lintérieur d’un certain cercle ¢ de
centre [ et de rayon inférieur & celui de w, L et HI1K aient
senlement / en commun. Nous dirons que, au voisinage de I, L
est situé du cOté positif de la ligne HIK (ou du cdté négatif dela
ligne KT H) si les points de L intérieurs & ¢ et distincts de [/ sont
tous dans o.

Il est aisé de voir que, si [T’ est du coté positif de HIK, 1K
est du cote négatif de HIK'.

Si [ est un point non extréme d’une ligne brisée 2 s1mp]e (C’est-
a-dire telle qu’ un point quelconque de la ligne n’appartient & deux
cbtés différents que si ce point est origine de I'un et extrémité de
Pauntre), pour définir les cdtés positif et négatif de A en I, nous
considérons un secteur de cercle analogue & w, limité au ¢Olé (ou aux
deux c¢Otés) de 2 contenant I, et ne rencontrant ancun autre coté de 2.

Soit P un polygone simple, défini avec son sens de parcours. On
montre (voir Comples Rendus de I Académie des Sciences de” Paris,
1911) que P divise le plan en deux régions (nous les appelons
respectivement positive et négative, et les désignons par P+et P—),
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telles que tout continu joignant un de leurs points M au polygone
P, atteint celui-ci du c0té positif pour £+, du cdté négatif pour P—.
A et B étant deux points de P, la ligne brisée décrite en parcourant
P selon son sens, de 4 & Best'arc direct 4 B de P. L’arc rétrograde
A B est géométriquement identique & l'arc direct B A4, mais les sens
de parcours des deux ares sont opposés. -

Pour démontrer le théoréme de M. JorpaN, nous utiliserons le
lemme suivant:

Si, en parcourant une fois un polygone P dans un sens invariable,
on rencontre successivement les quatre points A, B, C, D de ce
polygone, et si (AC), (BD) sont deuz continus joignant respectivement
4 a C, B a D, et dont tous les points, sauf A, B, C, D, sont dans
une méme région limitée par le polygone, ces deus continus ont aw
moms un point commun.

Supposons d’abord que (AC) soit une ligne brisée simple. On
peut toujours choisir le sens positif de parcours de P, de facon que
la région de P contenant (A() et (BD), sauf leurs extrémités,
soit P+,

Considérons alors le polygone = formé de Iarc direct CA de P,
et de la ligne (AC) parcourue de A vers (. (AC) atteignant P en
A et C du c6ié positif, Pare direct AC de P sécarte de = du cblé
négalif en 4 et C.. Done, D qui est sur cet arc est dans n—. Mais,
P et & ayant en commun Pare CA qni contient B, les cOtés positifs
de P et de & au voisinage de B coincident. Donc le continu (BD)
est, au voisinage de B, dans n+. On en déduit que (BD) rencontre
s en un point différent de 5. Comme (BD) ne rencontre pas 'are
Cd, (BD) renconire (AC).

Supposons que ni (4C) ni (B D) ne soient des lignes brisées simples.
Si ces continus n’ont pas de poinis communs, leur distance minimum
est un nombre positif «. On remplace le continu (4C) par une ligne
brisée simple 2 d’extrémités 4 et C, située, sanf pour ces deux
points, dans P+ comme lest (4C), et ayant tous ses poinis 4 une
distance de (AC) inférieure & «. D’aprés la premiere partie de la
démonstration, 2 rencontre (5BD). Nous aboutissons donc & une
contradiction. Donc (AC) et (BD) se rencontrent dans tous les cas.

Nous déduirons de ce lemme une proposilion essentielle.

Soit I' une courbe de JorpaN el () la circonférence de cercle
correspondant ponctuellement & I Si an point décrit O dans le
sens direct, nous dirons que le point homologue de I déerit T dans
le seds positif. On échange le sens positif de parcours de I' en
transformant le cercle O en lui-méme par une syméirie par rapport
a un de ses diamétres. Cela posé,
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Si A, B, C, D sont quatre points dun polygone simple P, et
A', B', C', D' quatre points d’une courbe de JoRDAN T'ne rencontrant
pas P, si (44'), (BB"), (CC"), (DD") sont quatre continus deus
deux distincts contenant respectivement les poinis mis en dvidence
dans leurs désignations et w'en ayant aucun autre de commun avec
P i avee T, lordre des quatre points A", B', C', D' sur ln courbe
r, et celui de 4, B, C, D sur P, l'une et Pautre pavcourus dans
le sens positif, sont identiques ou tnverses.”

On voit sans peine qu’en échangeant entre elles, 'l en est besoin,
les dénominations des couples associés 4 et A’, etc., el aussi
en modifiant le sens positif de I, la proposition serail en défaut
dans le cas unique ou, 4, B, C, D éiant rencontrés sar P dans
leur ordre d’énonciation, on rvencontrerait sur I' successivement A4/,
C’, B, D’. Mais alors le continu (AC) formé de (d4’), de (CC")
et de I'arc direct A’C’ de I ne renconirerait pas le continu (B.D)
formé de (BB’), de (DD’) et de larc divect B’D’ de I Or ces
deux continus sont, & Vexception de leurs extrémités 4, B, C, D
I'un et lautre dans la végion de P contenant I C.q.f. d.

Rappelons maintenant que si 'on forme une subdivision du plan
en carrés égaux (y) par deux familles de droites respectivement
paralleles & deux directions reclangulaires, et, si ’on considére les
ensembles formés par les carrés ne contenant, ni intérieurement ni
sur leur contour, nul point d’un continu %, ces ensembles forment
des domaines (réunion d’un continuum et de sa fronti¢re; un continuum
_est un ensemble connexe dont tous les points lui sont intérieurs)
dont chacun est limité par un polygone simple appelé polygone
d'approximation de I, relatif au quadrillage (y) Le sens positif d'un
tel polygone & sera défini par la condition que % soit dans m—.

Tout point H de =« est situé sur 'un (on swr deux) des cdiés
d’un (ou de deux ou de trois) carré vy dont I'intérieur appartient
& & et qui contient, intérienrement ou sur son contour, au moins
un point de Z. L’un de ces points-ci H’, est {el que la distance
HH’ est minimum. Les points non extrémes du segment HH’ sont
situés dans w— et étrangers a Z. D’ailleurs HH’ est au plus égal &
la diagonale de 7.

Cela étant, soient M et N deux points, distincts on non, appar-
tenant & une méme région limitée par T, et P, Q deux points de
I’ tels que les segmenis M P, N Q aient en commun 1° avec T,
uniquement les points respectifs P et (Q, 2° entre eux, éventuellement
et seulement certains de leurs points extrémes (donc si M coincide
avec NV, P est distinct de Q et inversement). M et /N peuveni étre
joints par une ligne simple A dont tous les points sont distincts de
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I Soit 4« un nombre inférieur & la distance de A & I' et & la
distance rectiigne P €. & étant moindre que e, considérons dans
un quadrillage de cOté & le polygone x d'approximation de I, dont
la région positive contient M et N. A partivr de P et de @, les
segments P M, QN vencontrent m aux premiers points respectifs
M, et N,. Soit 9 la plus grande des deux longueurs M, P et
N, Q. 9 tend vers zéro avec & Si 9 4 &< e, sur chacun des arcs
directs M, N,, N, M, de =, il existe des sommets, respectivement
H, K, tels que les segments HH', KK’ les joignant a leurs cor-
respondants définis plus haut, ne coupent ni M, P ni IV, Q. Alos,
d’aprés le lemme, H’ et K’ sont séparés sur I' par P et par Q.

Cela posé, & un sommet H de l'arc divect M, N, de x; faisons
correspondre P ou () ou H’, selon que HH’ rencontre M, P ou
M, Q, ou ni Pun ni 'autre de ces segments. Alors, & la suite des
sommets de l'arc M, N, correspond une suite de points de I, tels
que la distance de chacun d’eux au suivant est inférieure & 29 - be.
Tous ces points sont sur un méme amc P @ de I, puisqu’ aucun
d’eux n’est sur 'arc P @ contenant K’

De méme, sur ce dernier arc, nous pouvons former enire P et
Q une chaine de points, telle que la distance de chacun d’eux ai
suivant soit inférieure & 29 - 55, chacun de ces poinls étant d’ail-
leurs distant de moins de 2e¢ d’un sommet de . Nous déduisons de
14 les deux corollaires suivants:

1* Toute végion limitée par T admet pour frontiére la totalité de T.

Car la région contenant } et N admet pour frontiere chacun
des deux arcs P @ de I'

2° M et N étant dans une méme région de I, P et Q étant sur I et les
segments M P et N Q étant sans points non extrémes communs, ni avec T,
ni entre eux; quel que soit le nombre positif v, il est possible de trouver
deux lignes brisées 7,2’ dont tous les points sont clrangers & I' et
situds & une distance inféricurve & v, respectvement de larve direct
PQ et de larc direct QP de T, les extrémités de chacune des deux
lignes A, 2" éiant, lune sur M P, Pautre sur N Q.

En particalier, si M, N et 'an des ares P () sont intérieurs & un
cercle ¢, on peut joindre M & N par une ligne brisée ne rencon-
trant pas I' et intérieure & c.

De ces corollaires nous tirons les propositions suivantes:

1° Toute courbe de JorDAN admettant un arc reciiligne divise le
plan en deux régions. -

En effet, soit / le milieu de I'arc rectiligne direct H X apparte-
nant a I' et w un cercle de centre / ne contenant ancun point de
Parc KH de I. Le diametre A K divise w en deunx demi-cercles
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o, et o, L'intérieur de w, fait partie d’'une méme rvégion r, limitée
par " De méme l'intérieur de w, appartient & une méme région r,
limiiée par I' D’ailleurs, toute région limitée par I" admet I pour
point frontiére, donc possede des points dans w, donc dans w, ou
dans w,. Elle coincide done avec », ou avee 7,.

Je dis que », et », sont distincts. Sinon, soient ¢, et a, deux
points syméiriques par rapport & /, et respectivement intérieurs a
o, et & o, S était possible de joindre &, & «, par une ligne
brisée simple 2 ne rencontrant pas I, on pourrait choisir A sans
points communs avec le segment ¢, «, en dehors de ses points ex(rémes,
et en ajoutant & A le segment a,e,, on obtiendrait un polygone fermé
w. Le segment H K et le cOté «,¢, de @ se coupent en leur milieu
1. Dailleurs H K ne rencontre plus w. Done, H et K sont dans
deux régions différentes de w. Done, l'arc divect X H de I'rencontre
@, et comme cef arc ne rencontre pas le segment «,«,, il rencontre
7, ce qui est contraire & I’hypothése. La proposition est done démontrée.

2° Toute courbe de Jorpax divise le plan en deux régions.

Soit J un point queleonque de I Soit ¢ un cercle de centre J
et laissant & son extérieur un pomnt K, de I Il existe un cercle ¢’
concentrique et intérieur a ¢, tel que, si P est un point de I'intérieur
4 ¢, 'un des deux ares PJ de I' est intérieur & ¢. La méme
propriété est dés lors vérifiée pour I'un des deux ares P Q,si Pet Q
sont & la fois sur T et dans c’.

Il est possible d’entourer K, d’un cercle ¢" extérieur & ¢ et tel
que, si « ‘et 3 sont deux points de I"intérieurs & ¢", I'un des deux
arcs a(f de I' est extérieur & c¢. Le segment @ 8 rencontre en général
I' en d’autres points que a et B, peut-étre méme en une infinité de
points. Ceux-ci forment sur le segment « # un ensemble fermé. Soit
HK un intervalle contigu & cet ensemble. Le segment HK est une
corde de I' Ses extrémités seules font partie de I L’un des deux
ares HK de T est extérieur & ¢. L’autre contient J. On peut, quitte
a échanger les dénominations de H et de K, supposer que ce dernier
arc est I'arc direct KH de T.

Soit I la courbe de JorpAN obtenue en ajoutant & Varc direct
KH de T, le segment rectiligne HK. Dans ¢, I' et I, coincident,
puisque ces deux courbes différent uniquement par lenrs arcs directs
HK, 'un et lautre extérieurs & c.

I, divise le plan en deux régions admettant 'une et Vautre J
pour point frontiére. Soicnt M et IV deux points appartenant respec-
tivement & ces deux régions et contenus dans ¢'. Joignons M et N
& J. Soient, & partic de M et de N vespectivement, P et Q les
deux premiers points de renconive obtenus avec I Les segments

9

Proceedings Royal Acad. Amsterdam. Vol. XXI.
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MP, NQ étant intérieurs & ¢’, ot I' et I', coincident, P et @ sont
sur I et les segments MP, N@ n’ont avec I, d’autres points
communs que P et Q. MP et NQ n’ont pas de points communs
entre eux, sauf éventuellement P et (), si ces points coincident
avec J.

Je dis que tout point S étranger & I _peut étre joint & M ound N
par une ligne brisée ne rencontrant pas I En effet, d’apres le
premier corollaire, S peut éire joint & un point 7" intérieur & ¢’
et étranger & I 7 est, relativement a I, dans la méme région que
M ou que N. Soit I le premier point de rencontre & partir de 7,
du segment 7'J avec I' (et avec T, puisque 7'J est dans ¢’). En
vertu du second corollaire, on peut joindre 774 M (ou 71" a N)
par une ligne brisée 7T, M, M (ou T7, N.N) élrangére & I, et
intérieure & ¢, puisque ¢ contient les segments M P, N @, TR, 'un des
deux arcs PR el 'un des deux arcs QR. Comme l'arc direct HK
de I' ne pénétre pas dans ¢, la méme ligne brisée est sans points
communs avec I Donc, I' divise le plan en deux régions an plus.

Diailleurs, M et N sont dans deux régions différentes de I,
sinon on pourrait joindre 3 & N par une ligne brisée étrangére &
T" et située dans ¢. Donc, cette méme ligne ne renconirerait pas I,
et par suite M et N seraient dans la méme végion de I, ce qui
est fanx par hypothése.

Donc, I' divise le plan en deux régions et deux seulement. Le
théoréme de JorpaN est donc démontré. Nous avons au surplus,
obtenu un procédé pour définir le cOté positif de I en un point J.
On se donne c¢. On en déduit ¢’, puis une corde H XK de T, telle
que ni cette corde, ni l'arc direct H K ne rencontrent c¢. La courbe
formée par l'arc direct KM de I suivi de la corde HK, limite
une région contenant le c¢Oté positif de la corde H K. Les points
de cette région situés daus ¢’ définissent le cOté positif de I en J.

On montre sans difficulté que ce coté est indépendant de la corde
auxiliaire choisie H K, et que les cOtés positifs de I" en tous ses
points appartiennent & une méme région limitée par I' et que l'on
peut appeler région positive de Il
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Physiology. — “On the spontaneous transformation to a colloic
state of solutions of odorous substances by exposure lo ult
violet light” By Prof. H. Zwasrpemaker and Dr. F. Hoeewn

i
i

(Communicated in the meeting of April 26, 1918). .

The literature contains a number of records concerm’né the spon
neous transformation to a colloidal state of substances whc
molecules contain a noticeably large number of atoms (Brim
colouring matters) or which are of a considerable molecular weig
(J. Travse?) alkaloids). As one of us had noted the spontanec
transformation of eugenol in glycerin, when these substances &
rapidly mixed up, and ‘had been able to establish at the sat
time several details, we resolved io investigate more systematica
the transformation of solutions of odorous substances in watb
glycerin, and paraffin. After being rapidly mixed up, the solutic
were allowed to stand for weeks and subsequently examined up
Tyndall's effect and observed ultramicroscopically ®).

It appeared that the following solutions yield a strong Tynds
effect.

In water In glycerin In parajffin
Eugenol Eugenol Anilin
Cressol Safrol Eugenol
Gruaiacol (Creosote Cumidin
Carvacrol Nitrobenzol

Citral

Cumidin Cressol

Thymol Apiol

Hypnon .

In this table the odorous substances have been arranged accordi
to their degree of transformation. In a number of cases the oblique

) Burrz, Album J. v. Bemmeren, 1910, p. 110 (boundary value between
and 55 atoms)

%) J. Trauveg, Int. Ztsch. f. Physik. Chem. Biol. Bd. I, p. 35, 1914 (bound:
value between 208 — 275 molecular weight).

5) The examination upon Tyndall's effect was performed in the light-cone o
small electric arc-lamp, while watching the complete extinction of the obliqu

g*
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diffused light has been measured after the method of KamErLINGR
Onnes and Krmsom'). The values of the quantitative determinations
in the series of the aqueous solutions are in the ratio of 43:39:
:87:20:15:15:10; in the paraffinous solutions 23:18: slight.

Besides the above solutions also the aqueouns solutions of apiol,
creosol, paraxylenol, anysaldehyd appearéd to yield a markedly
distinet effect. The Tyndal phenomenon is fairly distinet in old
aqueous solutions of xylidin, orthotoluidin, chinolin, durol. A moderate
effect we discovered of old aqueous solutions of methylcinnamylate,
paratoluidin, salicylaldehyd, naphtalin, cumarin, tolucl, anthranil-
acid methylester, benzylbenzoate. A very slight effect was evinced
by agqueous solutions of safrol, vanillin, anthracene, ‘mitrobenzol.

_Tyndall’s effect did not appear in old aqueous solations of iron,
heliotropin, moschus, isomuscon *).

The solutions were fully saturated. This is, however, not necessary
for odorous substances with a sirong tendency for transformation
such as eugenol, cressol, guaiacol, carvacrol etc.

In glycerin solutions the phenomenon is of less frequent occurrence.
We demonstrated the absence of Tyndall’s effect in a number of old
solutions in glycerin of odorous substances, which, when dissolved in
water, became colloidal within a few days. Also in a solution
in paraffin transformation occurs rarely.

When there is hardly any solubility, Tyndall’s effect cannot be
expected in the long run with odorous substances, but also, even when
e.g. fluorescence shows us that molecules are thrown into solution,
transformation to the colloidal stale is sometimes lacking altogether,
even when the solution has been standing for a long time. Such is
the case with heliotropin. Engenol is the substance that, both in water
and in glycerin, attains a more intense colloidal condition than all
other odorous substances examined. Also in paraffin eugenol becomes
colloidal; anilin, in this solvent, still more so.

Generally speaking, odorous substances becoming intensely colloidal

diffused Jight by means of a Nicol prism in the large apparatus of Zsiemonor.
The solutions in glycerin, however, could not be {aken up in an ordinary cuvette,
the stuff with which the quartz windows are fixed, being soluble in glycerin. In
this case we therefore used Zeiss’ paraboloid condensor, or a Leilz’ darkground-
condensor-cuvette.

1) KamerrLinGge ONNES and KEeson, Acad. Amst. 29 Feb. 1908.

%) The list of odorous substances that are transformed spontaneously has since
been lengihened considerably. Also the alkaloids that become at lenglh colloidal
in aqueous solutions, are very numerous. It is interesting lo contrast with them
the erystalloid condition of nearly all solulions of antipyretica (non-alkaloids).
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have a greater molecular weight than those thal are not transformed
or hardly so; again, the former generally bring about a more con-
siderable lowering of the surface-tension of water. For the solutions
examined upon their Tyndall effect the number of droplets decreased
in an orderly manner. Calling the number of droplets for pure water 49,
that of eugenol is 90, crissol 80, carvacrol 80, citral 72, thymol 72,
guaiacol 70, cumidin 65, hypnone 54. This series corresponds
approximately with the one holding for Tyndall’s effect. On the whole
there is an orderly decrease in the power to produce a lowering of
the surface tension between air and water, similar to that of the
power to bring about a colloidal condition of the saturated or half-
saturated_solution.

When examining our solutions ultramicroscopically while standing
for days and weeks, at various intervals, the number of submicrons
appears to augment') to the detriment of the amicrons, which formed
the base of the cone. In strong colloid solutions there ultimately
appears a precipitate, as in the case of eugenol. By the addition
of '/, n. sodium-carbonate solutions the markedly opalescent fluid at
once becomes rather more translucent, in which process amicrons
re-appear, this time to the detriment of the spontaneous submicrons
previously formed.

Prior to and subsequent to transformation the surface-tension of
the solution is approximately equal (with a eugenol solution 1 : 1500
fresh 67 and old 67 droplets for the stalagmometer volume). Also
the smell-intensity is the same before and after transformation. Upon
this basis we feel justitied in terming the transformed odorous solutions
“suspensoids”’. Exposed in the usual way in an U-tube to the action
of a constant electric current, the particles in these suspensoids were
all moved towards the anode. It follows then that the particles
themselves must be negatively charged. The arm with the 4 pole
was getting more opalescent, the one with the—pole cleared up.

After reversal of the current the previous state was restored.
Likwise the previons intensity of Tyndall’s effect is restored by mixing
the contents of the two arms. The following table gives the quantitative
relations of the light-intensities of the Tyndall effect of the solutions,

1) The fluids, the colloidal as well as the fresh-prepared control fluids, were
instantly filtered in the cuvette through a paper filter. Consequently with pure
water only half a dozen submicrons at the most were discernible in a microscopic
field. With water a base of amicrons was altogether lacking, similarly with the
fresh control-fluids; but in the saturated or partly saturated solutions that through
standing had been changed into suspensions, we discerned besides a base of
amicrons a very large number of submicrons in aclive Brownian movement.
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tabulated above, after allowing a current to pass through for one hour:

INTENSITY OF THE OBLIQUELY DIFFUSED LIGHT.

Initially At the — pole At the 4 pole
Eugenol.......... v 37 1;3 41
Guaiacol. .vv.uun. 37 29 35
Cressol.:........ 24 19 23
Carvacrol........ 20 16 24
Citral ........... 20 , 16 22
Cumidin ...... . 15 12 18
Thymol.......... 15 10 16
Hypnone......... 10 slight 16

After displacement of the micellae in the suspensoids through the
influence of the current, the surface tension in the arm of the positive
pole appears to become somewhat less than in the arm containing
the negative pole.

NUMBER OF DROPLETS (CALLING THAT OF WATER 49).

Previously | At the — pole At the -}-pole
Eugenol......... 90 81 89
Carvacrol........ 84 19 80
Cressol.......... . 80 8 79
Citral ........... 73 0 4
Thymol. ... ..... 72 70 11
Guaiacol......... 70 10 11
Hypnone ........ 55 54 56

When heating an aqueous eugenol solution 1 : 1200 beyond 40°,
the opalescence decreases, whereas it returns on cooling and after a
few days becomes more iutense than before. Below 30° no change
occurs, even when the solution is maintained at 30° for 24 hours.

Similarly a colloidal solution of eugenol in glycerin appeared to be
much less opalescent on hot summerdays than on cooler days preceding
or following.
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The gradual transformation of solutions of odorous substances
beginning with the formation of amicrons, that develop into sub-
microns, appears to be largely influenced by light. When kept in
the dark, the process is slow in aqueous solutions. There are even
several substances, e.g. chinolin, in which it does not appear at all,
but in which it comes forth distinctly in daylight. It should also be
observed that the effect of ultra-violet light is much stronger than
that of daylight 4.

When exposing a eugenol-solution in a quartz test-tube at '/, m.
distance from the light of a mercury quartz lamp, opalescence is
attained within half an hour, which otherwise is not arrived at in
a fortnight. An eleciric arc-lamp has the same effect in a smaller
degree. This quickening of transformation does not occur when the
quartz-tube is enclosed in stanniol-paper. The same was observed
with all other solutions. Even a heliotropin solution, ultramicroscopically
empty, shows, after half an hour’s radiation, numerous micellae.

Besides by the ordinary light-waves and the ultra violet rays,
odorous substances can also be rendered colloidal by radiation with
radium kept in vitro. In order to ascertain this we took two perfectly
equal glass cuvettes with parallel walls, each filled with saturated
odorous solution. In one of the cuvettes a closed glass tube was
inserted, in which 200 mgrs of a mixture of radium- and bariam-
bromide containing 0,18 °/, RaBr?. If the experiment was performed
with a saturated heliotropin  solution, the control fluid remained
ultramicroscopically empty, whereas the solution, in contact with
the radium tube, showed in 24 hours a base of amicrons and 10
submicrons per microscopic field. Something similar occurred in a
short time also with the other odorous solutions of the table, though
with every following substance of the series more time was required
to obtain a difference in dispersity between the radium-cuvette and
the control-cuvette.

Not only the admitted electro-magnetic waves of the visible light,
the ultraviolet light and the y-rays of the radium, but also the
mechanical energy is competent to give to a fresh-prepared, saturated
multitomic odorous solution the energy needed for an amount of
surface-energy sufficient for the formation of numberless amicrons
and submicrons, to be observed in the gradually developed suspensoid.
By shaking the fluid forcibly, transformation is largely promoted. In

1) Besides opalescence also fluorescence is generated. We arc unable to decide
whether there is any relation between light electricity and the observed highly
aceelerated transformation fo a colloidal state. Gf. HeLuwacns on Light-electricity
in Marx’s Hab. d. Radiol. Vol, III p. 488.
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a heliotropin solution e.g. that remained free from submicrons, even
after standing for months, they appear in a rather large number
directly after the old solution was shaken for some time in the closed
cuvette. The same occurs with glycerinous solutions. Eugenol poured
on glycerin without shaking renders the latter non-opalescent in
five days. When it is vigorously shaken, however, the fluid is rendered
slightly opalescent, and colloidal in the real sense of the word. It
also retains its suspensoidal character in the subsequent phase of
the process.

It is_not likely that chemical energy should also come into play,
since the process also takes place in chemically all but indifferent
fluids, such as paraffin, though it must also be added that entire
deoxidation of paraffin inhibits transformation also in ultraviolet light.
However, there must be still another unknown source of energy,
apart from the radiation of light and the mechanical energy,
which supplies the newly generated micellae with surface-energy,
with or without the aid of oxygen, since eugenol solution enclosed
in a leaden casket, kept in utter darkness, becomes undoubtedly

TRANSFORMATION TO A COLLOIDAL STATE OF AQUEOQUS SOLUTIONS IN THE ANILIN-SERIES.

Molec. weight | Number of Atoms Tyndall’s effect
Anilin.......... 93 14 hardly distinguishable
Toluidin........ 107 17 rather distinct
Xylidin....... e 121 20 " ”
Cumidin........ 135 23 distinct

Ip. IN THE BENZOLSERIES.
L o — ]

Molec. WEIGHT | NUMBER OF ATOMS Tyndall’s effect
Benzol.......... 78 12 hardly distinguishable
Toluol.......... 95 15 little distinct
Xylol.oovuvunnnn 106 18
. Pseudocumol ... 120 21 httte distinct
Durol.......... 134 24 rather distinct

suspensoidal within a few days. However, to obtain this, large
dissolved molecules are required. This is clearly shown when
comparing the terms of an homologous series inter se.
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Odorous substances never have very large molecules. ') Therefore,
there will never be an extremely strong tendency to form amicrons,
subsequenily submicrons, as soon as the supply of energy that may
pass into surface-energy, is established. This accounts for the process
being hitherto unohserved. But when working with much larger
molecules, we may readily presume that the process of transformation
is highly facilitated, and will show itself very distinctly, whenever
electromagnetic waves, mechanical energy, or the unknown source
of energy, suggested above, are present, from which the particles
to be formed, derive their surface-energy.

!) The odorous substances examined by us, had a molecular weight between
78 and 199; the number of their atoms amounled to from 14 to 27, on the
understanding that no multiple of the chemical formula should be taken.
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Chemistry. — «“The Passivity 6f Chromium”. (Third Communication).
By Dr. A. H. W. Aren. (Communicated by Prof. A. F. HoLLEMAN).

(Communicated in the Meeting of March 23, 1918).

When it is tried to explain the results communicated in the foregoing
papers') we should in the first place consider the possibility that
the hydrogen (or oxygen) present in the surface layer of the melal,
has a certain inflnence on the phenomena. B

The phenomena, that render it probable that the hydrogen present
in the surface layer of the metal promotes the activity, are among
others the following.

When a piece of GorpscEMIDT chromium, which contains little
hydrogen, is placed in a feeble acid or in very dilute sulphuric
acid, it does not go spontaneously into solution with generation of
hydrogen. When the chromium is, however, cathodically polarized,
so that hydrogen is generated in consequence of this, the chromium
goes also into solution as chromousion. When the current is broken,
also the dissolving as chromousion stops, when the acid is diluted
enough. In more concentrated acids, especially in bydrochloric acid,
and also at higher {emperatures in diluted acids, the dissolving
accompanied by hydrogen generation, begins spontaneously after a
short time. ,

From the fact, that the cathodic polarisation causes the solution
of the chromiam, we may conclude that the hydrogen charge that
the metal acquires in this case, is the cause of the activity. At the
same time it follows from this that a hydrogen charge correspond-
ing to gaseous hydrogen of one atmosphere is not sufficient to
activate chrominm, for in this case the activity would lave to con-
tinue to exist when the current is broken. At that moment, and
also some time after, the metal has, namely, a hydrogen charge
that is at least equal to one atmosphere, and yet the going into
solution ceases spontaneously. The activity disappearseven when the
cathodic polarizing current is not broken, but only sufficiently
weakened *). FLaDE *) denies this statement of RaTHERrT, but describes

1) These Proc. XX, p. 812, 1119.
%) Raruert. Zeitschr. f. physik. Chemie 86. 567, (1914).
3) ibid. 88 569 (1914).
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an experiment that proves about the same thing. He found, namely,
that a passive electrode in diluted sulphuric acid eould be cathodi-

cally polarized to a feeble hydrogen generation without becoming
active.

The behaviour of chromium in acids can be derived from figuve 1.
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Fig. 1.

The 10log of the hydrogen pressure has been plotted on the abs-
cissa, the potential on the ordinate. The line AB indicates the
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hydrogen chavges which an electrode acquires for different potentials
when the concentration of the hydrogen ions in the solution is 1.

The same thing is given by the line CD for a hydrogen ion
concentration 0.01 etc. These lines are nothing but the graphical
representation of the polential of the hydrogen electrode. ‘

-Let us now assume that the potential of-a.chromium electrode
in a solution of a given chromjum concentration is determined by
the density of the hydrogen charge, and can be represented by the
line PQ in figure 1. There is litlle to be said about the course of
this line; only on increasing hydrogen -charge this line must draw
near to a limiting value, which represents the real potential of
equilibrium of chromium. ‘

This latter supposition, that the electrode presents a chromium
potential, which c.p. is only dependent on the density of the hydrogen
charge, goes slightly furtber than the usual hydrogen hypothesis,
according to which the hydrogen would only accelerate the setting
in of the equilibrium. According to our conception a certain chro-
mium potential corresponds to a given hydrogen charge. This suppo-
sition may seem improbable considered in itself, without it an
explanation by the aid of the hydrogen hypothesis is not possible
in my opinion. In what way the chromium potential comes about
here, will not be discussed.

When we now take a chromium electrode with a gas charge 1,
then the potential of this is &, according to figure 1. If this electrode
is placed in a solution, which is 0.01 n. of acid, it can generate
from it exactly hydrogen of one atmosphere. In consequence. of the
overvoltage no hydrogen will be generated, but the chromium will
not lose its gas charge either. Hence the potential remains unchanged.
When the same chromium is brought in an acid in which the con-
centration of the hydrogen ions is =— 1, the chromium at the
potential R can develop hydrogen in this acid to a pressure of 10*
atm. In consequence of the increase of the hydrogen charge the
potential now descends below [, this canses the hydrogen charge
to increase, and thus the potential will continue to descend. The
lowest value that can be attained, is S. This value need not be
reached, however. It can only exist for a hydrogen charge of 10*°
atm., and this is only possible when there is a very great over-
voltage for hydrogen generation at chromium.

It appears therefore from this, that chromium with a hydrogen
charge 1 will spontaneously activate, when placed in an acid which
is stronger than 0,01 n. If the acid is weaker, the chromium does
- not spontaneously become active. In 10—* n, acid a hydrogen charge
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of 10—* aim. corresponds to a potential R, and the hydrogen charge
of chromium does, therefore, not become stronger of its own accord.
When, however, this chromium is cathodically polarized in 10—* n.
acid, the hydrogen charge increases, the chromium potential decreases.
If this falls below TV, the chromium can be activated further
spontaneously till the potential has become U. By stronger cathodic
polarisation the potential can become lower than U; when the
current is broken the potential will, however, have to rise again
up to U. The potential itself will not stop at U, but become higher.
If the hydrogen generation is sufficiently vigorous to maintain a
sufficient gas charge on the chromium, the potential can remain
between V and U. Then the chrominm remains active. When the
hydrogen charge becomes smaller than corresponds with ¥, the
potential rises above V, and fhe activity disappears. Not only when
the current is broken can the potential rise above V; it is also
possible that this already takes place in case the polarizing current
is weakened. When e.g. with vigorous cathodic polarisation- the gas
charge becomes greater than 7, the gas charge can become smaller
than ¥V when ihe hLydrogen generation becomes feebler, and the
activity will disappear. This is the above described phenomenon of
Rarnerr. It is likewise possible that with very weak cathodic pola-
rization the hydrogen charge does not become greatenough to lower
the potential below U. Then the metal remains passive in spite of
the cathodic polarization (FLADE). \ -

The most negative potentials that the chromium can spontaneously
assume in 1 n. 0.01 n. and 0.0001 n. acid, are accordingly S, 7, and U.
These will, however, not be reached, because a very great over-
voltage would be required for it. In reality the potentials S, 77,
and U’ will e.g. be observed. '

The above given considerations account, therefore, sufficiently for
thé spontaneous activation of chromium in acids, and the activation
by cathodic polarization, also in connection with the strength of
the acid.

Chromium becoming more easily active in hydrochloric acid than
in sulphuric acid or in other acids, there must exist a specific
activating action of the chlorine ions. This comes to this that a
smaller gas charge is required for the activation in hydrochloric
acid, and that the line PQ must therefore be drawn more to the
left for hydrochloric acid. The same thing applies for higher temperatures.

It appears then also from figure 1, that chromium can only remain
strongly active in a liquid in which it develops hydrogen, and,
therefore, maintains its gas charge itself. When now a fresh electrode

»
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of electrolytic chromium, which contains a great quantity of hydrogen,
is placed in a solution of chromous-sulphate, as described in the first
paper, this will at first present a strongly negative potential in
consequence of the great hydrogen charge. When the chromium is
left in contact with the solution, it loses its hydrogen at the surface.
The potential shifts along the Iine QR in the direction of R, The
potential rises then to L —=-—0.27 V, as was communicated in the
first paper.

This is, thervefore, probably the chromium potential that the metal
presents for a hydrogen charge 1, because the chrominm will cede
hydrogen to the solution till its pressure has become one atmosphere.

When such an electrode is now cathodically polarized in chromous-
sulphate, hydrogen is generated. The chromium regains its hydrogen
charge, and with it its active potential.

By the aid of figure 1 the phenomena for cathodic polarisation
are, therefore, to be explained in a simple way. Also the activating
action of the anodic polarization on electrolytic chromimum can be
accounted for by the aid of these considerations, when the diffusion
of the hydrogen in the metal is taken into account.

When the chromium has been electrolytically separated, it has a
high hydrogen content, jof which we assume that it is the same
throughout the entire thickness of the layer. When in figure 2 DF
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represents this thickness and we plot the concentration of the hydrogen
normal to it, this is represented by a horizontal straight line AG.
The line GF represents the surface of contact of the chromium with
the liquid. On account of the great hydrogen conient in the boundary
surface the chromium will possess a very active potential. When
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the chromium is left in contact with the liquid, the hydrogen present
in the boundary surface GF, will for the greater part pass into the
solution, or escape in gas form. This causes the concentration of the
hydrogen at the boundary surface to become smaller.

In consequence of this the hydrogen diffuses from the metal towards
the boundary surface, and after a certain time the concentration of
the hydrogen in the chromium will be represented by the line ABC.
In the part AB the concentration has remained unchanged, in BC
the concentration has changed through diffusion. We shall call the
layer EF, in which the diffusion is perceptible; the diffusion layer.
The chromium now presents a potential which is determined by
the size of FC. -

When we now polarize anodically, the first consequence will be,
that the hydrogen concentration at the boundary surface F'C becomes
smaller. This will at any rate be the case when the solution nsed
is so little acid, that the hydrogen potential corresponding to a given
hydrogen charge, is more negative than the chromium potential of
the same hydrogen charge. This applies therefore to those parts of
the hydrogen lines (4B, €D, ete.) that lie under the chromium line
P@Q in fig. 1. For in case of anodic polarization, the potential of
the metal will herve lie further above the equnilibrium potential of
the hydrogen than above that of the chromium, so that the hydrogen
will dissolve to a greater extent.

At the same time chromium goes into solution. Hence the boundary
layer G shifts to the left, and gets e.g. at the place G'F’. The
thickness of the diffusion layer has now become smaller, and the
concentration of the hydrogen in this layer is represented by B’C".
Now the hydrogen charge at the boundary surface is F’(’, hence
smaller than before the anodic polarization. When the strength of
the current is kept constant, a stationary state will set in, in
which F’C’ is constant, and also the concentration gradient in the
diffusion layer.

When the strength of the current is increased, this stationary state
will be another, i.e. so, that F’/C’ is smaller and the concentration
gradient of the hydrogen in the diffusion layer greater than in case
of smaller strength of current, because the diffusion layer is thinner.

During anodic polavization the potential will be more positive
than before, because the bydrogen concentration at the boundary
surface is smaller. When the current is broken, the hydrogen will
quickly diffuse towards the boundary surface in consequence of the
great concentration gradient in the thin diffusion layer. This causes
the hydrogen charge at the boundary surface to rise, e.g.-to " C".
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Besides, the diffusion layer becomes thicker again, as the metal no
longer dissolves; the point B', therefore, gets in B". (" must
lie higher than (), because at C" more hydrogen diffuses towards

the boundary surface than at C on account of the slight thickness -

of the diffusion layer. This hydrogen must also pass into the liquid
more rapidly, which is only possible when-F"' C" is greater than F C.

When the value C" has been reached, the hydrogen charge at
the boundary surface will decrease again through the continual
passing of hydrogen into the liquid, and through the supply of hydrogen
from the metal going more slowly, because the diffusion layer
becomes thicker. At last a stationary state is again reached, which
is equal to the state before the polarization, and in which the
hydrogen charge of the boundary surface is ' C', the concentration
of the hydrogen in the diffusion layer B" C".

The greater the density of the current, the smaller will be F' (",
the thinner will be the diffusion layer, and the higher therefore
will C" lie.

Hence the following particulars will be observed for the potential
of electrolytic chromium. When elecirolytic chromium with a fresh
surface is brought into an electrolyte, the hydrogen charge at the
boundary surface is great, F'(7, and the potential strongly negative.
When this chromium is left in contact with the liquid for a long
time, the boundary surface of the metal loses part of its hydrogen,
the hydrogen charge falls to F'C, and the potential becomes more
positive. When we polarize anodically, the hydrogen charge decreases
to /' C', the potential becomes, therefore, still more positive. When
the current is now interrupted, then the hydrogen charge rises to
F'C", the potential becomes much more negative, but gradually the
hydrogen charge decreases again to ' C", and the potential rises
to the value that it showed before the polarization.

This course is quite in concordance with what was drawn in
figure 7 of the second communication.

Accordingly the potential reaches a minimum which is the deeper
as C" lies higher, hence as the strength of the current is greater
and consequently the diffusion layer is thinner.

When the strength of the current is very small, and the diffusion
layer is thick, it may occur that C" does not get above C'", and
that the potential does not pass through a minimum, as is the case
with the line for 1md in figure 7 of the second communication.

It is clear that the phenomena for anodic polarization will,
therefore, chiefly be determined by the hydragen content of the metal.

These phenomena being different for chromium on copper, on
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silver, and on gold i.e so that the potentials for chromium on
copper are the most negative, it must be assumed that chromium
deposited on copper contains more hydrogen than chromium on
silver, and this more than chromium on gold.

In the same way the existence of a relrogressive current potential
line can be explained, as has been drawn in figure 11 of the second
communication. These lines refer to the formation of chromate, and
we shall, therefore, have to assume that also the potential of
chromate formation will be dependent on the hydrogen content. This
dependence is e.g. given by the line V() in figure 1.

Here too, in case of anodic polarization the concentration of the
hydrogen at the boundary layer will be small, hence the potential
high. On increasing current density the diffusion layer becomes
thinner, so that in case of interraptions of the current by the
commutator the hydrogen charge at the boundary surface ajfter the
current has been broken will be the greater as the current density
was greater.

Hence for greater carrent density the potential is more negative
after the current has been interrupted than for small carvent density.
Moreover it is clear that the retrogressive current potential line can
only be found when we work with'a commutator. When the potential
is measured with continual passage of the current, the potential is
the more positive as the current density 1s greater, because then
only the hydrogen charge at the boundary surface is to be reckoned
with as it is during the polarization.

Accordingly the activation ajfter anodic polarization can be satis-
factorily accounted for by means of the hydrogen theory.

It remains, however, to explain the phenomenon that on anodic
polarization of electrolytic chromium and of activated chrominm of
Gonpscumipt, the potenfial becomes more negative also during the
passage of the current. .

An explanation of this may be arrived at when it is borne in
mind, that not immediately after the current is broken or started
the state in the diffusion layer is stationary.

When in figure 3 B( represents the concentration of the hydrogen
in the diffusion layer of a piece of chromium which has been in
contact for a long time with an electrolyte, the hydrogen at the
boundary surface has the concentration F'C. When this elecirode is
now anodically polarized, the concentration of the hydrogen will
descend to F7(C’ in consequence of this. Now the concentration of
the hydrogen in the diffusion layer will have the course B’C’. This
will be the state when the current has just been started, and the

10

Proceedings Royal Acad. Amsterdam. Vol XXI.
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boundary surface has, therefore, been only little shifted inward. When
the passage of the ecurrent is continued, the boundary surface moves
more inward, and when it has reached F" G", a stationary state
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Fig. 3.

will have been reached, in which t(he thickness of the diffusion
layer and the concentralion gradient of the hydrogen is stationary.
The former is smaller and the latter is greater than when the current
had just been started; consequently also the hydrogen charge atthe
boundary surface F" " can now be greater than at first. The
course of the potential as function of the time will, therefore, be
as follows. Before the polarization the electrode is comparatively
active, corresponding to the hydrogen charge F C: When the current
is put on, the potential rises in consequence of the decrease of the
hydrogen charge. On continued passage of the current the potential
descends again, because the hydrogen charge becomes greater again
in consequence of the diffusion layer becoming thinner.

This is what was observed for the anodic polarization of electrolytic
chromium, and also of GorpscEMIDT chromium which is activated
in molten ZnCl, or KCl 4 NaCl. Also with chromium of Gowup-
scuMipt which has been activated in strong HCI, the same pbenomenon
is observed. Nevertheless there exists quantitatively a great difference
between these {wo kinds of chromiom. With electrolytic chromium
the activation proceeds much more quickly during the passage of
the current than with Gorpscamipr chromium which has been
activated in ZnCl,, and with this again more quickly than with
GovpscEMIDT chromium that has been activated in hydrochlorie acid.
For this last the potential continued to become more and more
negative for hours with constant strength of the current. For electro-
lytic chromium this continued only for a few minutes. The difference
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in the duration of the phenomenon may be attributed to a difference
in the hydrogen content of electrolytic chromium and (GoLDscHMIDT
chromium. The former can bear a much stronger current already
at the beginning of the anodic polarization than the latter. In
consequence of this the displacement of the boundary surface G'F
to "I goes much more quickly for electrolytic chromium than
for chromium of GovnpscamipT, hence also the activation on anodic
polarization proceeds more quickly for electrolytic chromium.

As has been described in the second paper, a piece of GoLDSCHMIDT
chromium that has become active through anodic polarization, can
not bear the same strength of current any more when the carrent
has been broken for some time, though the potential is then much
more negalive than immediately after polarisation. This, too, can be
accounted for by the diffusion of the hydrogen in the metal. Before
the polarization the concentraiion of the hydrogen in the diffusion
layer is represented by BC in figure 4. When the electrode is
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anodically polarized, and the strength of the current is slowly carried
up, a stationary state will be reached after some time, for which
the concentration of the hydrogen in the diffusion layer, whiclh has
now become a good deal thinner, is represented by B,C,. When
the current is interrupted, the hydrogen concentration at the boundary
surface rises in consequence of ‘the great gradient of concentration.
Besides the thickness of the diffusion layer increases, which extends
inwards in the metal, and is no longer dissolved from outside. The
course of the concentration of the hydrogen in the diffusion layer
is now successively represented by B,C,, B,C,, B,C,, B,C,, B,C,
and B,C;. With B,C, the concentration of the hydrogen at the
boundary surface is greatest, the potential, therefore, most negative.
10*
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When we now anodically polarize with the same strength of current
as when the hydrogen concentration was represented by B,C,, the
hydrogen charge at the boundary surface will now descend below
C,, since the thickness of the diffusion layer is now so much greater
than immediately after polarization, and the diffusion of hydrogen
accordingly proceeds so much more slowly. In consequence of this
the chromium gets a more positive potential. In this way it is,
therefore, explicable that the chromium can bear a stronger current
when this is again put on immediately after the interruption than
when the current has remained broken for some time, though in
the latter case the potential is more negative in current-less condition.
[t now also appears that there is no immediate connection between
the potential of a chrominm electrode in current-less condition, and
the possibility of its becoming passive. The former is namely deter-
mined by the density of the hydrogen charge at the boundary surface,
whereas it depends on the gradient of concentration in the diffusion
layer whether the electrode can be made passive. The before described
phenomenon that not always the most negative electrode is most
difficult to passivate, is in agreement with this.

So far the phenomena can, therefore, be explained by the aid of
the hydrogen theory. That the phenomena are caused by a parti-
cular state of the metal surface, and not of the liquid, appears from
this that they qualitatively remain the same, when the liguid is
vigorously stirved, and also when the liquid is entirely renewed.
The potential of the electrode only becomes somewhat more positive
by stirring. This is probably owing to this, that in consequence of
the stirring the solution contains more oxygen, and the hydrogen is
more quickly withdrawn from the chromium surface. When the
stirrer is stopped, the potential falls again. )

In these experiments the chromium anode was placed in a saturate
solution of KCI, the cathode in a same solution in a porous vessel.
This latter liquid became alcalic during passage of* the current. The
solution round the anode became on the other hand acid. To deter-
mine the degree of acidity a hydrogen electrode was placed in this
solution. It presented a potential —0.58 V. with respect to the n.
calomel electrode, corresponding with a hydrogen ion concentration
of 10-5. A curvent of 4 mA had been led through this solution for
20 hours.

That the solution became acid can be explained by a hydrolytic
splitting up of the formed CrCl,, or by the hydrogen present in the
chromium going anodically into solution as H.

As the volume of ihe solution amounted to about 300 em?, and
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the hydrogen ion concenfration was 10-5, there has been formed
0.003 mgr. aeq. of hydrogen ions, 3 mF having gone through
the solution. Hence the chromium would have to contain 0.1 °/,
hydrogen in order to give the above mentioned degree of acidity to
the solation. In reality this must be slightly more, because part of
the OH ions has moved from the cathode space to the anode space,
and has, therefore, partly neutralized the acid formed.

It also appeared in these experiments that the potential which the
chromium electrode presents, is really a chromium potential, or at
least no hydrogen potential. In the acid solution the potential was
namely —0.59 V. When the solution was then made feebly alcalic,
the potential rose to —0.58 V, whereas a hydrogen electrode in
the same liquids would have to present a decrease of about 0.2 V.
In this and in other experiments the chromium developed hydrogen.
This cannot be hydrogen that the chromium developed spontaneously
from the liquid, for in this case the potential of the chromium
electrode would have to be more negative than that of a hydrogen
electrode in the same liquid. This was not the case here; the
potential of the hydrogen electrode was —0.58, that of the chromium
electrode —0.52. Besides the hydrogen generation took just as well
place in a feebly alcalic solution as in a feebly acid solution,
whereas the potential of the chromium electrode was often pretty
much more positive than —0.52 V. It is possible that the chromium
contains more hydrogen than dissolves anodically, and that part of
it escapes in gaseous form.

Hence it must be assumed that the examined chrominm always
contained hydrogen. In the case of electrolytic chromium this has
been separated at the same time with the chromium in a consider-
able quantity, whereas the chromium of GorbpscaMiDT contains a
slight quantity. By {reatment with molten KCI 4 NaCl or le101,
the chromium can absorb more hydrogen in consequence of the
decomposition of the water present in it by the chromiom. On the
action of chromiam on these molten salts development of a com-
bustible gas and formation of chromium oxide was always observed.
That ZnCl, activates more strongly than KCl + NaCl could be ex-
plained by this, that the hygroscopic ZnCl, contained more water,
and can, therefore, yield more hydrogen. The activity which chrominm
obtains by treatment with hydrochloric acid and by increase of
temperature must, however, chiefly or exclusively be attributed to
the hydrogen which is naturally present in the metal.

With regard to the hydrogen generation 'at chromium during the
anodic polarization it should still be pointed out that this ceases
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after the polarizing current has been broken for some time, and in
general is the weaker as the strength of the current is the smaller.
This hydrogen generation is, however, in no connection with the
other phenomena on anodic polarization, as the hydrogen generation
failed to appear in a number of experiments, though the anodic
behaviour was the same for the rest. B

The explanation of the phenomena on cathodic polarization
presents one difficulty, viz. that through the cathodically separated
hydrogen, the metal in a solution of KCl is not activated. The metal,
indeed, gets’ a strongly negative potential, but the strength of the
current which the chrominm anodically can bear, is-not greater than
before the cathodic polarization. To explain this it should be assumed
that the cathodically developed hydrogen only remains at the metal
surface, and does not diffuse, or only very slightly, into the metal.

Amsterdam, March 1918. Chemical Laboratory of the
University.
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Physiology. “On the imfluence of the inerease of the osmotic
jrressure of the jluids of the body on digferent cell-substrata.”

Ii_\' Dr. 5. vk Borr. (Communicated |1_1|.' Prof. (. vax Rusnasrk)
(Communicated in the meeling of March 23, 1918)

In the following experiments an investigation was made inlo the
influence of the increase of the osmotie pressure of the fluids of the
body on the vital functions of frogs. The increase of the osmotic
[rassure was brought about along different ways, which | intend to
indicate here successively, mentioning at the same time the phenomena
I observed.

I. Frogs were placed into a hyperisotonic solution of Rixces
coniaining instead of 6.5 gr. (p. 1) NaCl 18 gr. NaCl. Such a
quantity of this fluid was poured into the vessel in which the
frogs had been removed, that the head and the back projected
above it. A considerable part of the surface of the skin was then
in contact with the ||:I|'!rEr1'i:i{}1tlllit' golution of Riveee. When the
frogs had remained in this solution for about 20 hours, they showed
a series of phenomena as a consequence of the increase of the
osmotic pressure of the fluids of the body. The first phenomenon
that is observed, is the comatons condition. The frog sits still in a
squatting position with the connective lleeces (membranes) before the
eyes, and no longer leaps about. I one stretches out a hindleg,
this abnormal posture of the leg is indeed corvected again but very
sluggishly. Afier a longer residence in the hyperisotonie surroundings
this correction does not take place. lrvitations of the skin have a
slight reflectorie effect which in a later stage is likewise reduced to
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a minimum. The muscles show a strong inclination to contractions.

At the same time the respiration shows a periodicity that is
known by the name of Cheijne-Stokes’ respiration. Groups of dyspnoea
alternate here with pauses. In Fig. 1 we see curves of this
phenomenon which were registered by _suspension of the skin in
one of the flanks. During the flank-movements the pharyngeal
respiration continued likewise and in such a manner thal afier each
flank-movement a movement of the month-bottom could be observed.
In the pauses both these movements ceased.

The curves of Fig. 2 were vegistered with another frog by placing
& cork cylinder through which & pin had been pierced, on the back.
The up-and downward movements of this cylinder were enlarged
by a lever-system and registered on a drum covered by smoked

Fig. 2.

paper. The flank-movements were here likewise accompanied by
movements of the mouth-bottom, whilst in the pauses both these
movements ceased. In both figures we see in the beginning of the
groups the ascending degree indicated. The periodic respiration was
succeeded by a cessation of the respiration. This cessation was
reached, after the animal had remained about 24 to 25 hours in
the hyperisotonic solution of Rixgur.

I found likewise a constantly occurring deviation at the eye-lenses
The surface of the pupil had the appearance of cataract.

The phenomena enumerated above were caused by the increase
of the osmotic pressure of the liquids of the body. A few more
controling experiments were made in this respect.

Whilst the periodical respiration was still going on, or likewise whilst
a cessation of the respiration had already selin, the frog was put into
the water. After the animal had beenin the water for 24 hours, all the
phenomena mentioned above had disappeared. The frog was then
again quite normal, the passivity, the reflectionlessness and coma
had entirely disappeared. The respirvation was then again normal,
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the cataract had entirely or almost entirely disappeared. (Afler the
frog had remained in waler for 2 days not a vestige of the cataract
was left). The frog could not in any respect be distinguished from
a normal one.

A second controlexperiment was made in the following manner:

The frog was put in the lyperisotonic solution of RiNekr, and at
the same time a canule was fastened in the dorsal lymph-bag.
Slowly water was poured into the lymph-bag through this canule.
Under these circumstances the fluids of the body did not become
hyperisotonic, as the water that was withdrawn from the frog
along the skin, was vreplaced again along the lymph-bag. In this
way the frogs could remain alive duving a week without showing
the above mentioned symptoms. Withont the drainage of the Iymph-
dorsal-bag the frog dies in the hyperisotonic solution of RiNcir
within one day and a half.

II. Instead of the hLyperisotonic solution of Rixeir a hyperisotonic
solution of glucose was used (1.38°/, solution). The frogs behaved
in this solution in exactly the same manner.

1. In a third series of experiments fluid was withdrawn from
the frogs by placing them in a dry bottle, and sucking through the
latter by means of a water-jet-suctionpump air that had previously
passed throngh lime-tubes. After one day and a half such a frog
had desiccated so much as to show the same symptoms as a frog
that had been placed in a hyperisotonic fluid. After it had been
removed into the water again a complete restoration set in likewise.

IV. In a fourth series of experiments the blood was replaced
from the vena abdominalis by a hyperisotonic solution of RiNcEr
(with 18 gr. NaCl per L.). When the fluid had streamed through
the frog for 15 to 20 minutes, the same phenomenh of coma,
passivity and reactionlessness set in. The respiration was then
periodical (Cheyne-Stokes’ respiration) or stopped entirely. In the
latter case the Cheyne-Stokes’ respiration could be restored by placing
the frog for a short time into water. A beginning of cataract could
already be observed, when the drainage had lasted 15 to 20 minutes.
If no further measures were taken, the cataract augmented considerably
after the drainage in the course of 10 to 15 minutes.

All phenomena disappeared likewise in this series of experiments
when the ‘frog was removed to water.

A short description of an experiment may follow here.

11'/, o’clock. From the vena abdominalis a frog is drained wilh
a hyperisotonic solution of Ringur during 25 minutes. Coma, passivity

-
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oessatlon of the vespiration, when it is tarned on its back, the frog
~does not move, abnormal position of the o
leg is not corrected, cataract of both the’
eyes!), ‘
At 1 o’clock p]a('ed in. water.
. 1Y/, o’clock. The frog shows now and
- then a respiration.

2 o’clock Cheyne-Stokes’ 1espuat10ns‘
Whilst the frog continues to lie on
its. back .in the bottle of ‘water, the
~number of respirations per group and
~ the duration’ of the pauses dmmg some

fime are regisiered.
Here follows the result:

9 respirations - 58 sec. pause
1 minute pause 14 respirations
9 respirations . . 62 sec. pause
'/, minute pause 11 respirations -
respirations 45 sec. pause
40 sec. pause’ 13 respirations
- ‘11 respirations - 10-see.. pause.
- 70 sec. pause - 20 respirations
- 11 vespirations 62 sec. pause

This observation has this advanta’ge‘_
over the registration, because on account
of “the suspension the respiration -of the '

..hog varies temporally at least often.

_ After this the respiratory curves were
‘vegistered Dy suspension of the mouth- .
bottom, as Laneenporer did- for the first

~time. The first8 minules after the
suspension the respiration stopped entirely.

Thereupon the groups reappeared again. -
- Fig. 3 ;'e[\)res'enls ~some of these. .The
bottom row was registered !/, hour, the
top- one 10 minutes after the suspension.

Wlhen we . compare the respiratory-
cirves of lhebe gloups with the curves -

f\k_

[
1
|

W,

\

2

N

\r

Fig 3.
1) In order to control the experiment {kie two lenses were extirpated after the

experiment ‘and compared with normal extirpated lenses The latter weLe clear
and tlanspalent, the fmmer turbid and opalescent < :

.
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of the normal respiration, it appears that with each movement
of the mouth-bottom one movement of the flanks takes place during
these groups.

Only the two first groups of the top-row set in with a separale
expiration-movement, which is not followed by a movement of the
mouth-bottom. For the rest all groups begin with an e?;piratiou, as
appears from the fact that the lever descends in the beginning.
During the normal respiration the frogs show one flank-movement
with some movements of the mouth-bottom. During the groups of the
Cheyne-Stokes’. respiration every movement of the mouth-bottom is
almost always followed by one flank-movement. In this way the
frog respires likewise when it is dyspnoeic.

If the blood of frogs is replaced by normal isotonic solution of-
Rinesr instead of hyperisotonic fluid of RiNekr the mentioned
phenomena do not occur. The respiration remains normal, the lense
does not become turpid.

A more explicit discussion of the cataract and the Cheyne-Stokes’
respiration follows here.

Cataract.

In whatever way the fluids of the body of frogs may be made
hyperisotonic, cataract occurs always. The cataract disappears however
again, when the osmotic pressure of the fluids of the body is made
normal again.

The cataract develops itself very slowly. When after a perfusion
during 15 or 20 minutes the respiration has stopped already, the
surface of the pupil begins only to become a little dim. If then one
waits a short time without continuing to drain the circulation-
apparatus, the dimness gradually increases. At last two vertical parallel
white stripes are observed on the lense, between which there is a
long dark stripe. It makes the impression as if one sees two whiie
walls and between these a deep, dark moat. The direction is usually
vertical, sometimes almost vertical. This vertical stripe will correspond
to the frontal vertical suture of the lens, as it is described in Gaupp.
(Anatomie des Frosches). One often sees white, thin lines proceeding
in a radiary divection from this vertical line, corresponding to the
so-called spokes of the human cataract. It is obvious that the origin
of the cataract must be attributed to a congelation of the albuminous
substances in consequence of an increase of the saltconcentration of
the fluids of the body. As soon as the osmotic pressure of the fluids
of the body decreases again, the process is likewise converied. In
my opinion another explanation of the phenomenon is impossible.
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It is obvious that also every other circumstance by which a con-
gelation of albuminous substances is caused, can bring about lense-
cataract. In my opinion however it is of importance that I have
indicated, that a mere increase of the osmotic pressure of the fluids
of the body can result in cataract.

-

Cheyne-Stokes’ respiration.

The periodical respiration was caused in my experiments by an
increase of the osmotic pressure of the fluids of the body. The
periodical respiration disappeared likewise again as soon as this
pressure did not exist any longer. In order to study the origin of
the Cheyne-Stokes’ respiration more accurately the desiccation of the
frogs was continued in a series of experiments so far, that the
Cheyne-Stokes’ respiration had not yet set in. Thereupon the mouth-
bottom was suspended and in a warm room the frog was exposed
to further desiccation. Usually the Cheyne-Stokes’ respiration slowly
set in there in the course of a few hours. During these experiments
it appeared tbat besides a periodicity of the flank-respiration we
must distinguish a periodicity of the pharyngeal respiration. In far
advanced stages the two periodicities cointide, so that then dwing
the groups movements of both the flanks and the mouth-bottom
take place, whilst in the pauses the respiration stops entirely. As
a transition to this complete Cheyne-Stokes’ respiration we find a
stage in which the groups are equal to those of the complete Cheyne-
Stoke’s respiration, but duoring this stage the movements of the
mouth-bottom continue. It appears consequently that both ways of
respiration are to a certain degree independent of each other, as
appears indeed also from the normal respiratory curves.

According to the examinations of LaNeevporrr the movement of
the flanks comes off passively without a contraction of the pectoral
muscles. If this is correct, then the movement of the flanks is after
all made possible by  an active opening of the glottis. With the
Cheyne-Stokes’ respiration the periodicity of the movement of the
flanks is determined by a periodicity of the glottis-muscles. An
opening of the glottis is almost constantly followed by a move-
ment of the mouth-bottom, this however is not necessary either. The
first 2 groups of Fig. 3 set in with an expiration that is brought
about by an opening of the glottis, which is however not followed
by a movement of the mouth-bottom.

One word more abouf the cause of the Cheyne-Stokes’ respiration
in these experiments. As I explained already, this phenomenon
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occurs at a hyperisotony of the fluids of the body. This hyperisotony
leads in the end to a cessation of the respiration. Like the cataract
this cessation of the respiration can be suppressed again by a
decrease of the osmolic pressure. Consequently the setting in of
the cessation of the respiration in hyperisotonie surroundings, just
as the Cheyne-Stokes’ respiralion that precedes it, and likewise
the development of cataract originate in modifications that are
reversible.
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Chemistry. — “On the Llectrochemical Behaviour of Metals”. By
Prof. A. Smits. (Communicated by Prof. Zurman).

(Communicated in the meeting of March 23, 1918).
1.  Introduction.

By application of the considerations on which the theory of
allotropy is based to the internal state of the metals and to their
chemical as well as to their electromotive behaviour, we are enabled
to consider all the metals, also those which serve as so-called unat-
tackable electrodes, from the same point of view.

These considerations rest on the more than probable agsumption
that every metal contains metal atoms, one or more kinds of metal
ions, and electrons, which can be in equilibrium under definite
circumstances. When a metal is immersed in an electrolyte, then in
agreement with NErnsT’'s views of the phenomenon of solution, the
heterogeneous eqnilibrium between the metal and the boundary layer
will be established with so great velocity, that it may be said that
this equilibrium always exists. . :

When we, therefore, restrict ourselves to the simple case that the
metal consists of metal atoms, »-valent ions, and electrons, we may
say, that when this metal is immersed in an electrolyte the following
heterogeneous equilibria will at once set in.

My Mgy v8,
S ) ’
My Mp 81
Whether the homogeneous equilibrium will also exist in the two
coexisting phases between the metal atoms, metal ions, and the
electrons, depends on different circumstances. Whereas it seems that
a metal in perfectly dry condition can assume internal equilibrium
as a rule only at comparatively high {emperatuve, this often takes
place very quickly when in contact with an electrolyte, but it may
also occur that the metal gets in equilibrium very slowly, or not at
all, under these circumstances at the ordinary temperature.
The veldeity with which a metal assumes internal equilibrium
under definite circumstances is undoubtedly one of the most charac-
teristic properties of the metal.
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2. The Potential Difference Metal-Electrolyte when
the Metal is Aitacked.

When a metal in contact with an electrolyte superficially assumes
internal equilibrium with very great velocity, the infernal state in
the metal surface remains unchanged, in whatever way the metal may
be attacked.

Let us suppose that we immerse zinc in an aqueons solution of
hvdrochloric acid; then hydrogen genevation takes place, because
the electron concentration of the metal equilibrium

Zn;, 2 Zug, + 201 . . . . N ()]
in the solution is greater than the electron- concentlahon of the
hydrogen equilibrium :

H 2HL—}26L.......(2)

Hence the electrons of the equilibrium (1) are removed, and
through this the equilibrinm is disturbed. It is now the question
how the equilibrium can be restored.

The concentration of the zinc-atoms in the liquid is so small that
even if the reaction constant of the conversion

. . Znp, —> Zng, + 201
was very large, yet only exceedingly few zinc ions and electrons
would be split off per second in this way.

The only way in which the state of equilibrium can be restored
is this that the metal sends electrons into solution, which is of course
accompanied by zine ions going into solution, because zinc-ions and
electrons, with a difference of only a very small amount, are always
present in the same concentration.

Through this process the internal equilibrium in the metal surface
is dislurbed, which can be restored again by the reaction:

3], €

Zng = Zng + 26 .

As the heierogeneous equilibriunm in the boundary layer sets in
with very great velocity, the question whether the metal zin¢ dtiring
solution in an acid will be disturbed, comes to this, whether the
internal equilibrium in the surface of the mefal sets in with so
great velocity that the concentration remains practically unchanged.

This is actually the case for zinc under certain circumstances.
Mr. Horrer S. J., who examined some metals at my reques(, found
among others, that when the potential difference befween zine and
a solution of zinc-chloride is measured during vigorous stirving, and
then that between zinc and a zinc-chlovide solution of the same

L
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concentration acidified with hydrochloric acid, the potential difference
refnins the same value, notwithstanding a strong hydrogen-generation -
takes place in the latter case.

The metal zinc is, therefore, not disturbed through solution in
hydrochloric acid, and this result is in perfect agreement with what
is found when zinc is anodically brought- to solution in a zine-
chloride solation. In this process, which likewise rests on the with-
drawal of electrons from the metal, the potential difference, zinc-
electrolyte, does not change appreciably, even for comparatively
great densities of current, so that our investigations about the potential
difference curing the solution of zine in a hydrochloric acid solution,
as well as the measurements of the potential difference of the same
metal on anodic solution in a solution of zinc-chloride lead to the
result that the equilibrium in the metal zinc in contact with the
above-mentioned electrolyte sets in with a velocity which is very
great compared with the velocity with which electrons and ions are
withdrawn from the metal.

3. Gleneral consideration.

When we now consider the plhenomenon in general, we can
distinguish the following cases.

On immersion of a metal in an acid we have in the simplest
case among others the iwo following equilibria in the electrolyte:

H, 2 2H 1 26;.

and
ML 2 M, + 6L

The electron-concentrations of these two equilibria are in general
different, and a consequence of this is that either the electrons of
the metal equilibrium, in the liquid, combine with the hydrogen
ions of the hydrogen equilibrium, which caunses electrons - ions
from the metal to go into solution, or the electrons of the hydrogen
equilibrium with the metal ions of the metal equilibrium pass from
the electrolyte into the metal.

Let us first imagine the limiting ecase, viz. this that the internal
equilibrium of the metal surface is established with great velocity,
so that this velocity is very great with respect to the velocity with
which electrons J- ions are withdrawn from the metal or are added
to the metal, then the metal surface will not change independent
of whether one process takes place or the other, and the potential
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difference metal-electrolyte will remain equal to the potential difference
of the unary metal.

In the second place the case may present itself that the internal
equilibrinm of the metal surface does not set in so rapidly as was
supposed above, and then it will be possible to disturb the metal
surface either in one direction or in the other, i.e. it may become
either nobler or baser, hence the potential difference can differ from
that of the unary metal in noble or base direction.

A third case,” which like the first, represents a limiting case, is
this that the mefal is so inert that the velocity with which it assumes
internal equilibrium is very small compared with the velocity with
which the electrons and ions are withdrawn from the metal or
added to it. . .

In the first limiting case the potential difference is entirely governed
by the “state of internal equilibrium of the metal, and in the last
case the potential difference is dominated by the electron concen-
tration of the hydrogen equilibrium in the electrolyte.

4. Nickel as Luample of an Inert Metal, the Inertia of which
Increases under the Influence of the Dissolved Hydragen.

An example of the latter case with this particularity, however,
that the just mentioned great inertia is only slowly reached, because
the metal is converted to this state after some time through the
negative catalytic influence of the dissolving hydrogen, is furnished
by nickel. As was shown in a previous communication, the case
presents itself “that when this metal is immersed in such an acid
solution that hydrogen generation would have to take place, this
phenomenon does not' take place to an appreciable degree, and the
metal appears to be disturbed after some time so far in a noble
direction that its potential difference has become equal to that of the
hydrogen electrode. ‘

On that occasion we already gave an explanation of this pheno-
menon, and pointed out that, nickel being so inert, the electron
concentration of the nickel equilibrium in the elecirolyte

Nij, 2 Nip, + 26,
becomes equa‘l to the electron concentration of the hydrogen equi-
librium : -
H,22H + 26

so that finally
‘ (6-’-\7?‘)1: :(H-L{I )L .
This was demonstrated in the following way. We pointed out
11
Proceedings Royal Acad. Amsterdam. Vol. XXL
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namely, that on application of the electron equation for (he potential
difference, metal-electrolyle, for the derivation of the relalion for
the electromotive force of a circuil consisling of {wo metals immersed
in the.corresponding salt-solutions, we arrive at the following equation -

Yo —Fo  RT' (61)
. A — A =1 51 In —2<,
1 2 (6/,2)

Vs F
so that, taking into consideration, that the first term of the second
member denotes the Volta-effect of the two metals,” which is a very
small quantity, the electromotive force A,—A4A, will be zero in first
approximation, when (7,) = (6.,).

In the case discussed here the metals 1 and 2 are nickel and
hydrogen, and experiment has flaught that Ay—A»jy, was really
practically zero, from which therefore followed (6y.)r = (7m,)L.-

Through the inertia 'of the metal nickel, which inertia was still
increased by the hydrogen dissolved in the metal, which is here a
negative catalyst, as was already stated lLefore, the metal could.
therefore, be disturbed so far, that the electron concentration of the
nickel equilibrium in the electrolytie had become equal to the elec-
tron-concentration of the hydrogen.

We may, therefore, also express ourselves in a different way,
and say, that the nickel had been passivated by the acid. Finally
the nickel phase and the hydrogen phase present the same potential
difference, accordingly these phases, which are in contact with the
same electrolyte, can coexist. As in the case discussed here the
nickel will of course be covered by a layer of Lydrogen, the fonnd
potential difference refers to the three-phase equilibvium Ni 4 H, 4
-+ electrolyte.

5. Unattackable Electrodes. ’

As follows from the communication cited here, this disturbance
is comparatively slowly reached for nickel. Theve are, however,
metals for which this goes much quicker, and these are the metals
of which the so-called unattackable elecirodes consis{, as the plati-
num metals.

These metals belong to the group of the most inert metals that
we know. Even in contacl with an electrolyle these metals do not
get in internal equilibrium, but they are almost always in passive
state, so that the potential difference of the unary metal is not even
known to us.

When such a metal is immersed in a solution of HCI or 11,S0,,

e
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and hydrogen is passed through, the eleciron conceniration of the
platinum equilibrium in the electrolyte

Pi;, 2> Py 1 46,
has almost immediately become equal to the electron concentration
of the hydrogen equilibrium,

) H,L;-:zﬂ}; -+ 201,

corresponding to the pressuve of the hydrogen that passes through,
so that e.g. the platinum electrode has almost immediateljf become
electromotively equal to the hydrogen electrode.

For these metals, which behave ideally inert, the potential differ-
ence is, therefore, governed by the existing electron concentration
in the electrolyte. This is also the reason why these exceedingly
inert metals may serve not only as gas-electrodes, but also for the
determination of the so-called oxidation, resp. reduction potentials.

When e.g. platinum is immersed in a solution in which the
equilibrium :

Fe;L =Fer-+0
prevails, the electron concentration of the platinum equilibrium in
the solution has almost immediately become equal {o the electron
conceniration of the above feiro-ferri equilibrium, so that in the
electron equation for the potential difference of the platinum
RT K
=—ln —
F (1)
the electron concentration of the ferro-ferri equilibrinm may be
written instead of (6r), in consequence of which we get:
N )
F K. (Fe )
as was already stated before.

The peculiar feature of these platinum metals is therefore their

extraordinary inertia, which causes them to behave ideally passive n

most electrolytes.

6. Considerations in the Light of the Theory of Phases.

It is clear that for the explanation of the plrenomena discussed
bere, considerations as have been introduced by us of late, are
indispensable.

Phase-theoretical considerations are inadequate here, but all the
same it may be of use to represent the obtained results graphically
by means of A,a-diagrams.

11%*
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Let us first consider the case that the metal zine is immersed in
a hydrochloric acid solution of ZnCl,; then it is the A-a-figure of
the system Zn-H, that may serve for the graphical elucidation of
the found result.

i
|
|
|
!
)
|
X I 4
ZN ) 2H
. Fig. 1.
. Zinc.

A A-zfigure holds for constant T, P, and a constant total ion-
concentration; for T we choose here the ordinary temperatare, and
for P the pressure of 1 atm., the total ion-concentration being put
here at 2 norm. .

The situation of the point C, which represents the electrolyte
which coexists with the zine phase and the hydrogen phase of the
pressure of 1 alm., 15 found from the equation :

RT, Kpi Rl Ko
é};’— n (ZnL).—~—]":'—- n (HL)
from which follows:
Kz (Zng)
K4 (H)
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or also from the equations for the product of solubility of zinc and
hydrogen:

Lz, = (Z?i') ()% -
and

Lug,= (H)* (6)"
by putting )z, = (6g,), in consequence of which:

Lg, (ALY
or -
(Z?{L)‘ 102x—35 0%
(Hp)y  102x—4
When we put for a moment (Znz) =1, then:
(Hp) = 10713

We see therefore, that the point (' lies so much on one side that
practically it coincides with the zinc-axis. Hence the line d, ¢, ¢ or
the line for the three-phase equilibrium zinc-hydrogen-electrolyte lies
practically on the same level as the point a, so that the measured
potential difference of the zine, which contains a little dissolved
hydrogen, and is besides covered with a layer of hydrogen, is
certainly practically equal to the potential difference of the pure
hydrogen-free zinc, the measurement of which is impossible here.

Let us now suppose that we immerse zinc in an electrolyte, the
composition of which, as regards the zinc- and hydrogen ions, is, ;
we then see, -that zinc cannot be in stible electromotive equilibrium
with this liquid, but that hydrogen can.

If, however, the hydrogen did not appear as a new phase, but
only dissolved in the zine, a metastable electromotive equilibrium
would, indeed, be possible, viz. ¢ f, but the potential difference
wonld be more strongly negative than that of the three-phase
equilibrium represented by the line d, ¢, e.

This metastable electromotive equilibrium does not appear, however;
on the contrary, we observe a generation of hydrogen, and we will
point out here in a few words, how the experimental fact is to be
explained that under these circumstances the potential difference
rinc-electrolyte is equal to that which corresponds with d, ¢, ¢, or
what is practically the same thing, with «.

The explanation is this: when zinc is immersed in the electrolyte
of the concentration x,, the establishment of the three-phase equili-
brium between the zinc phase, the electrolytes, and the hydrogen
phase takes immedialely place in the boundary layer.
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Accordingly the concentration ¢ prevails in the boundary layer,
whereas the total concentration of the electrolyte is x,. i
_ The hydrogen ions now diffuse in the boundary layer, where for
the maintenance of the concentration ¢ the reaction:

2H -+ 26— H,

takes place, in consequence of “which, as we have already seen,
electrons and zinc ions from the metal phase go into solution. The
zinc phase assumes internal equilibriuma with great velocity, and
eonsequebtly it remains unaltered during the hydrogen generation,
and the measared potential difference is that of the three-phase
equilibrium d, ¢, ¢, which practically agrees with that of pure zine, a.

When a platinum electrode is placed in the same electrolyte, it
indicates the hydrogen-potential which corresponds with the line
mn. The zine electrode and the hydrogen electrode present therefore
entirely different potential differences in the same electrolyte.

This is the graphical elucidation for our conclusion that the
potential difference of-zinc with respect to a solution of ZnCl, acidified
with bydrochloric acid is determined by the state of internal equili-
brium of the zinc.

Nickel.

Let us now proceed to the case that instead of zinc the metal
nickel is taken; then it is worthy of note in the first place that
under the same circumstances we then find for the composition of
the electrolyte c '

K—Niu ___LLVi __@Q_ R 106
Kg Lm, (H) 10%-®7
When we now put (Vi)=1, weget (H ¥*=10"or (H )=10"".

Here, too, the electrolyte ¢ has still a one-sided position. Let us
assume that the adjoined figure 2 again holds for 18°, and a pressure
of 1 atm. for a total-ion concentration of 2-norm.; then an entirely
different phenomenon is observed on immersion of a nickel-elecirode
in the elecirolyte of the concentration @, than in the case with zinc
discussed just now, because the internal equilibrium in the metal
surface cannot maintain itself when electrons and nickel ions go
into solution.

The metal is more and more disturbed in noble direction, and the
vesult is, as we demonstrated already, that the electron-concentration
of the nickel equilibrium in the solution has become equal to the
electron-concentration of the hydrogen-equilibrium in the electrolyte,

102X~—45
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in which the potential difference of the nickel electrode has become
equal to that of the hydrogen electrode. This may be grapbically
represented in the way as has been done in fig. 2.

Lo 2H

Fig. 2.

In consequence of the disturbance point d has got in point d’,
and represents, therefore, the ennobled nickel phase which coexists
with ¢’ and the hydrogen phase e’.

It could be derived from our considerations how we have to
proceed when we want to know the potential of the unary nickel,
or in other words the equilibrium-potential. Then the nickel is to be
brought into a solution with a hydrogen-ion-concentration, smaller than
that in the electrolyte ¢. Then our A, X-diagram 3 shows that under
these circumstances e.g. the electromotive equilibrium between the
nickel phase d" and the electrolyte ¢" will be established, the potential
difference of which practically coincides with that of the unary
metal, which is perfectly free from hydrogen and indicated by «.

It is necessary to point out that when a metal is in electromotive
equilibrium wilh a coexisting elecirolyte, the electron-concentration

g
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of the metal equilibrium must always be equal fo the electron-
concentration which exists in the liquid in consequence of the other
prevailing equilibria.
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Fig. 8.

In this case we may say, that the metal is really in equilibrium
with the electrolyte. When the metal dissolves in an acid, or when
a metal is deposited, the just mentioned equality of electron-concen-
tration prevails only in the boundary layer between metal and
electrolyte, and diffusion takes continually place in the boundary lay er.

The just raentioned equality of the indicated eleciron-concentrations
must, tl)§1'ef01'e, also exist when in the case mentioned just now the
metal nickel has got in equilibrium with the elecirolyte. Of course
there are always some transformations required for this, but these
are soon over, and can, thervefore, not give rise to a permanent
disturbance, at least if the solution has been freed as.much as
possible from air and hydrogen by boiling in vacuum.

We have acted upon this principle, and, as was communicated in
the preceding paper by Mr. Losry br Bruin and myself, by this
procedure the equilibrium-potential was found of nickel that contained
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only a trace of hydrogen, so that the found potential difference will
. practically very certainly agree with that of the purely unary wetal. -

It is supposed here that the potential difference between nickel
and the nickelsalt solution with the exceedingly small hydrogen-ion-
concentration, is measured after the electrolyte has been heated with
the nickel electrode in vacuum, after the whole apparatus has been

~

S oH
Fig. 4.

filled with the electrolyte and connected with the 1N. Calomel
elecirode by means of a sipbon and a liquid circuit, so that the
pressure under which thg electrolyle is, amounts to 1 atm. also in
this case.

An entirely different result is obtained when the foregoing measure-
ment does not take place in vacuum, but in a hydrogen current.

In this case the nickel electrode is disturbed, but the disturbance
does not take place now in a mnoble direction, butin a base direction,
and as we showed before the potential difference of the nickel has
again become equal to that of the hydrogen-electrode. This result
can again be bLrought to expression in an exceedingly simple way
by means of a 4, X-fig. 4.
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When we lead hydrogen through the electrolyle, of which the
concentration @, hes on the lefthand of the point ¢, the potential of -
he hydrogen-elecirode is indicated by the line ¢’ ¢’. In this mode
of procedure the nickel electrode gets in contact with gaseous
hydrogen, and in the boundary layer which is simultaneously in
contact with nickel and hydrogen, the elecirolyte ¢ will be formed
in consequence of the reaction:

H,;—2H, + 267,
while electrons and nickel ions (and a few hydrogen ions) are
deposited on the metal. This renders the metal baser superficially
and both the three-pbase equilibrium d ce and the point a rise.

bA+
NPT 9H'

This disturbance in base direction continues till the concentration
of the electrolyte has become equal to that in the boundary layer.
This is the case when a three-phase equilibrium has formed of
which the electrolyte possesses the concentration @, hence at the
place where the curve bc intersects the vertical which corresponds
with this conceniration. As fig. 5 shows, this takes place in point ¢’
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and the three-phase equilibrium, which therefore finally is established,
is here indicated by the points d’c’e’. Accordingly also in this case
the potential difference of the nickel electrode is equal to that
of the hydrogen electrode.

When we now consider the metals of which the unat-
tackable electrodes consist, we need only remark that because as
was just now demonstrated, these metals are ideally inert, the
potential difference metal-electrolyte is in almost all cases exclusively
determined by the electron-concentration in the electrolyte. Hence,
when e.g. a platinum electrode is immersed in an electrolyte through
which hydrogen :s led, the platinum shows the hydrogen potential
almost immediately, which was the case for nickel only after some
time had passed. When we want to express this graphically in a
A, X-fig., we get, of course exactly the same representation as for
the case nickel-hydrogen.

That in aqueous solutions we cannot determine the equilibrium
potential of platinum, whereas this is still possible for nickel is
owing to this that the electrolyte ¢ has such an one-sided situation
for platinum-hydrogen, that an aqueous solution of a platinum salt
always possesses a concentration on the righthand side of the point
¢ as regards the platinum and the hydrogen ions, so that a disturb-
ance must always take place.

In a subsequent communication I hope to enter into a fuller
discussion of the phenomenon of the ‘‘super-temsion”, which has
already been repeatedly referred to in our considerations without
having been named.

Amsterdam, March 1918. | General Anorg. Chemical Laboratory

of the University.

»
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Anatomy. — *“On ithe Nervus Terminalis from man to Am-
phiozus.” By Prof. J. W. van WuBE. )

(Communicated in the meeting of April 26, 1918).

Although hardly credible, it is a fact that a good three years ago
— in 1914 — a new nerve, arising independently in the brain,
was discovered in man. This is the Nervus Terminalis. Naturally
it is not visible to the naked eye, but can be seen through the mag-
nifying glass, especially through the dissecting microscope, with the
aid of which its discoverer, the American Brooxover found it.
(Journ. of Comp. Neurology. Vol. 24.)

It has its course through the pia mater, parallel and mesial to the
olfactory bulb and tract, running over the middle of the gyrus
rectus (vide fig. 1) When a rectangular piece of the pia mater
in this region is taken up and placed under the microscope, the
fine fibres of this nerve can be seen. Here and there the fibres
are retracted from each other to come together again later on.

The nerve is independent of the olfactory tract and bulb, and in
the opinion of Brookovewr enters the brain at the mesial root of the
tract. A number of ganglionic cells, BRoOKOVER taxes their number at
about 50, lie spread in the nerve in its course along the olfactory
tract. ,

The nerve can be followed not only along the tract but also some-
what further distally along the olfactory bulb, but in this vicinity it
1s embedded in the dura mater, while it has here also partially
pierced the former and lies on the lamina cribrosa.

In the vicinity of the bulb the number of its ganglionic cells is
considerably larger than is the case along the tract. Tt was estimated
by Brookover at about 100 to 200 cells. Undoubtedly its branches
pass through the mesial row of openings in the lamina cribrosa to
the mucous membrane of the nasal septum, but the research did not
extend as far as this.

In adult man the course of the new nerve is as yet known in
the brain-case only, not on its outside. *)

1) Lecture delivered before the meeting of the Neth. Zoological Society, Jan. 26,

1918.
%) Vide, however, the postscript at the end of this article.
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As ,was Lo be expected,-in the adults of the mammals the nerve
was not first found in man. The dog and the cat (Me. Corrir.
1913.) and the rabbit (Huser & Gurizp. 1918.) were the first, but it
is remarkable, that in the embryonic stages of the mammals the human
embryo was the first in which, although incompletely, the nerve was
discovered. This was done by our countryman Esnst pr Vrius,
who also observed it in the embryos of the guinea-pig. He described
his research (published in the Proceedings of the Royal Academy
of Sciences of April the 2274 1905), which also drew much attention
abroad, in an article of four pages, which proves that it is not ne-
cessary or even desirable to be loquacions when one has found
something of importance. .

Dr Veies found ganglionic cells spread in the course of the nerve
which supplies the organon vomeronasale, (the organ. of Jacosson, or
better the organ of Ruyscm)!) near the base of the nasal seplum.
He moreover found that the so-called olfactory ganglion, by him
called the ganglion vomeronasale, does not belong to the fila olfac-
toria, which are taken collectively as the true olfactory nerve.
In his opinion it belongs to the N. Vomeronusalis, which supplies
Ruvsce’s organ, lined by a layer divided off from the nasal
mucous membrane. As the vomeronasal nerve also enters the central
nervous system at a different place — the area vomeronasalis — than
do the fila olfactoria, pe Vrirs drew the conclusion that the N. Vo-
meronasalis is not, as was the general opinion, a component part
of the olfactory nerve, but an independent nerve, homologous to
the N. Terminalis in the fish. .

A serious difficulty to this explanation however is that, according
to the illustrations of pr Vrims, the N. Vomeronasalis issues from the
olfactory bulb, while the N. Terminalis of the Dipnoi and the Se-
lachii issues out of the true hemisphere and not out of the bulb. ?)

This difficulty seems to have escaped pE VriEs’s notice. On the
first page of his publication he rightly distinguishes between the
olfactory lobe and the hemisphere, which are separated from each
other laterally by the fissara rhinica, and mesially by the fissura
prima. On pages 3 and 4 he states that the area vomeronasalis,
where the nerve of this name enters the brain, belongs to the he-
misphere. According to his own communication and illustration,
however, this area lies at the sulcus circularis bulbi, hence 7ot on

~

1) Concerning Ruvscu’s organ see postseript at the end of this paper.
%) Enlering and issuing out of a nerve are used in this addvess, indiscriminate
of the direction in which the impulse moves.
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the hemisphere, but on the olfactory lobe. In young embryos the
tract is thicker than the bulb, later on this relation is reversed.

It was therefore very desirable that more light were thrown on
the question whether the vomeronasal nerve should be considered -
as the homologue of the N. Terminalis of the fishes.

This happened in 1913 in America, more especially through two
publications viz. of Jomusston in the Journ. of Comp. Neur. Vol. 23.
and of Huser & GumLp in the Anatomical Record Vol. 7.7

JonnstoN examined embryos of the pig, the sheep, and of man.
Besides mammals he also examined embryos of tortoises and a larva
of Amblystoma.

» The elucidation which JonnsTon brought, consisis herein that (as
he found) the ganglion and the ganglionic cells do not belong to
the N. Vomeronasalis, bni to another nerve, which does not enter
the brain in the olfactory bulb, but in the true hemisphere, near or
in the lamina terminalis, as is the case in the Selachii. )

What pr Veiss had considered as one nerve, was in realily two
nerves which for the greater part cover each other; one is the N.
Terminalis, the other is the true N. Vomeronasalis.

The vomeronasal nerve has no ganglionic cells and arises out of
the cells of a part of the nasal mucous membrane which had been
split off (Organon Vomeronasale). In structure and development
it is exactly similar to the bundles of the olfactory nerve. It also
enters the brain in the olfactory bulb, just as the fila olfactoria,
which collectively form the olfactory nerve. It is true that it enters
the bulb at a special place, on its mesial plane rising high up
caudally, but then it is a specialised bundle of the olfactory nerve.
. The peripheral ganglionic cells and the true ganglion belong to the
~ N. Terminalis.

pE Vmiss' mistake is easily comprehensible; he used no special
methods to make the nerves visible, could not expose his material
of human embryos to this risk and was thus compelled to conside:
the proximal end of the N. Vomeronasalis (split into four bundles
according to him) as a root of the Ganglion Terminale, by him
incorrectly called the Ganglion Vomeronasale, which is as it were
pasted up against it, while the true roots of this ganglion escape
observation in cross section through their fineness. That it is possible
to make mistakes even when using nerve-staining methods is proved
by the work- of Donrken (1909). He examined embryos of mice,
rabbils, guinea-pigs and man. Following in the footsteps of pu Vrius

1) Further literature is found mentioned in these publications.
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he also took the roots of the N. Vomeronasalis to be those of the
N. Terminalis.

Regarding the mouse he says “Die sog. mediale Riechwurzel von
der bereits Cajar, Kaprers u. A. behauptet haben, sie sei nicht als
eigentliche Riechwurzel zu bezeichnen, ist eine Wurzel des N. Ter-
minalis”. No wonder that he continues ‘Sie hat bedeutende Beziehun-
gen zum Olfactorius”.

The second important elucidation appeared, as has already been
said, in a communication, also in 1913, of Huser and GuiLp, who
had come on this subject & propos of the work of Jonnston, which
had parily been done in HuBer’s laboratory.

These writers examined rabbit embryos by the silver-pyridine
method. They could fully confirm JomNsToN’s results that the N.
Terminalis and the N. Vomeronasalis were two different nerves, and
that the ganglion and the disseminated ganglionic cells belong, not
io the N. Vomeronasalis, which is evidently a specialised bundle of
the olfactory nerve, but indeed to the N. Terminalis.

While JornsTon however was still of opinion that the peripheral ter-
mination of the N. Terminalis was limited, principally in any case, to the
region of the N. Vomeronasalis, these investigators discovered that
this ending is to be found in the foremost part of the nasal septum,
reaching caudally to the rear border of the Organon Vomeronasale.
[t is only a small part of the peripheral branches that reaches this
organ and the true olfactory mucous membrane, the region of the
fila olfactoria, was free from branches of the N. Terminalis.

Through difference in tint the branches of the Terminalis could
well be distinguished from those of the Trigeminal nerve (Nasociliary
and Nasopalatine), which are also found in the mucous membrane
of the nasal septuin.

As will presently become clear, it is of importance in following
the nerve to Amphioxus, that the N. Terminalis does not branch in
the olfactory mucous membrane.

In 1912 and 1913 Mc. Corrir published his investigations on the
N. Vomeronasalis and the N. Terminalis. By means of the dissecling
microscope, thus as it were at magnifying glass magnification, he
found the latter in the adult dog and cat, but not in the rat, the
rabbit, the sheep, the guinea-pig or the oppossum. That he did not
find it is not to be wondered at considering -his method. His opinion
that the N. Terminalis ends peripherally at or near the vomeronasal
organ is also comprehensible because the bundles here are thicker,
“the fibres of the N. Terminalis being strengthened by those of the

vomeronasal nerve.
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This much as regards the mammals, which 1 have considered
somewhal more extensively as most, and to my mind the most
accurate, investigations have been done on them. \ B

I can be brief about the birds, reptiles, and amphibians. -

There _does not seem to be much known about the N. Terminalis
in the birds. ’

In the jfrog it was found in 1909 by C. Jupson Hurrick,
who also described its central termination more especially; its
peripheral branches could not be traced accurately. This was also
the case in the Urodele, where the nerve was observed by Mc. KiBen
(1914), who could not however find any ganglionic cells in it. Some
time later. JornsToN succeeded in this. He says “In Amblystoma the
~nervus terminalis is ganglionated and supplies the vomeronasal organ,
as  in reptiles and mammals”. Concerning the reptiles he says that-
the peripheral termination takes place “in’the furtle to a medial
diverticulum of the nasal sac, which presumably corresponds to the
vomeronasal organ or a part of it”.

We now come 1o the fishes wherein, setting aside an isolated
observation by G. Frirscu about one of the Selachii, the nerve was’
first found by Pingus in Protopterus. His preliminary communication
appeared in 1894 in the “Anatomischer Anzeiger” and was followed
in 1895 by his elaborate treatise “Die Hirnnerven des Protopterus
annectens” in the “Morphologische Arbeiten”. Pinxus fonnd that his
new nerve originates in the brain, places itself rostrally against the
most mesial bundle of the olfactory nerve, takes its course over the
nasal mucous membrane and is fo be followed to the roof of the
anterior nasal opening. The nerve consists of nonmedullaied fibres
and has in its course a cellular swelling, which is undoubtedly the
Ganglion Terminale of later writers, although Piskus could not
convince himself of the ganglionic nature of the cells.

Sewirtzorr (1902) found the nerve in embryos of Ceratodus. He
mentions the fact, of importance for the homologisation, (hat the
nerve does not branch in the olfactory mucous membrane and that
it terminates in the skin at the external nasal opening. Soon (1904—
1905) Bine and BurcxuirpT described the nerve in the adult Cera-
todus also. -

Concerning the Selachii the treatise of Locy, which appeared in
the “Anatomischer Anzeiger” after several smaller publications, is
well known. In this treatise, which is accompanied by ‘a large number
of handsome illustrations, he described the structure and development
of the uerve in Acanthias as seen in series of sections, as well as
its course as this is fo be seen, by means of the dissecting microscope.

-181 -



177

in 20 genera of sharks and rays. At first he held the nerve to be
a part of the olfactory nerve, but later on he recognised its homology
to the new nerve of Pinkus, and called it the N. Terminalis.

In_the Selachii the distance between the nasal sac and the olfactory
bulb is small, hence the olfactory nerve is short. Immediately on its
appearance out of the nasal sac it is separated into a lateral and a
mesial bundle by a small groove into which the distal termination
* of the N. Terminalis enfers.

Scoliodon terrae novae alone has something peculiar. Here the
two bundles are not only completely separated from each other, but
the division also continues on to the bulb, and even to the distal
(foremost) end of the tract, which usnally is long in the Selachii.
After the N. Terminalis of the Selachii has made its appearance out
of the hemisphere, it takes its course along the wmesial border of
the tract, and when it has reached the bulb it forms a ganglion.
In some species two ganglia were observed in the course of the nerve.

Locy assures that the nerve in its distal ramifications is principally
limited to the olfactory mucous membrane, but to my mind he has
not proved this. His method was not sufficient to do this, and
considering the results of other. investigators in other classes of
animals this assertion needs corroboration by preparations treated
with silver compounds.

In the Ganoids the N. Terminalis was first found and clearly
represented by Preres Ainis (1897, fig. 64) in Amia calva. He could
follow it caudally up to the fore-brain. In the larvae he also found
its ganglion. .

In 1910 Brookover described its development in these fishes. His
investigation contains many new finds and interesting communications,
but his conclusion that the nerve is a branch of the olfactory nerve
cannot in my opinion be correct. In his work in 1914 on the nerve
in Lepidosteus he also came to this conclusion.

In the Zeleoster SnerpoN and Brooxover (1909) found the nerve
in the carp and in Amiurus. According to them the roots of the
ganglion enter the olfactory bulb to reach the hemisphere, contained
in the tract. Here however the question arises whether they have
not made a mistake analogous to that of pe Vrits in the embryos
of man, as this is not the condition in the Dipnoi, in the Selachii,
in the amphibians or in the mammals, nor either in man according
to what Brooxover himself (1914) found in the last-named.

Concerning the lungfishes I can lLere demonstrate to you two fine
models of the fore-end of the brains, with the nerves arising there-
from, of Ceratodus and Protopterus, both constructed by Dr. vAN pER

12

Proceedings Royal Acad. Amsterdam. Vol. XXI.
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Horst in the Institute for Brain Research of Dr. Ariins Kappegs,
who was so kind as to lend them for this evening. One sees the
N. Terminalis arising out of the hemisphere, and running rostrally
quite independent of the olfactory lobe, as is also the case in man’
according to Brookover (c.f. fig. 1).

Finally I come to Amphioxus, on whose celeblal ner vestnbhshed
a communication in the meeting of the Royal Academy of October
the 27t 1894. As is known the trigeminal nerve of the craniata
forms a complex of two dorsal segmental nerves, the components
being the N. Ophthalmicus profundus (N. Nasociliaris) and the rest
of the N. Trigeminus. I found Doth these components in the two
nerves, of which the one appears before and the other behind the
first well developed myotome (which has morphologically to be
considered as the second). Before the homologue of the profound
ophthalmicus, however, there is in ‘Amphioxus still another nerve
which supplies the utmost point of the snout. On account of this
and because it arises from the morphological fore-end of the cerebral
ventricle I called it the N. Apieis.

At first T thought that the N. Apicis would be aborted in the
higher chordata, but shortly before the publication of my article the
preliminary communication of PiNkus appeared (Anat. Anz. 1894),
in which he reported the discovery of a mew nerve in Protopterus,
later named the N. Terminalis by Locy. -

This had to be considered the homologue of the N. Apicis consi-
dering its course, ramification and origin, not from the infundibulum
as I concluded out of the preliminary communication, but near the
Lamina Terminalis as became clear when the more extensive treatise
appeared the next year.

I must acknowledge that I have later on sometimes doubted
whether this homologisation Wwere correct, when I read the investi-
gations of Locy in the Selachii, of Brookover and SHELDON in the
Ganoids and Teleostei, and of ErnsT pt VRriEs and DOLLKEN in the
mammals, because all these writers assert that the peripheral ter-
mination of the N. Terminalis is wholly or principally limited to
the olfactory mucous membrane (or in mammals {0 the vomeronasal
organ, which is covered by a split-off part of the olfactory mucons
membrane). In Amphioxus on the other hand the N. Apicis stands
in no, relation whatever to the covering of the olfactory groove.

After however reading the research of HUBER and GuiLp (1913)
this doubt was dispelled.

Their illustration (c. f. tig. 2) shows the N. Apicis of Amphioxus
in the rabbit — I could almost say “‘in optima forma”, even lo the
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disseminated ganglionic cells, which have already been long known
in the N. Apicis.

As the N. Apicis is an ordinary cutaneous nerve '), the relation
in which the N. Terminalis stands to the olfactory epithelium in
some of the higher animals must be of a secondary nature. It is
even possible that the terminal ramification of the nerve has become
principally limited to the olfactory muocous membrane, as appears
to be the case in many fishes.

Thus has the N. Terminalis completed its course through science
in 20 years (L894—1914) beginning in the lung-fishes, [ may as well add
in Amphioxus, and ending in man. It can no longer be doubted that
we have here to do with an independent cerebral nerve and not
with a bundle of the olfactory nerve. In most or all of the craniata
however branches of both nerves run close alongside of each other,
and on account of this it is difficult to distingnish their peripheral
- distribution.

From Amphioxus to man the N. Terminalis is provided with
disseminated ganglionic cells, which can parily be gathered logether
to one or more ganglia. On the other hand the olfactory nerve
(including its specialised bundle, the N. Vomeronasalis of the Amniota)
is distinguished by the complete absence of ganglionic cells.

At the end of this summary I want here to express my thanks
to Dr. Ariiins Kapprrs, who was so kind as to send me for perusal
a dozen {reatises on the N. Terminalis, nearly all of American.
investigators, which hdve become the occasion of this address.

POST SCRIPTUM.

Early in March Dr. Karpers sent me for perusal a copy of a
new work by Broorover, which he had veceived afew days earlier:
“The Peripheral Distribution of the Nervus Terminalis in an Infant”
(Jowrnal of Comp. Neurology Vol. 28 N°. 2).

Brookovir found the branching of the N. Terminalis in the nasal
septam of the child analogous to that in the rabbit, according to
Husgr and GuiLp, only much more strongly developed. In it he
could count about 1500 ganglionic cells, not considering the Ganglion

D It is a well known fact that ganglionic cells are found not only in the first
but also in the second cutaneous nerve (N. Ophthalmicus prof) of Amphioxus.
De Quarnerages discovered them here in 1845 already, but held them for mucous
cryptes, ‘“cryptes mucipares”. Incorrectly it is assumed that peripheral ganglionic
cells are not present in the other nerves. | found multitudes of them in the nerves
running under the atrial epithelium which covers the intestine and the liver.

12%
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Terminale. This ganglion was a compound of 6 to 8 ganglia, com-
bined by a net of nervous fibres.

He mentions nothing about a N. Vomeronasalis, but found a stout
nerve without ganglionic cells, which, with a branch of the N.
Terminalis, passes through one of the hindmost openings of the
Lamina Cribrosa to the nasal septum and anastomoses peripherally
with the N. Nasopalatinus.

Brooxover considers the above-named stout nerve as a sympathetic
anastomosis between the Ganglion Sphenopalatinum and the Ganglion
Terminale. To my mind this nerve is the N. Vomeronasalis, which
has then not been aborted after birth, in man, as was hitherto the
general opinion. In case this conjecture is correct, it must arise behind
in the olfactory bulb and supply the vomeronasal organ.

This organ is generally present in the vertebrates higher “than the
fishes '), and seems to be a product of adaptation to terrestrial life.
It first appears in the amphibians, and has been lost or is present
only in the early stages of development in the higher forms which
have secondarily become aquatic again (crocodiles, partly also the
Chelonia, the Cetacea, and the Pinnipedia).

Flying also seems to be unfavourable for the development of the
organ (birds and some not all — of the bats).

The organ is usually named after JacossoN, who found it inde-
pendently in a large number of mammals, and who also discovered
the N. Vomeronasalis. His work became known through the report
Cuvier made on it?). o

Affer the considerable praise which Cuviir bestows on the work,
for a part done in his laboratory, one wonld expect at the end of
his report to the “Institut” the advice to have the treatise of Jacosson,
“pensionnaire et chirurgien-major dans les armées de Roi de Danemark”,
printed. The end of the report, however, reads as follows: “Nous
croyons que le Mémoire de M. JacoBsoN mérite I'approbation de la
classe [de I'Institut] et que cet anatomiste doit étre invité a continuer
des recherches, qui ont déja fourni un résultat aussi curieux”.

This encouragement does not, however, seem to have had the
desired result. At least it is not known that Jacosson has published
his treatise, enlarged or not.

For the rest Cuvier makes a mistake in believing that nobody
had observed the organ before Jacossox, and that it is not present

) Cf. R. WiepersuEIM, Vergleichende Anatomie der Wirbeltiere, Jena, 1909.

?) G. Cuvier, Rapport fait & I'lnstitut, sur un Mémoire de M. JAcoBsoN intitulé:
Description analomique d'un Organe observé dans les Mammiféres. Annales du
Muséum d'Histoire naturelle, Tome 18, 1811. °
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in man. It has escaped his attention that Ruyscn, who is cited by
him & propos of the Meatus Nasopalatinus, (l.c. p. 414. He wuites:
Ruisch) is the discoverer of the organ, and just in man in whom
it is normally present as was corroborated later on.

KovLiker') and Herzrerp®) found it regularly in children while
it is seldom wanting in adults. When this was the case it had
.probably to be ascribed to former diseases of the nasal septum.

The description of Ruyscu®), who also gives a clear representation
of the orifice of the organ, with a sound brought into it, on the
nasal septum of a child, reads as follows: “In anteriore et inferiore
parte septi juxta palatam’ in utroque latere foramen apparet, seu
osculum cujusdam ductus de cujus usu et existentia nil apud authores
legi; inservire muco excernendo exislimo”.

JacoBsoN also, not knowing Ruvscu’s work, is inclined to consider
the organ as being secretory, although the powerful innervation
pleads for a sensory function, but (l.e. p. 422): “quel agent extérieur
pourroit aller se faire percevoir dans un réceptacle si caché, si profond,
si peu accessible P’

Cuvier himself still thinks — under reserve — he has to accept
a kind of olfactory perception and the later_writers do this too. It
is usually assumed that the organ serves to smell the food which
has already been taken into the mouth; in mammals the odour
would then rise up through the Meatus Nasopalatinus. This can
however not be the case in the horse or the donkey (nor in the
camel or giraffe), because here the Meatus is no longer opened to
the buccal cavity, while their Organon Vomeronasale cannot be held
to be rudimentary as is the case in man.

The secretory function is evident on account of the numerouns
glands (K611iker, 1. e. p. 11) which fill the organ with mucus, which
streams out through ciliary motion, but the difficulties against accepting

) A. KoLpiker, Ueber die Jacobsonschen Organe des. Menschen. Reprinted
from the Festschrift fir RINECKER, Leipzig 1877.

%) P. HerzreLp, Ueber das Jacobsonsche Organ des Menschen und der Siuge-
thiere, Zoologische Jahrbiicher, Abth. fiir Anat. und Ontogenie der Thiere Bd. 3, 1889.

HerzPELD gives a summary of the mammals in which the organ had been
found by him and others up to 1889, also in connection with the meatus
nasopalatinus. He might have added that Jacosson had also already observed it
i the marsupials (kangaroo). Later on it was also found in the Monotremata
and Edentata,

3 F. Ruvscr, Thesaurus anatomicus IIl, Amstelodami, 1724, p. 26, N°% LXI, 5.
[lustration: Tab. 1V, fig. 5.

Korriker (1877) ciled the description, mentioned above, from an edition of
1708 p. 49; hence more than 100 years before CUVIER's repoit.
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an olfactory function, already hinted at by Jacosson, and which
KoLLKER tries to evade in a peculiar manner, are not to be got-
out of the way.

In this regard an obser vation of HrrzreLD in connection with the
venous sinus, with a strong circular layer of nonstriated muscular
fibres, which is found in.the wall of the organ of the rat on the
inner side of the bony capsule, — cartilaginons in the majority of
the mammals — seems to me worthy of attention. He assumes that
- the air will be sucked into the organ through contraction of the
sinus and the lessening of the volume of the wall, inside the rigid
capsule, caused by this. )

If this appears to be the case in other animals also — the oppm-
tunity for research will probably present itself in a veterinary. college —
then- a sort of olfactory function would become comprehensible. It
would then also become clearer why the Cetacea and Pinnipedia
are nearly” the only!) mammals in which the search for the organ )
of Ruyscm has been in vain.

It is comprehensible that the Cetacea and Pinnipedia have lost
the true olfactory organ, adapted to aquatic life in earlier fishlike
ancestors, it became adapted to smelling in the air in later ancestors,
which lived on land as mammals, When these, in a still later
period, again went back to aquatic life, as Protocetacea and Proto-
pinnipedia, the true olfactory organ could not undergo this change
and became rudimentary or disappeared altogether. If the organ of
RuyscH in terrestrial mammals is always filled "with liquid (mucus),
and does not need to adapt itself to smelling in the air, then there
is not the same reason for its disappearance in the Cetacea and
Pinnipedia as "there is for the degeneration of the true olfactory
organ of the Cetacea.

1) One would expect the Sirenia here also. It is remarkable however that Manatus,
according 1o SraNnrus (Lehrbuch 1846, p. 399) possesses an exceplionally well
developed Organon Vomeronasale. In some bals and catarrhine apes the organ has
disappeared through some cause or other, as in the Cetacea -and -Pinnipedia.

%) The numerous morphological investigations on this organ bave taught us
very little about its function. On histological grounds a sort of’ olhctm) function
is not to be doubted, (c.f. amongst others M. von Lenmossex, Die Nervenurspriinge
und Endigungen in Jacobsonschen Organ des Kaninchens. Anat Anzeiger. 18992).
This is about the only result, concerning the function which we can, after about
200 years, add to the words of the discoverer: “Inservire mucn excernendo existimo.”
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J. W. VAN WIJHE: “0On the Nervus terminalis from man
to Amphioxus",

e s = =

Fig. 1. Shows the lower surface of the foremost part of the brain
of man and the intracranial part of the N. terminalis. (According to
a figure of Brookover, slighily modified),
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Fig. 2. Shows the mesial surface of the right olfactory lobe and
of the contifuous part of the hemisphere with the nerves which
radiate from this into the septum, after a combination of sagital

sections in the rabbit. (After a fg. of Huser and Guinp, slightly
maodified).

Proceedings Roval Academy. Vol. XXI.
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Microbiology. — “The significance of the tubercle bacteria of the
Pupilionaceae for the host plant”. By Prof. BrurriNck.

(Communicated in the meeting of April 26, 1918).

As there is no reason to doubt of the accuracy of HELLRIEGEL's ')
experiments, it appears certain that the bacteria of the nodules on the
roots of the L.eguminosae areindispensable for the fixation of atmospheric
nitrogen by these plauts.?) But I shall prove that the theory, at
present generally adopted, according to which this process takes place
only within the tubercles, cannot be correct. But previously some
remarks on the occurrence, of the tubercles and the cultivation of
bacteria from them.

For some plant species such as serradella (Ornithopus sativus) and
the yellow lupine (Lupinus luteus), it cannot be doubted that only
the tubercle-bearing specimens grow vigorously in nitrogen-poor soils
and consequently, after the theory, fix the atmospheric nitrogen. It
is therefore easy on poor heath fields to find languishing, stunted
lupine plants, always devoid of nodules, amid the luxuriantly growing
tubercle-bearing ones. Never did I find there well-developed lupine
or serradella plants quite without them. But the number of tubercles
is of no consequence, it evidently suffices if only few come to
development..

In garden experiments on open sandbeds, without supply of
nitrogen, but where inevitably more nitrogen compounds occur than
in heath soils, also in peas and beans (Vicia Jaba), plants with
nodules grow better than those devoid of them.

In fertile garden soil such as in the laboratory garden at Delft,
yellow lupine and serradella do not fully develop, and especially
their roots make the impression of sickliness; tubercles do not
grow on them, not even when the soil has been abundantly provided

) H. HernrieGEL und H. Wiorarrs, Untersuchungen iiber die Stickstoffnahrung
der Gramineén und Leguminosen, Zeitschuift fiir Riibenzuckerindusirie, Beilageheft
November 1888. See further the excellent trealise of Hivrner, Bindung von frelem
Stickstoff in léheren Pllanzen, in Handbuch der technischen Mykologie, Bd. 3,
1903—1905.

%) Tor the objeclive proof thal here free atmospheric nitrogen is fixed see, besides
Herorigasn (I c. p. 191), Scuudsive et Laurent, Fixation de l'azole libre par les
plantes, Ann. de l'lustitut Pasteur, Tome 6, pag. 65, 1892.
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with the coneerned bacteria. Whether the latter die in the soil or
are not uttracted by the roots of the plant is not yet clear. Most
other leguminous plants, such as clover, Vicia, peas and Vicia faba,
bear also in fertile soil many nodules, and it is not easy to find
specimens wholly devoid of them, unless the soil has been previously
sterilised. -

On the roots of Genista anglica and Genista pilosa, growing on
poor heath fields, I found after long seeking only very few tubercles,

although they and in particular the former, bore many pods with -

good seeds; the tubercles are, however, never quite absent. When
sown in my garden at Delft or brought there as plants, they die
after some few years. On the other hand, Genista tinctoria thrives
as well at Delft as along the highway of Zutphen to Vorden and
at both places bears a small number of nodules.

For Robinia pseudo-acacia the favourable influence of B. radicicola
only on the young plant, has been stated by NosBe.') As to full-
grown specimens on poor heath soil at Govssel I could after long
digging find but few tubercles, while at a small distance, but on
somewhat better soil more tubercles occurred, bat still so litile
numerous, that nobody would attribute to them any direct signifi-
cance for such a large tree, had not the fixation of nitrogen in the
tubercles become an inveterate belief. Sarothamnus vulgaris and
Ulex europaeus behave in the same way as Robinia. On Phase-
olus vulgaris on sandy soils I found but few nodules, and then only
on thin rootlets and nearly always enclosed by plant remains; in
the pure sand the nodules are very rare. In garden soil at Delft
Phaseolus produces no nodules, but it does in a there arranged
sandbed; Lupinus luteus and Serradelln behave likewise.

When comparing the various mentioned plants, all noted in
agriculture for their power of ameliorating the soil, as they contain
in their dry substance nearly double the quantity of niirogen found
in other plants, for example the grasses, we come to the conclusion
that only for lupine and serradella the number and weight of the
tubercles is of some significance in regard to the whole weight of
the plant. For other species they are of so little volume that even
if within them free nitrogen were tixed with great iniensitly, only
an extremely little quantity of fixed nitrogen could be expected, whilst
in veality this amount is very considerable. Hence the theory, at
present generally accepted, after which the fixation takes place in the

) Hiwrner le. Also Biisecn, Bau und Leben unserer Waldbaume, 2te Aufl., Pag
246, 1917.
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nodules only, requires reconsideration. Also other experiences make
this reconsideration necessary. But previously a few remarks on the
isolation of the bacteria from the nodules and from other materials,
and on the question of their specificity.

A very convenient medium for isolation was already described in
1888, ') namely pea leaves- or clover-extract-gelatin with 2 °/; cane
sugar. B. radicicola grows thereon in soft, white, non-liquefying
colonies, while B. ornithopodis from Ornithopus perpusillus, O. sativus
or Lupinus luteus, when isolated in the antumn or in March,
liquefy somewhat, as does B. herbicola. *)

As a solid medium, poor in nitrogen compounds, I recommend a
plate of: Tapwater 100, agar 2, cane sugar 1, starch 1, bipotassium-
phosphate 0,05, in which, because of the albuminous matter of the
agar, enough fixed nitrogen is present to cause a distinct growth of
B. radicicola, but the colonies remain small. Later a little saltpetre
or ammoniumsulphate may be added locally, which makes the
tubercle bacteria like the other saprophytes thrive well, showing
that they do not assimilate the free atmospheric nitrogen. If on such
a plate eventually germs of Azotobacter, which is able to assimilate
free atmospheric nitrogen, are present, these will grow quite well
if no nitrogen compounds are added. Such nitrogen-poor plates are
also useful to recognise the spore-bearing soil bacteria, which almost
constantly appear at the isolation of B. radicicola.

I only call tubercle bacteria those species which develop mutvally
identic colonies by thousands or hundreds of thousands from the exter-
nally well-sterilised and cautiously crushed nodules. These bacteria
derive for the greater part from within the cells. I consider the
deviating and less numerous colonies obtained at the culture experiments
as the product of germs accidentally present in the intercellular cavities
of the rind of the nodules.®) That the full-grown bacteroids cannot
develop on the plates is well-known; hence bacteria may be expected
from the tubercles only in the beginning of their development.

It is an important and until now not yet sufficiently inyestigated
circamstance that from the tubercles of the same plant not always
the same bacteria are obtained. So I found for Ornithopus perpusillus

1y Botan. Zeitung. 1888 Pag. 764,

%) Occasionally a great number of colonies of B.- herbicola are obtained from
the tubercles; whoever is unacquainted with this species may make mistakes in
the isolation of B. radicicola. But even with this knowledge the isolation of
serradella- and lupine-bacteria is difficult. Good descriptions of these forms do
not exist. .

3) Besides B. radicicola B. herbicole can also occur within the living cells.
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the bacteria I had isolated in March different from those grown in
October, whilst the tubercles came from plants growing side by
side and being in the same state of development. With the yellow
lupine and serradella I had similar results. In most other ecases,
however, for example with Pisum, Lathyrus, V7 icia, and Trifolium,
the similarity of the various mutually independently isolated stocks
is so complete and the image of B. radicicola can so distinctly be
recognised, that the above observation requires nearer confirmation.
But we cannot now enter upon this point.

When trying to isolate JB. radicicola from materials other than
the nodales, for example from the soil and from the dying surface
cell-layers of the root, it proves very difficult to recognise this
species amid the numerous other saprophytes, especially when the
number of the germs of the different species is to be determined
quantitatively. B. fluorescens [iquefaciens causes much trouble by
the liquefying of the gelatin plates, and yet it is necessary {o use
these plates as on them the colonies of all the species lie free from
one another, while on agar they are overgrown and rendered
unrecognisable by 5. fluorescens, which extends strongly sideways.

Concerning the question if only one or more species of tubercle
bacieria exist the following.

Already in 1892 experiments thereabout were made by the late
HELLrIEGEL *) in the experimental station at Bernburg with pure cul-
tures of the bacteria made by myself at Delft. Of his results Hevni-
RILGEL sent me two reports. In the first, dated 24 July 1892, he
gives as “Augenblickliches Haunptresultat: “Es gelingt mit den
Reinkulturen von B. radicicola var. Pisi oder von Vicia faba, die
Erbsen und Bohnen, und mit denen des Bac. radic. var. Lupin. oder
Ornithopodis Lupinen und Serradella erfolgreich zu infiziren und zum
Wachstum resp. der Assimilation des freien Stickstoffs zu bringen,
und das ist was unsere anfangliche Behauptung bestitigt”. Already
earlier Hpnnriueur, had arrived at the conclusion that the bacteria
of Lupinus and Ornithopus belong to a species different from that
of Pisum and Vicia, which was also my own opinion.

In later years many interesting experiments were made in this
direction, especially by Hirner. Yet the evidence is unsatisfac-
tory as it proved bLitherlo impossible in the sand caltures ?)
to bring Leguminosae -to complete development by infection with

1) He died 24 September 1895 of a stomach disease and was already suffering
when I visited him at Bernburg in 1892.

%) It is a well-known fact that the Papilionaceae, when cultivated in liquids, do
not fix the atmospheric nitrogen indifferently whether they produce lubercles or not.
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B. radicicola only and with exclusion of all other microbes. Such
cultures are always at the end of the vegetation period rich in
various other species, in particular in B. fluorescens liquefaciens
and the nitrogen-fixing spore-forming Granulobacter (Clostridium)
pasteurianem and Helobacter cellulosae. This observation holds good
as well for the first experiments made by myself as for those of
others, and this should never be lost sight of when reading the
descriptions of the infection experiments with the so-called “pure
cultures”. It had not escaped HrirrizeeL’s attention, and we see il
in all the photographs of his above mentioned treatise at the film
of the glass vessels, wherein he cultivated his plants (in bright
daylight), which film consisted of Chlorophyceae and various other
species of microbes, but he thought it of no consequence (L. c. p.
169). For myself I have observed in nitrogen-free sand, besides the
mentioned species, Chlorella and Cystococcus and sometimes also
Palmella cruenia and many Cyanophyceae. Many of my later efforts
to bring clover plants to complete growth on agar with nutrient
salts and B. radicicola in large cotton-plugged Ernenmeyrr-flasks,
failed as the planis ceased to grow before they blossomed, although
the nodules developed very well.

The tubercle bacteria do not fiz the atmospheric nitrogen when
cultivated in nutrient media.

I will now call attention to my chief subject namely the want of
power of the tubercle bacteria to fix the free atmospheric nitrogen.
They do this neither when ecultivated out of the plant nor within
the nodules.

Regarding the first point the experiment is very simple. We have
but to crush the nodules and bring the thus obtained waterial into
cullure soils used for the ordinary experiments to fix {ree nitrogen
and then cultivate at 20° to 30° C.; or we use the pure cultures
for infection of the same media. A convenient medium is: Tapwaler
100, Glucose 2, Dikaliumphosphate 0,05, lime 2, fresh garden soil
2. This liquid, to which the garden soil is added as a catalyst,
must. previously be sterilised to kill the germs of Azotobacter, Gra-
nulobacter and Helobacter; notwithstanding the sterilisation, the
soil preserves its catalytic power very little impaired. The spores of
the nitrogen-fixing Helobacter and Granulobacter often adhere to
the nodules and, when present, fermentation phenomena show that
the experiments cannot be relied upon, B. radicicola not causing’
fermentation. Commonly, however, these fermenting and nitrogen-
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fixing microbes can be removed by thoroughly washing of the nodules
with alecobol and water. In the course of many years [ have experi-

mented in this way with numerous species of tubercle bacteria,”

and with many modifications in the nutrient media as well in the
temperature as in the source of carbon. Moreover 1 have, as said,
tried to grow pure cultures of the bacteria themselves in the liquid
culture medium as also on solid culture soils of various compositions,
and at first 1 thought I had observed a rather considerable increase
of these organisms. This increase, however, proved to be really very
slight, so slight that gain of atmospheric nitrogen is not proved,
whilst the obvious augmentation of dry weight of the sown bac-
teria derives from the formation of thick slime walls, that is of ni-
trogen-free, cellulose-like substances around the hardly augmented
original protoplasmic material. !)

Only when cultivating the microbes in plant extracts with cane
sugar, wherein nitrogen compounds are evidently present, I ecould
observe a very slight and by no means convincing increase of
the total nitrogen rate of the liquid in consequence of the growth
of B. radicicola. But when performing these experiments [ was
not yet acquainted with the circumstance that laboratory air
contains sufficient carbon and nitrogen compounds to be made percept-
ible by the growth of microbes which can feed on them. This was
afterwards demonstrated by Ir. A. vaN DeLbpEN and myself in oux
investigation on Bacillus (Actinobacillus) oligocarbophilus.”)

There exists moreover an aBrobic spore-producing bacterium®), hard
to kill by sterilisation of the nutrient liquids, whicli fixes free nitrogen ;
at that time it was still quite unknown to me and even now it is very
imperfectly understood. It may have been present at my experiments
likewise as at those of other investigators who think they have
observed fixation of free nitrogen out of the plant in the pure cul-
tures of B. radicicola. ,

With sufficient precautions the results of such experiments are however
always the same: The bacteria of the nodules do in no way fix the free
atmospheric nitrogen. When the experiments are performed, not with

1) The slime formation is of importance for the explanation of the “slime
threads” (erroneously called “infection threads”) within the nodules. See ‘“Die
Natur der Fiden der Papilionaceénknéllchen.” Centralbl fiir Bakteriologie. Bd. 15,
pag. 928, 1894. ¢

%) Ueber einé farblose Bakterie dererl Kohlenstoffnahrung aus der atmosferischen
Luft herriibrt. Centralbl. f Bakteriologie 2te Abt. Bd. 10, pag. 33, 1903.

% Bacillus danicus, T. WestermanNn and F, Lduns, Centralbl. f. Bakteriologie,
2te Abt. Bd. 22, pag. 250, 1909).
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nutrient liquids, but with a solid medium, the results are quite the
same : fixation of nitrogen does not take place then either. Stress must be
laid on the latter fact as it seems impossible to fix free nitrogen
by the Papilionaceae when cultivated in liquid media even under
the best circumstances and whether tubercles are produced or
not. So it seems probable-that for this process a direct contact with
the air is necessary, which cannot be realised in the liquid culture
media, but very well in solid ones.

Purther it must be observed that the plate cultures of some of
the nodule organisms, ') for example the forms from Pisum, Vicia, and
Trifolium, on glucose-agar-potassinmphosphate plates, in absence of
purposely added nitrogen compounds, at superficial view make the
impression of being quite able” to develop, but here too, it is
only the formation of much wall substance, as already described
above, and wnot of nitrogen-rich protoplasm, which explains the
voluminosity of the colonies.®) With other slime-producing bacteria,
as B. radiobacter and Aerobacter wiscosum, of which it is quite
certain that they cannot live on the atmospheric nitrogen, extensive
colonies may likewise be grown on the said nitrogen-poor medium
with fit carbon food. By a better nitrogen nutrition such colonies
may even be greatly reduced in volume, the wall substance then
serving as food under a strong increase of the bacterial protoplasm,
which gives rise to very interesting experimenis. It is only when
being acqnainted with these facts by personal observation that we
can understand how in the literature so many statements can occur
on the nitrogen fixation by the nodule bacteria, which does not
take place.

Within the nodules the atmospheric nitrogen s neither fived.

The preceding gives rise to the question, whether the protoplasm
of the host plant might be the catalyst that enables the invading
bacteria, in their bacteroidal state, to fix the free nitrogen. However
improbable this hypothesis may appear, being in contradiction with
the laws of heredity, still it deserves attention because the rate of

1) The wonderful *experiments” of Mazt (Annales de I'lnstitut Pasteur T. 11,
pag. 44, 1897, T. 12, pag. 1 and pag, 128, 1898), who asserls that on broth
gelatin plates at the same time ammoniumecarbonate is produced and fixalion of free
nitrogen by B. radicicole takes place, need not be considered, although they are
taken up uncritisised in the handbooks of Plantphysiology.

%) Likewise for the ordinary saprophylic bacteria the want of nitrogen compounds
varies very much: the large-celled Bocillus megatherium requires very little, the
small celled Bacterium ﬂugrescens very mueh.
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albuminous matter in the nodules is so very high. 1 myself found
aboui 4°/, nitrogen, which is about 25°/, albumen in the dry matter-
of pease-nodules. Others found 5 to 6°/, nitrogen. It is noteworthy
that the bacterial colonies on agar plates, grown out of the plant,
contain but 1 to 2°/, nitrogen of the dry weight, which consists
for the greater part of carbohydrates. So it is certain that the
bacterial body is very much modified by its entrance into the plant
cell as well morphologically as physiologically. Therefore it was
iried gazometrically to state nitrogen absorption in the tubercles. If
the hypothesis is founded it must be possible, with a great quantity
of tubercles in a eclosed space and under favourable physiolugical
conditions, easily to observe that absorption. For the number of
tubercles, for example of the woody papilionaceae, being as said
very small, while yet these planis are noted in agric\u]tm'e for their
considerable nitrogen-fixing power, the action of the tubercles must
necessarily be very intense.

To test the hypothesis we acted as follows. ') First small, later
larger quantities of lupine and serradella tubercles were placed in
wide glass tobes which could readily be connected with the gas
burettes, then put in thermostats at about 25° C. The tubercles
respiring vigorously we had to keep account with a rapid assimil-
ation and supply of the oxygen. Further it was only necessary to
determine the quantity of nitrogen still present after deduction of
the carbonic acid and the oxygen. The only difficulty we met
with was that the nodules, which Dby their abundant content
of albuminous matter are an excellent food for bacteria, when
they fouch each other and get moist, easily give rise to fermentations
in particular by DBacterium aérogenes. Hereby hydrogen and much
carbonic acid are produced, so that it is then necessary also to
derermine the hydrogen. But this fermentation may be prevented by
introducing the material very loosely into the burette, so that there
are but few points of contact between the nodules, and the air can
freely pass between. Under such conditions there is no danger that
free nitrogen will be formed; this only occurring through the action
of the denitrifying bacteria on nitrates, which substance is in the
nodules completely absent.

Of the tubercles of yellow lupine we used in onr experiments
quantities of 100 grs., 500 grs., and later even of 1 kil. In some

1) [n some of these experimenls [ was assisted by [r. D. C. J MINgMAN,
formerly assistant to the Laboratory for Microbiology of the Techunical High School
at Delft.
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experiments we had the root tabercles cut off, in others the'roots with
the tubercles were left united with large pieces of the stem, so that
eventually formed nitrogen compounds might be able to flow into
the stem. All our estimations, however, showed that not in asingle
case the slightest fixation of nitrogen by the tubercles was observable.
As at first we doubted of the accuracy of our results obtained with
relatively little material, we afterwards used the just mentioned
larger quantities, but this did not make any difference either. Besides
the two said species we still examined several times 10 to 20 grs. of
the nodules of Vicia jfaba, and once about 15 grs. nodules of
Robinin pseudo-acacia, but other resalts were not obtained.

As our researches did not last longer than 12 to 20 days it might
be objected that we have not ‘sufficiently imitated the conditions of
the plants in the field. Further, that in these experiments the growth
of the tabercles, together with that of the whole plant, was excluded.
Although these objections have not been refuted in the preceding,
it is still highly improbable that nitrogen fixation would be associated
with the growth of the tubercles and not with the augmentation of
the bacteria out of the plant. Principal, however, is the fact that if
within the nodules nitrogen fixation were to take place, which might
have escaped our attention, the concerned quantity must certainly
be extremely small. When we now consider how difficult it is to
collect a few grams of tubercles for example of Robinia, it is clear
that if this material is to be of any significance for such a great
tree, its nitrogen-fixing power must be enormous. The experiments,
however, show that the tubercles are wholly inactive or nearly so,
hence there can be no question of attaching to them any importance
concerning the nitrogen nalirition, whilst yet nitrogen fixation by this
tree is as certain as for lupine and serradella and even on a much
larger scale. So the nitrogen nutrition of the Papilionaceae can
only be indirectly connected with the bacteria of the nodules. In
my opinion this relation can only exist in the herbaceous species
and in the germ plants of the shrubs and frees of that plant order,
but in full-grown specimens of the woody species such as Kobinia
pseudo-acacia the presence or the absence of the nodules is wholly
indifferent. Likewise on the roots of shrubs, such as Sarothammnus
vulgaris, Spartium scoparium, Genista anglica, and Genista pilosa in
full-grown condition, the number of {ubercles is so small, their
volume so insignificant to that of the whole plant, that even if they
were able to assimilate some free nitrogen their slight activity could
not possibly explain the rich nitrogen store of the whole plant.

Hence, the at present generally accepted explanation of the peculiar
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behaviour of the Papilionaceae cannot be correct. New researches,
especially with Phaseolus, are desirable.

From the preceding follows:

For various Papilionaceae, excelling by their abundance of nitrogen
compounds, even when cultivated in media without such compounds,
the number and volume of the tubercles is so small, that if only
within them the fixation of free nitrogen should take place, the
intensity of the process in these tubercles must necessarily be very
great. We have not, however, succeeded gazometrically in observing
the process in the tubercles at all.

Neither do the tubercle bacteria fix the atmospheric nitrogen when
cultivated out of the plant in nutrient liquids or in plate cultures, nor
enclosed in solid media.

The contradictory statements in the hand books of Plantphysiology
are erroneous.
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Physics. — “On the vrotational oscillations of a cylinder in an
infinite incompressible liquid”. By D. Costir. (Communicated
by Prof. J. P. KueNen).

(Communicated in the meeting of May 25, 1918)

The method to be followed in the discussion of the problem will
be in the main the same as that used by Prof. VERsCHAFFELT in
the analogous case of the sphere'). We consider the rotational
swings about its axis of an infinitely long cylinder which executes
a forced vibration. Our object will be to ascertain the motion in
the liquid which will establish itself after an infinite time (in practice
after a relatively short time’)) in order to compute the frictional
moment of forces exerted on the cylinder by the liquid. For the
sake of simplicity the-calculations will be referred to a height of 1 em.

The motion of the eylinder may be represented by a — a cos pt
where « is the angle of rotation. An obvious assumption to be
made is that the liquid will be set in motion in coaxial cylindrical
shells each of which will execute its oscillations as a whole. On
this assumption it is not difficult to establish the differential equation
for the motion of the liquid.

Let ¢ be the density of the liquid.

u the viscosity of the liquid.
o the angular velocity of a cylindrical shell.
r the radius of the shell.
The frictional force per unit surface of one of the shells will

a -
then be ]f’:ma—w and the frictional couple on a cylindrical surface

"
X ) dw
of radius 7:2ax ° pu —.
»

Taking a shell of thickness dr its equation of motion will be
0

or

artdro—=
dt
which reduces to
00w o + 3 dw
w ot ot p Or
1) Comp. Proceedings 18 p. 840. Sept. 1915. Comm. Leidén 148b.
%) Comp. Comm. 148b. pag. 22 footnote.

M

13
Proceedings Royal Acad. Amsterdam. Vol. XXI.

~
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It is important to note that eqnation (1) may also he deduced
from the general equation of hydrodynamics without its being
necessary to neglect the second power of the velocities, as is the-
case in many problems of that kind. For an infinitely long time
of vibration i. e. for uniform rotation (1) simplifies to -

dw0 3 dw-

0:-‘}?—{-;2;. . . . . . . (2)

c . . .
The solution of (2).is w é.-i+ ¢,, ¢, and ¢, being integration-
[ .

constants. If the solid cylinder (radius R) rotates with uniform speed

n

=4

L in an infinite liquid, the result will be w = , giving for the

7,3

frictional couple as is well known the expression
—dap R, . . .. ... (@)
In order to arrive at a possible solution of (1) we have to make
our assumption regarding the motion of the liquid a little more
definite by assuming that the angular displacement of each shell is
represented by

a,=f(r) cos (pt—ap()). . . . . . . (3

We may also consider (3) as the real part of the complex function
uev?, where u is a function of » the module of which gives the
amplitnde of the oscillation and the argument the phase-shift ¢(»).

0
Remembering that o = ;:- equation (1) may be reduced to

d*n 3 du 0 pu

dr " dr [

=0. . . . ... (4

Equation (4) is closely related to the differential equation of the
cylindrical functions. Indeed by the substitution y=—zv Brssiy’s

1

dy ~1d 1
{+~ﬁ+(1_—)y=0, changes o

dz zdz 2?

d’v+3dv+ 0
—_— e =0,
dz®  z dz

equation of the 15t order

It follows that the general solution of equation (4) is

u:%—{AJ,(cr)-{—BN,(C")},- N &)

—ip
where ¢= [/ l"p’ A and B being complex integration-constants.
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J, is the cylindrical function of the 1st kind and 1% order, XV, that
of the 2 kind and 1t order').
As regards ¢ an agreement must be come to. We shall choose the

(19

root with the negative imaginary partie.c=/ke *, where k=|c| =

%
X .
As a first boundary-condition we bave Lwmre,=07%. As this

r=a

relation must hold for all values of ¢, it follows that hm ru = 0.

1=

The cylindrical functions with complex argnment all become infinite
at intinity with the exception of the so-called functions of the 3'd kind
or Hawkrr’s functions A, and H,3. Of these A, disappears at
infiuity in the positive imaginary half-plane and on the contrary
becomes infinite in the negative half, whereas the opposite is true
for H,®. By our choice of ¢ in the negative imaginary half we are
led to the function H,®. For the integration-constants in equation
(5) this gives the relation B = —i4°%), so that (5) becomes

A
u="=H®@e) . . . . . . . . (6
r

For the determination of A we have to use the 2" boundary-
condition ap=—acospt, B Dbeing the radins of the cylinder. We
therefore assume that there is no slipping along the wall.

aR

Hence A = ———,

H,(O(R)

80 that

alR  HE(er) .
et
) H®@CR) r ’

The symbol R is intended to indicate, that the real part has to be
taken of the function which stands after it.

If we had chosen for ¢ the root with the positive imaginary part,
we should have had to utilize the function H M. It is quite easy to
verify that this would not have made any essential change in
the solution (7).

« =R

..(7)'

1) Comp. Jamnkr u. Empe. Funktionentafeln pp. 90 and 93.
Nrersen. Cylinderfunktionen. Instead of NV Nimrsen uses the symbol Y.

%) Prof. VcrscmarreLr puts Lim o = 0, which in my opinion is not quite correct,
1=

as the linear velocity has to disappear at an infinite distance. Comm. 1430 p. 22.
%) Between J, N, and H a linear relation holds. Comp. J. uE. p. 95.
13*
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For large values of z (real, positive) H,(®(2V —3) approaches

asymptotically to
z [ ® 4
— e V2 8/,

[}

l/g nz _
therefore for (¢ R) sufficiently large:
_k
- - ( (— 2242 ) (8)
a =~ — —— cos —_— —_——p .
B2 (B Viaroe T 278

where ¢ = argument H, (¢ R).
From (8) it appears that damped waves are propagated from the
cylinder to infinity, the velocity of propagation being

__p P t/2_|/21w
v == —_—
Elys k 9

and the wave-length

9 o0x 12 s
A= T = 'rv: 1‘»/——::2.7r -l—l

P k op
The frictional moment on the wall of the vibrating cylinder is

(8)

0 0 : Oar
2nyR”[—w—] where o = First we determine I:—{L] from (7)
or R ot or R

da, a HC (cR) .
— fanaend — —— plpt 2 atpt . . . R 9
[ar:'[g R[ R ert -+ ac .2 (cR) o :| ®)

For the reduction of the 2d part on the right hand side of (9)
we make use of the well-known recursion-formula of the cylindrical
functions:

dH {2 (2)

1
= HPz— - A0 ()

By its application (9) obtains the form

Oc, 2a H 2 (e R)
—_ — —_— — pipt — 7
e /T e e Tma ) @

giving for the frictional couple

do] d H, (cR)
— s | 2T — 2 _ B a0 N7 ot
K=2auR [ar L.{._ 4auR* w+R 7 l:2n(.¢ Riac B0 (R e}’:' (11)

For an infinite time of swing, i.e. p =0, but with a rotational

velocity differing from 0, |c|= I/% becomes 0. In that case the
y N

~
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second term -on the right of (11) disappears on two grounds:
H® (cR
(1) becausec = o (2)C£i£zoiﬁz—%ﬁ;=0; only the first term then

remains, which agrees with (2’).

Moreover -
H,2 (cR) D
2am —_— T — 7.
cR=w H,? (cR) .
It appears from the accompanying graphs?®) of the module and
t of Z2CE) o this limiting value is practically reached at
argument of ————— is limiting value is practically reached a
|eR|=Fk.R=10 |
27 /2 Co. 12)
lo| = k= ”z‘/ (cf. 8] (

The condition |¢ R|>10 means, that the radius of the cylinder
must be about equal to or larger than the wave-length. If R is
small compared with A the second part of the frictional couple is
negligible. For |cR|210 the 2"d term on the right-hand side of
10) becomes

T in
— aci evt=—ake (pH‘I) (since c =k 6_1—)
Hence equation (11) now becomes:
d
K=—4auR o — 2aukR’EZ—t(acos (pt—{—f)) . (18)
where
w=- (a cos pt).

The frictional couple thus divides into two parts, one which does
not contain the density of the liquid and another, in which it
occurs and which therefore refers to the emission of waves. In the
{ransition to the limit of uniform rotation the first part only remains.

In the discussion of the 24 part of the frictional moment the

quantity £ = I/@ is an important factor. If we take a time of
u©

oscillation of 2 seconds, so that p =1, we have k= l/ “i

This gives the following values for £.

~ ) Comp. J. u. E. L c.
%) Tables for Hy(1) and Hy(%) will be found J. u. E. p. 139, 140.
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/0
L1 ~
80"
v
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-arg. =
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0 z k= [/ =1
. ¢
Wate; 16° 1 0.011 9.5
Atm. air Q° 0.0013 0.000171 28
Air 0.01 atm. Y) . 0.28
Air 0.001 atm. 1) 0.09
Hydrogen 1 atm. 0° | 0.0000898 | 0.000085 1

From this table it appears that, except for dilute gases, R has to
be relatively small in order that the 2nd part may be neglected with
respect to the first. For instance for atmospheric air with 2= 0.5 c.m.
H,2 (cR)
AR == 1.4 and ABeR)
of the frictional couple is still 56 °/; of that of the first (see
equation (11)), every thing "calculated for a time of oscillation of
2 m seconds. . .

There is a further special limiting case of equation (13), which is of
some interest. Let \R become infinite, and let @ at the same time
disappear, in such a manner that Ra converges to a finite limit 6.
We thus approach the one-dimensional problem of the oscillation of
an unlimited flat plate in its own plane in an infinitely extended
liquid. The frictional force per unit of surface is found from (13) to be

Fe—p b2 (be t”) 14
.__———ugt(cosp—i—-i-) e (14

a formula which is well-known from hydrodynamics?®). A term
analogousto —4 mu R* w does not occur in the one-dimensional problern,
the reason evidently being that with & uniform translation of “the
plate a condition of equilibrium does not arise, until the whole liquid
away fto infinity proceeds with the velocity of the plate.

Finally it is of importance to ascertain for what frequency the
amplitude of the forced vibration becomes a maximnm, in other
words to what frequency the system cylinder-liquid resounds, if the
cylinder is urged back  to the position of equilibrium by a quasi-
elastic force.

= 0.80, so that the amplitude of the 29 term

1) At these pressures y has not become much smaller. Comp. Kunor u. War. '

BURG. Pogg. Ann. 1875 Band GLV.
%) Comp. Lans. Hydrodynamics, 314 edition 1905, p. 559.
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The differential equation for the forced oscillation in complex
notation is as follows:
o 2
dg?
Here in our case L is a complex quantity L=L+41iL" where
L=4nrpu R4 V2a pk R
L"'=y2axukR?®
If we only concern ourselves with the particular solution of (15)
which gives the forced oscillation, we can also write (15) in the
form :

{
+Lf+JM=EW.. C L. (1B)

N & d .
(g+_) a+L’_a+JP[a:Eelﬂt. ... (1)
p /) dge dt

We see therefore that in consequence of the motion of the liguid
an apparent increase of the mowment of inertia arises.
Putting
LH

64} —=86
p -
the particular solution of (16) becomes:
E .
i g— el (pt—7)

I/(M_alpz)z + Ltgpz

in which the phase-angle ¢ is determined by the constants of the
differential equation.

Resonance occurs for M/ — 6'p* =0
or

6p*+L'p—M=0 . . . . . . 17
Now L" is proportional to L and k= @, so that we may
u

conveniently write L"= Npt, N being a constant.

(17) is now replaced by '

Op* + Npth —U=0. . . . . . . (18

This equation which is bi-quadratic in V/p determines the frequencies -
to which the system resounds. On closer examination there appears
to be but one resonance-frequency. Naturally we are only concerned
with~the real roots p of equation (18). There are found to be two
of such, one for which V'p is positive, and another for which V'p
is negative. Now it follows from our calculation that we have
assumed Vp, which occurs in £ to be essentially positive. For if we
substitute a negative value for V'p in our equations, we obtain a
systemm of waves which moves from infinity towards the cylinder.
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But the amplitude of this system is intinite at infinity, so that our
first boundary-condition would not he satisfied.

We may also choose our boundary-conditions differently. We may
for instance imagine the liquid limited on the outside by a second
cylinder co-axial with the first and at rest. It is then advisable to
write the general solution of equation (4) in the following form

u:l{CHI(z)(cr)+DH1(2)(07')} N ¢ 1))
r

At a sufficient distance from the axis of the cylinders two systems
of waves then arise, one of which is propagated outwards and the
other inwards. At the surface of the exterior cylinder we obtain
reflection with reversal of phase, so that the liquid there is at rest.
For the determination of the integration-constants C and D we
obtain comparatively complicated relations which may be omitted
here as they do not yield anything of further interest.

The problem of the free oscillation does not now give any further
special difficulties.

We must now seek a solution of equation (1) of the form

ar = firye—Fteos (B't — o (),
which for r = R becomes ar = ae—¥?cos £"t. Again we may write
a=ue", where n—=— 1 4 "

The same method of solution may now be followed. Instead ot
(7) we obtain: '

__aR  H*(c7)
“=H®ER) r

ent

ve e e e (20)

n
where ¢ = [/— —(), if for ¢' the root with the negative imaginary
u

part is chosen. Hence

dey]  2a ' H,@ (¢R) " 91
dr R— —}—3'6 +acm§)—(me. . . . . ( )

H,2 (IR)
Lim ———— =
VRl = @ (G'R)

da, 2a n—g
— == ——at — g — ent, e e e (22)
dr |p R u

if for l/fg, we take the root with the positive real term.
w

—1

Therefore :

The frictional moment now becomes:
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da 2 no] -
2y R ,:5];:——2::“13' ,:E-}—I/%—)]aﬂ

The differential equation for the free vibration is:

da de
- — = e e . .. (23
Kdt’+Ldt + Ma=0_ (23)
giving for the natural frequencies of the system the equation
K +Ln+M=0. . . . . . . (24)

The quantity L here contains V7.
If we put L=P 4 Q V'n, where.

P =4 uR* and Q:2nyRR’l/£,
u

(24) assumes the form :
K +(P+Qyn)ynt+M=0 . . . . . (25
Equation (25) is bi-quadratic in 2=V"n. On further examination
it 1s found to have 2 complex roots z in the right hand portion of
the complex plane and 2 in the left portion, only the former of
which we can use (comp. equation (22)); hence the system has but

one natural frequency. Further 2> = n is found to contain a negative -

real term, as indeed could not be expected otherwise.
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Chemistry. — “Inwestigations on Pasrteur’s Principle concerning
the Relation between Molecular and Crystallonomical Dissym-
metry: V. Optically active complea-salis of Iridium- Trioxalic
Acid”. By Prof. F. M. JaEGer.

(Communicated in the meeting of June 29, 1918).

§ L. A short time ago I published!) some data about the
properties of racemic Potassium-Iridium-Ozalate: {K, I[r (C, 0),} +
+ 44 H,0%, and on that occasion 1 announced experiments under-
taken with the aim of splitting this compound into its optical anti-
podes. It was our purpose to gain in this way the necessary infor-
mation to enable us to indicate the correct configuration in space
of these oi)tically active complex ions, in comparing it with that
attributed to the corresponding rhodéum-derivatives, in consequence
of the arguments brought forward on that occasion. At the same
time 1 hoped to investigate in this way, what influence the
substitution of the central rhodium-atom in these complex ions by
the homologous ridium-atom appeared to have upon the magnitude
and the specific character of the optical rotation and its remarkable
dispersion. It may be considered of importance, of course, to know
the relation existing between the two functions just mentioned,
especially in connection with our former studies on the analogously
constituted complex salts of cobalt and rhodium combined with
three molecules of ethylenediamine, where the problem arose as to
the true configurative relations between the salts of these homologous
metals of the eighth group of the periodic system, when rotating
the plane of polarisation in the same direction?).

In the following the fission-experiments mentioned and the results
obtained by them are recorded in detalls. Thus for the first time
the possibility of a “partial” asymmeiry *) has been proved, in the
case of iridiun as the central atom ; the series of the metals showing

1) F. M. JAEGER, Proceed. R. Acad. Amsterdam. 20. 263. (1917).

%) C. Grarpini, Rend. Acad. d. Linc., Roma, (6a), 16. II. 551. (1907); Proceed.
Acad. Amsterdam, loco cit. p. 278.

3 F. M. Jameer, Proceed. R. Acad. Amsterdam, 17 49. (1915); 20. 244.
(1917); conf. Zerts. f. Kryst. u. Miner. 55. 209. (1915).

%) F. M. Jaueer, Leciures on the Principle of Symmetry, Amsierdam, (1917),
p. 235.
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this phenomenon being herewith extended to chromium, iron,cobalt,
platinum, rhodium, and iridium. With respect to the dispersion of
some of these salts, we hope yet to furnish some new data in the
near future.

§ 2. The required racemic Potassium-Iridium-Ozalate: K {Ir(C,0,)} 4
+ 41 H,O was obtained in the following way. A 3 °/, solution of
pure, hydrated sridiumchloride of commerce (HErarus) is treated
by a solution of potasstumhydroxide in excess. A dirty brownish
precipitate is formed, which dissolves in the excess of KOH to form
potassium-iridiate. The alkaline solution is heated, and then some
perkydrol (30°/, H,0,) added: the colour changes to dark blue, and
the principal part of the wridium precipitates as Ir (OH),, Another
part of it remains in the solution as a colloidal suspension of great
stability, not being precipitated or coagulated from if, even after
addition of electrolytes. These solutions are therefore better evaporated,
and thé residue transformed into ammonium-chloro-iridiate to be
used afterwards in other experiments.

The blue precipitate is washed by decantation with water slightly
acidified by means of owxalic acid; the filtrates and washings are
also later converted into the mentioned compound. When the removed
liquid gets colourless, the decantation. may be considered complete,
and the precipitate is brought into a round bottom flask, the super-
fluous liquid removed after some hours, standing, and a hot, concen-
trated solution of owxalic acid added. The contents of the vessel are
boiled under a reflux-condenser during 30 or 40 hours, a part of
the oxalic acid is thereby decomposed, and the tetravalent zridium
reduced to trivalent according to the equation :

2I7OH), 4+ C,0,H, = 2Ir(OH), + 2H,0 4+ 2C0,,
while ridium-triozalic acid is then formed from the derivalive of
the trivalent iridium, conforming to the equation:
2Ir(OH), + 6C, OH, = 2{[7(02 0()8} Ha + 64, 0.

The gold-yellow solution finally obtained is filtered, and almost
perfectly neutralised by means of KHCO,; it is then concentrated
on the waterbath, and the successive fractions of the crystals formed
are separately collected. Alinost pure potassium-ozalate is first deposited,
and afterwards, besides this, the orange .crystals of the salt required,
which is very soluble. These crystals have to be separaied mecha-
nically, and they are afterwards recrystallised for purification?).

The racemic compound crystallises in pale orange-coloured crystals,

) Dr. J. Kamy has aided most effectively in the preparation of a part of this
tacemic compound, and in the troublesome working up of the sridwum-residues.

¥
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which have already been investigated and described in a former
paper'). They are triclinic-pinacoidal, and completely isomorphous
with the corresponding racemic rhodiwm-salt, so that the direct
isomorphous substitution of the metals Rho and Ir, also in their
complex salts, has been hereby definitely proved. As we shall see,
this proof has now also been given in the case of the optically-
active components of such complex salts.

§ 8. Fission of the racemic Potassium-Iridium-Ozxalate (+4*/,H,0)
into its optically-active components. :

27,5 Grams of pure strychnine-nitrate ave dissolved in 1300 ccm.
boiling water; then a solution of 15,5 grams of the racemic salt
in 250 ces water of 60° C. is rapidly poured into the boiling
solution under perpetual stirring. The flask with the golden yellow
liquid is allowed to cool slowly for twelve hours to room-tempera-
ture. The deposited, highly yellowish coloured, felty-like erystals
are sharply sucked off at the water-pump, washed with some
strong alcohol, afterwards with some ligroine, and dried at room-
temperature in an air-current. The mother-liquid is evaporated
on the waterbath to about ?/, of its original volume; on cooling
highly yellow, needle-shaped crystals are again deposited, which are
treated in the same way. While the first fraction, however, represents
the strychnine-salt of the dextrogyratory component, — the lrevo-
gyrate antipode was immediately obtained from the second precipi-
tate. On further evaporation of the filtrate, some paler coloured
fractions are consecutively obtained, all of which give the laevo-
gyratory potassium-salt. The sixth and the seventh fraction finally con-
sisted of pure strychnine, accompanied by some of its nitrate, while
in the last fractions crystals of the free, racemic potassium-salt
together with some of the laevo-salt, and also some potassium-
nitrate, appeared. The rotation of this last fraction as a whole, after
removing the potassinm-nitrate, was negative, amounting only to
about '/, of the rotation of the pure laevogyrate salt, so that a
considerable amount of racemic salt is evidently admixed. Probably
a partial hydrolysis during the repeated evaporations has taken
place, so that the free potassinmsalt accnmulates in the last fractions.

The stiychnine-salt of the dextrogyratory component has the formula:
{Ir(C,0),3,(C H,;N,0,), + 34H,0; it appears as pale yellow, very
fine needles. For a series of wave-lengths the rotation of this sirongly
active salt was determined; the solution used contained 00,4763
grams of the hydrated salt in 100 ces. of the liquid.

) F. M. JAEGER, Proceed, R. Acad. Amsterdam,_ 20, 278, (1917).
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The following data were found:

ROTATION-DISPERSION OF STRYCHNINE-A-IRIDIUM-OXALATE (4 314 H;0).
I/i;:v:.le;l;.g;th Observed Rolation: | - Molecular Rotation:
5105 + 1202 + 200970
5260 0.86 17703
5430 0.65 13379
5610 0.38 7822
5800 0.21 5558
6020 0.21 4323
6260 0.17 3499
6530 0.158 2676

In the same way the composition of the corresponding strychnine-
salt of the laewogyrate component appeared to be: {/r(C,0),}C, H,,
N,0,), +3H,0. This salt too ecrystallises in needles, somewhat
thicker than those of the first. The substance is strongly leevogyra-
tory, and its dispersion is smaller than in the case of the other salt,
as may be seen from the following data, and the graphic represen-

tation in fig. 1:

ROTATION-DISPERSION OF STRYCHNINE-/-IRIDIUM-OXALATE (+ 3 H,0).
I/i[/:v;lez-g:th Observed Rotation: Molecular Rotation:
i
5105 — 0733 — 172360
5260 0.28 14624
5430 0.24 12535
5610 0.19 9994
5800 0.15 1835
6020 0.125 6057
6260 0.09 4701
6530 0.08 4178
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This solution contained 0,1886 grams of substance in 100 grams
of the liquid.

Ir is remarkable that the laevogyrate strychnine-salt has a some-
what greater molecular rotation than the corresponding potassium-
salt itself; the dextrogyrate strychnine-salt rotates more strongly than
the free potassium-salt.

Hloloculyr Footatsions
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§ 4. The different fractions were mixed with abount six times their
weight of finely pulverized pofassium-iodide, and then ground together
in a mortar, some cold water being added to the mixture. When
all potassinm-iodide has just been dissolved, the yellow liquid is sharply
sucked off from the white precipitate, this last washed with a very
small quantity of cold water, and the yellow filtrate precipitated by
the addition of an excess of 95 °/; alcohol. A yellow deposit is
formed, which is sucked off on the Bucaner-filter, washed with
alcohol, and recrystallised from water. On heating on the waterbath
the solution does not autoracemise notably. By slow crystallisation
at roomtemperature, beautiful trigonally-shaped, orange crystals are
formed, which are dried between filterpaper. They can grow in
their mother-liquid to considerable size. The optically-active components
are extremely soluble, more than the very soluble racemic compound;
on this account the ecrystallisation of the active components was
executed in smaller and somewhat deeper crystallisation-dishes.
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§ 5. The rotation-dispersion of these optically-active iridium-salts
was measured in the same way as formerly by means of a great
polarimeter of Scumipt and Hakxscn, with threefold field, and equipped
with a monochromator. The tube was always 20 cm. long, and
determinations were made for a whole series of wave-lengths. Even
in thin layers of the liquid the spectral region of the transmitted
light appeared to be appreciably limited by absorption, also in the
case of not very concentrated solutions.

Waves larger than 6850 A.U. were never transmitted to a sufficient
degree, while even in a solution of 1°/, no exact determinations
could be made for wave-lengths smaller than 5300 A.U. To investigate
the shape of the dispersion-curve also for shorter wavelengths, it
was therefore necessary to use very dilute solations, of 0,2 °/, and
0,1°/, or .less. We have used four such solutions for this purpose,
.conlaining respectively one grammolecule of the hydrated salt in
14,57 Liters (a) of the solution, in 57,73 Liters (), in 228,86 Liters (c),
and in 413,7 Liters (d).

In the following table the mean values are taken into account, and
the molecular rotations caleulated from them; in fig. 2 these results
are moreover graphically plotted, in their relation to the light used:

 Tlolocilor Fotatoonr.
Abﬁb/fiz%ig;%’iZZZd’

17000°
16000°
15000°
14000°
13000°
12000°
1000°
10000°
3000°}
8000
7000°
6000°
5000°
40p0"
30001
2000

100 e e ';2?97 Aﬁéatmb/

480 4920 5020 SIﬂD5180526053"05’120550055!5570053005!0Sﬂlll mnszan 63806520665(!5000 d}ZfJéﬂ

- Fg2. %Mf%m Y, /e/a“m /z%&ﬂﬁéfd% da’Zer

The values obtained with the different solutions agreed very well
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together. In \the table are therefore quoted those values which
approached nearest to the curve of the mean values. The dispersion-
curve shows a tendency fo get more. and more horizontal for wave-
lengths beneath 5100 A.U.

ROTATION-DISPERSION OF DEXTROGYRATE POTASSIUM-IRIDIUM-OXALATE
(4 1 Hy0).

_ Wave-length Observed Rotation Molecular Rotation
in A U.: in Degrees: in Degrees:
4790 + 0719 (@ + 163400
4920 0.785 (d) 16237
5020 0.78 (d) . 16134
5100 0.78 (d) ’ 16134
5180 0.77 (d) 15921
5260 0.75 (d) 15514

5340 1.28 (9 ‘ 14647 ‘
5420 4.36 (b) 12586
5510 14.42 (a) 10508
5610 11.94 id. 8699
5700 9.88 id. 7198
5300 8.17 id. ~ 50952
5910 6.86 . , 4998
6020 5.49 id. 4000
6140 4.73 id. 3446
6260 3.86 id. 2813
6380 3.32 id 2446
6520 2.61 id 1901
6660 2.33 id. 1698
- §800 2.10 id. 1530

Although the dispersion of these orange-coloured solutions is
exiraordinarily sirong, the slope of the curve is quite different
from that found in the case of the corresponding rhodium-salt. This
fact proves the preponderant influence of the special nalure of the

‘ 14
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central metal-atom on the specific light-absorption (colour) of these
salts and on the whole character of the rotation-dispersion.

The yellow crystals obtained on evaporating the original mother-
liquid of the strychnine-salts to */, or '/, of its volume, gave after
treatment with potassium-iodide a fraction which appeared to be
the pure laevogyrate salt. The following measurements, made with
a solution conlaining one grammolecule of the hydrated salt in
42,97 Liters of the liquid, may make this clear:

ROTATION-DISPERSION OF THE LAEVOGYRATE POTASSIUM-IRIDIUM-OXALATE

(+ 1H.0).

Wave-length

Observed Rotation

Molecular Rotation

in 4. U.: in Degrees in Degrees:
5340 — 666 — 142870
5430 5.72 12289
5520 4.89 10506
5610 3 86 8293
5700 3.26 1004
5800 2.0 5801
5910 2.28 4898
6020 1.95 4189
6140 1.63 3502
6260 1.35 2900
6340 1.07 2299
6520 0.88 1891
6660 "om 1590
6800 0.70 1504

A comparison of the rotations for the same wave-lengths in the
case of the corresponding rhodium-salt with the here described

Salt:

Molecular Rotation :

‘Atomic Volume
of the metal:

Ky {Rho(Cy O,)} + H>0.
K {ir (Cy Og)s} + H,0.

Mygzo = 14200° Mzgoo = 790°; Msgzo = 0°; Mgeeo = — 1215°

M4930 = 16230r; M5800 = 5952C; M5970 = 45000; MGGBU =+ 1698>.

8 50

8.61
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widium-salts, teaches us, that the rotation of the i idium-salt is
always appreciably greater than that of the rhodiun.-salt, although
the atomic volume of dridium differs only slightly from that of
rhodium, and even exceeds it by a small amount.

If we were able to demoustrale later, that for {/r(deine),}l, the
rotations are smaller than those of the corrvesponding rhodium-salt,
then we should have proved that the influence of the
atomic volume on the magnitude of the rotation, may be in this or
in the opposite direction, according to there being either basic or acid
substituents attached to the central-atom.

§ 6. DEXTROGYRATORY PoTAssiuM-IRIDIUM-OXALATE :
K {1r(C,0,)4+1H,0.

Beantiful, rather large, orange-coloured, and very lustrous crystals,
which are commonly regularly developed in the shape of flattened,
triangular bipyramids. They are well built and geometrically easily
determinable, allowing very exact measurements. The deviations of
the angular values from those found with the corresponding rhodium-

Dextrogyratory Potasium-Iridium-Oxalate.
Fig. 8.

salt are more appreciable than ordinarily stated in the case of
rigorously isomorphous crystals.

The symmetry of the two series of crystals is however exactly the
same, and their form-analogy is sufficiently great, to consider the
optically-active salts of the two series as quite isomorphous, also with
respect to the doubtless isomorphy between the racemic salts of
the rhodium-, and the widium-series. The more deviating values of
the angles and axial parameters are probably conmected with the
rather great difference of atomic weight of the metal-atoms.
Analysis teaches us, that also these optically-active salts crystallise
with only oue molecule of water.

T'rigonal-trapezohedral.
a:c=1:09520. (Bravais); e =100°20". (MiLLER).

Forms observed- P = {1122} [521], as positive trigonal bipyramid,
14*
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predominant and yielding good reflexes; o= {1011} [100], positive
rhombohedron of the first kind, well reflecling, but in most cases.
only with rather small facets; &= {1101} [212], a negative rhombo-
hedron of the first kind, commonly much broader than o, somewhat
less lustrous; y={2111} [421], a negative trigonal bipyramid, about
as large as 2, but much smaller than P, commonly yielding good
mirror-images ; » = {1103}, as a narrow obtusion of the edges of the
rhombobedron o, ordinarily absent, but in the other case very lustrous.
Sometimes a very narrow and rudimentarily developed prism
m = {1120} was observed, truncating the basal edges of P. The
crysials are mostly very regularly developed as flat trigonal bipyramids;
but occasionally more or less deformed, table-shaped individuals are
met with, showing the same combination of forms. The faces of I’
are often striated parallel to the edges P:o0. (Fig. 3). Also crystals
are found, where 0 is about twice as large as P; in this case the
striation on P was observed in all cases.

Finally we met with individuals showing only P and o in about
equal size, P having its characteristic striation; besides them also
y was found occasionally, but very small and subordinate, especially -
in the case of the dextrogyrate component.

" Angular Values : Observed : Calculated :
P:P'=(1122):(1212)=*  73° 20/ —
P:P'=(1122):(1122)= 92 49 92° 49'
Po =@1122):(1011)= 21 40 21 43
z:0 =@1101): (101 = 43 28 43 26
iy =@1101):(2111)= 28 20 28 21
yio =(2111):(1011)= 28 24 28 21
P:io =(1212):(1011)= 60 48 60 504
0:0 =@1011):(0111)= 79 30 79 40
o:7 =@1A011):(1102) = 39 43 39 50
m:P =1120):(1122) = 46 30 46 25

No distinct cleavage was observed.

Optically uniaxial, without noticeable circular polarisation. The
character of the birefringence is negative.

The specific gravity of the crystals at 20° C. was: 2,734; the
molecular volume is therefore: 217,77, and the topical parameters
are: y:w=—"7,0618:6.7230, if calculated with respect to hexagonal
axes, and y = ¢ = » = 6,1321, with respect to rhombohedral axes.
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§ 7. The crystals of the laevogyrate antipode ordinarily showed
only the bipyramid P, which must be considered as a lefthanded
bipyramid here, because all phenomena are in agreement in this
case with Pasteur’s law, as 1s proved beyond doubt by the hemihedral
symmetry of the crystals— Therefore to this bipyramid must be
attributed the symbol {2112} [512], besides the forms o, @, and
y, y having the symbol {1121} [412], appear subordinately here.
Because o and . were in most crystals about equally large, and
could wot be discerned 1n any other way, the external habit of these
lefthanded crystals was not different from that of dextrogyrate salt,
the latter being brought into the same position as the lefthanded
by a rotation through 60° round the trigonal axis, with the only
difference, that the forms & and o are thereby interchanged. However,
if # and o are of unequal size, the occurrence of mirror-images
could be seen immediately in the crystals. The zonal relations may
be made clear by the subsequent stereographical projections (Fig. 4).
Just as in the case of oppositely rotating rhodium-salts, a non-
superposable hemibedrism accompanies here the contrary power
of rotation.

Fig. 4. Stereographical Projection of the Crystalforms of d- and
l-Potasstum-Iridium-Oxalate (only the top-ends of the crysials).

§ 8. The specific gravities of the formerly investigated rhodiwm-
salts, were determined at dy — 2,171 for the racemic compound
(44 H,0), corresponding to a molecular volume of- 260,34; and at

dis = 2,255 for each of the optically-active salts (4 1H,0), which
corresponds {o a molecnlar volume of 222,70. From this the topical
axes of these salts are calculated at:
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x::w=—68980: 6,4274: 6,6306, for the racemic rhodium-salt,
and %: w0 ="7,2660:6,4944, for the optically-active salts, with respect_
to hexagonal axes, and y =¥ — w =6,1856, with respect to rhom-
bohedral axes.

‘Comparison with the corresponding parameters of the here studied
wridium-salts ') : ;

Salt: Topical Parameters :

i

]
racemic Ky { Rho (C, 0)s} 4Vs HyO. | % Wi w = 6,8980 : 6,4274 : 6,6306.

racemic Kz {Ir(C, 0,3}, 4% H,0. AP =6,7454: 6,2626 : 6,5162,

optically-activeKs{ Rho (C; Og)s}, H,0. | % = 7,2660 : 6,4944; %' = 6,1856.

optically-activeKs{ Ir (C2 Og)s §, HyO. | ¥:w =7,0618: 6,7230; 1 = 6,1321,

'

teaches us, that the substitution of the central Rho-atom in the
complex oxalate by the isomorphous [r-atom, produces a diminution
of the topical parameter w in the case of the racemic salts, but a
slight increase, in the case of the optically active antipodes, although
the values for y and %' are in this case smaller with-the correspond-
ing Rho-salt.

In the same way as in the case of the previously described
rhodium-ozalate, all phenomena observed in the fission of potassium-
widium-oxalate ave veally in full agreement with the sense of
Pasteor’s law.

Laboratory for Inorganic and Physical
Chemistry of the University.
Groningen, June 1918,

) The specific gravity of racemic Kyf Ir (CoOy)y |-+ 4/ HoO was at 18° C.

determined at: d,‘,z = 2,688; the molecular volume is thus: 243,82.
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Chemistry. — “Investigations on Pasteur’s Principle concerning the
Relation between Molecular and Crystallonomical Dissymmetry :
VI. On the Fission of Potassium-Rhodium-Malonate into Its
Optically-active Components.” By Prof., F. M. Jarerr and
WiLiam Tromas. B. Se.

(Communicated in the meeting of June 29, 1418).

1. Some time ago one of us') described the crystalform of racemic
Potassium- Rhodium-Malonate : K {Rho(C,H,0,),} + 3H,0, and hinted
at the possibility of separating this salt into its optically-active com-
ponents. In the following we are now able to describe the results
of the respective experiments, which have led to a positive result,
and to give a review of the highly remarkable rotation-dispersion of
these new salts. T

The racemic salt nesessary for these experiments was prepared in
the following way. A 3 °/,-solution of pure Na,RhoCl, + 9H,( was
heated to 40°C, and then precipitated by means of a 10 °/, solution
of caustic potash, so much of the base being added, that the liquid
showed a feeble alkaline reaction. The precipitate is separated
from the excess of potash as well as possible by repeated decan-
tation in high cylindrical vessels; it settles down extremely slowly,
so that this operation takes much time. Then the precipitate is
brought into a round bottom distilling-flask and heated under a
reflux-cooler some forty hours with a solution of the calculated
amount of potassium-bimalonate: KHC,H,0,, and some free malonic
acid, until the precipitate no longer diminishes in quantity. The
red coloured liquid is then filtered, and concentrated on the water-
bath: on slow evaporation at room-temperature there soon appear
red flat crystals of the complex malonate, which are once more
recrystallised from water for purification. The residue in the flask
is again changed into the complex sodwm-rhodium-chloride:
Na,RhoCl, 4+ 9H,0 in the usual way, and afterwards precipitated
as described in the above. '

§ 2. After a series of attempts we succeeded in separating this
salt, which crystallises in beautiful monoclinic crystals?®), into
its optically-active components by the aid of its cinchonine-salt.

) F. M. JAEGER, Proceed. Kon. Acad. Amsterdam, 20. 276. (1917).
%) loco citato, p. 277.
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For this purpose the potassiumsalt is first converted into the
bariumsalt, by adding a strong solution of 3 molecules of bariums
chloride -to a concentrated solution of 2 molecules of the potassium-
salt: a yellow precipitate is formed, which dissolves rather easily
in hot water, but which can be almost completely precipitated from
its aqueous solution by the addition of 97 ¥/, alcohol. This barium-
" salt was now dissolved in water at 50° C, and then a solution of
one equivalent cinchonine-sulphate*), also heated to 50° C, was added
to it. The solutions need not be too concentrated, because the
cinchonine-rhodium-malonate will otherwise partly precipitate, as it
is only sparingly soluble. The bariumsulphate formed is carefully
sucked off, and by washing with water of 45° C. all the
included yellow cinchonine-salt eliminated. On standing for 24 hours
in a large crystallising-dish, the liquid begins to deposit beautiful,
pale yellow and often in rosettes united needles of the cinchonine-
salt of the luevogyrate component, as will soon be shown. On
repeated partial evaporation of the mother-liquid on the waterbath,
the successive fractions were separately collected and investigated.
The first three fractions appeared to contain the /lefthanded com-
ponent; the fourth fraction gave the alinost pure dextrogyrate
antipode, the fifth and sixth fractions the pure dextrogyrate com-
ponent immediately. It is a remarkable fact that the cinchonine-
l-malonate and the cinchonine-d-malonate ave both dextro-gyratory,
notwithstanding the very large rotation of opposite sign of the
complex ions present therein. This peculiar behaviour was checked
by us by a special control, namely by preparing the free potassium-
salts again from the cinchonine-salts used in the polarimetric measu-
rements. We could easily prove in this way, that the salts thus
obtained, really represented the right and left antipodes. From the
pure [aevogyrate potassiumsalt we once more prepared the corre-
sponding cinchonine-salt by means of the barium-salt; the rotations
determined with this especially prepared salt proved to be positive,
and they agreed very well with those formerly found. We have
also investigated the influence of the addition of three molecules of
cinchonine to a solution of the optically-active potassium-salts, and
the rotations found with these solutions were compared with those

1) Originally we tried lo reach our purpose by means of the sirychninesalt,
as in the case of the rhodium-oxalate. However, these experiments had no
result, the polassiumsalt prepared from the carefully fractionated strychnine-salt
by potassium-iodide being always optically-inactive. It is difficult to say whether
racemisation or parlial racemism is the cause of this; but only after several
failures we passed to the use of cinchonine.
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of cinchonine itself: the observed rotations appeared (o be practi-
cally identical with those of the cinchonine-l-rhodium-malonate, so
that evidently the influence of the three molecules of cinchonine
far outweighs that of the laevogyrate rhodium-malonate-ion itself.

The last fractions of the. crystallisation-series of the cinchonine-salt
finally gave pure cinchonine, a small amount of the dextrogyrate
salt and a certain quantity of the racemic salt remaining in the last
mother-liquids. Evidently also here the repeated evaporation on the
waterbath, just as in the case of the correspending ozalate, seems to
cause a partial hydrolysis. Analysis taught us‘that the cinchonine-
d-rhodium-malonate crystallises. with 3 H,0; the corresponding
cinchonine-l-rhodium-malonate with '/, H,0. This last mentioned salt
could not be heated above 100° C, being less stable than the right-
handed salt, it is rapidly decomposed with formation of a dirty
brown powdenr. .

For the rotation-dispersion of the cznchonine-salts we found the
following values:

I.  CINCHONINE-d-RHODIUM-MALONATE (-} 3 H;0).
Wavsiengtin AU | O Resion | Mol Rotaon
5105 1137 - 300100
5260 1,23 26943
5420 1,14 24972
5610 1,07 23406
5800 0,99 21686
6020 0,94 20591
6260 0,88 — 192717
’ 6520 b' 0,84 18400

The solution investigated contained 0,3070 grams of the hydrated
salt in 100 grams of the liquid.

The results obtained are plotted in the figure 1. It shows us, that
both curves are situated above that of pure cinchonine, notwithstanding
the fact, thal one of them contains the strongly negatively rotating
complex rhodium-malonate-ion; of a simple superposition of the
optical activities there is therefore no question.

The transformation of the cinchonine-salts into the corresponding
potassium-saltg was carried out in the following way. The pure
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Il. CINCHONINE-/-RHODIUM-MALONATE (- /o H:0).

Wave fength in 8., | Observed Rotation | - Molecular Rotation
5105 +065 -+ 16647°
5260 0,61 15622
5420 0,57 14508
5610 . 0,52 13384
5800 0,45 11525
6020 0,40 10244
6260 0,36 " 9220
" 6520 0,32 8195

The solution used had 0,2538 grams of the hydrated salt in 100 grams of
the liquid.

Mé‘ﬂé{"%f(ﬂ/ﬂ
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cinchomine-salt is ground with about ten times its weight of potassium-
iodide, and a small amount of water added to the finely pulverized
mass. The mixture is allowed to stand for 24 hours at room-
temperature; the yellow liquid is then sucked off as sharply as
possible from the precipitate The reddish yellow filtrate is precipitated
by 97 ¢, -alcohol, and the pale yellow precipitate of potassium-rhodium-
malonate thus formed recrystallised from a little water. During the
evaporalions on the waterbath a noticeable racemisation does not
occur. It is advisable to add as little waler as possible daring
the transformation of the cinchonine-salt by means of potassium-iodide,
as otherwise the precipitation with alcohol is very incomplete.

8. The optically-active components are, like the racemic salt, but
in yet higher degree, very soluble; at ordinary temperatures the
racemic form is therefore doubtless the stabler phase in comparison
with the optically-active components, so that there is no chance to
execute a fission by spontaneous crystallisation *). The solutions possess
a beautiful orange or bloodred colour. For a series of wave-lengths
the rotations were determined in the case of both antipodes; the
values obtained agreed completely in both cases with exception of
the algebraic sign. The concentrations of the solutions used in these
expeviments must be varied over wide limits, if measurements are
to be made over a greater spectral range, because the absorption of
the light in layers of 20 cm. is very intensive. In the visible part
of the spectrum no distinet absorption-bands occur; but at both ends
it is abruptly cut off- a 1,5°/, solution allows the transmission ot
waves from 5190 to 6800 A. U.; a 0,75°/, solution the transmission
of the whole red, yellow, green, and blue part of the spectrum
to 4870 A. U.; a 0,37 °/, solution in the same way to 4420 A. U.;
etc. With a 1,48 °/, solution these limits were found at: 5020 and
6900 A. U.

For the polarimetric determinations we used solutionswhich contained
respectively 1,503 grams (4), 0,511 grams (B), and 0.305 grams
(C) of the laevogyrate anhydrous salt in 100- grams of liquid; in the
case of the dextrogyratory antipode we used a solution containing
0,804 °/, of the anhydrous salt. The results of these measurements
are reviewed in the following table, and in tig. 2 they are plotted in a
diagram.The data have been calculated with respect to the anhydvous salt.

1) Conf.: F. M. Jagarr, The Principle of Symmetry and Its Applications to All
Natural Sciences, Amsterdam, (1917), p. 209, 210.
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ROTATION-DISPERSION OF LAEVO- AND DEXTROGYRATORY POTASSIUM-
RuoDIuM-MALONATE.

s Observed (7)

3 Observed () and Molecular (M) rotations of and Molecular

2 the left salt: _ (#) Rotations of

e the right salt:

4]

; .

5 A. B. C. D.

?=

S o M 7 M: o M o M

[
4730 — -— — — — 0,19 2436° -— —
4870 — — — — 0,19 2436 — —
5020 | — — — — 0,19 | 2436 - -
5105 | — — | —ou0 |—25240] — — -~ -
5180 — — 0,49 2524 0,20 2564 — —
5260 | — — 050 | 2575 |  — - — -
5340 | — — 050 | 2515 | o020 2564 |--086 |+ 2614
5420 | — 150 |—2621°] 051 | 2621 | — - 087 | 2645
5515 1,53 2673 0,52 2678 0,21 2692 0,88 ‘2675
5610 1,59 2718 0,54 2781 — = 0,90 2736
5700 1,61 2812 0,55 2833 0,22 2820 0,92 2797
5800 1,63 2841 0,56 2884 — — 0,93 2827
5910 1,55 2708 0,53 2730 0,21 2602 0,89 27706
6020 1,47 2568 | 050| 2575 — — 085 | 2584
6140 1,44 | 2516 | 049 | 2524 | 020| 2564{ 082| 2493
6260 1,41 2463 0,48 2472 -— — 0,81 2462
6380 1,38 2410 0,47 2420 0,19 2436 0,4 2402
6520 1,35 2358 0,46 2369 - — 0,18 2371
6660 —_ — 0,45 2317 0,19 2436 — —
6800 | — — —_ — 019 | 2436 | — -
i ]

-

From fig. 2 the very remarkable shape of the dispersion-curves
may be seen, which at a wave-length of about 5800 A. U. show
a maximum. For wave-lengths smaller than 5800 A. U. the rotation
of thie plane of polarisation increases with increasing wave-length, while
for those greater than 5800 A. U. it diminishes with increasing
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wave-lengths, as in ordinary cases. In the neighbourhood of 5800
A. U, the absorption-spectrum, however, does not manifest a single
line or band. However the occurrence of such an anomalous rotation-

Wlolocwlosr Rotdation
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dispersion under these circumstances seems to be theoretically expli-
cable, if the assumption may be made that at least two kinds of
active ions are present?).

Besides this anomalous rotation-dispersion, the whole character of
which is in sharp conirast to that of the regular one, the absoluie
activity of these salts appears in general to be appreciably smaller
than that of the analogously constituted oxzalates, unregarded the
passing through the zero-point in the case of the ozalate at 5970
A. U, formerly mentioned. The substitution of the oxalic acid-ions:

COoo’

Coo’

| by the three ions of the malonic acid: CH,  around the

Coo’ [ '
Co0’

) Drupr, Lehrbuch der Optik, (1900), p. 882.
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central rhodium-atom, is evidently followed by a very radical change
of the character of the optical rotation of the molecule, which
affects not only the magnitude, but also the algebraic sign of
the molecular rotation for a number of corresponding wave-lengths.
The special chemical nature of the substituents placed dissymmetric-
ally round the central atom therefore appears to have as much
influence on the magnitude of the rotation, as the chemical nature
of the central metal-atom itself.

§ 4. After many attempts we were able to obtain the crystals
of the optically-active salts in a measurable form. The laevogyratory
component set free from the cinchonine-salt of the first fractions,
appeared, as already mentioned, to be extremely soluble; the solutions
manifested a strong tendency to supersaturation.

By this circumstance the formation of well measurable crystals
is severely -hindered; and, as gene-
rally occurs in such - cases, the
crystals finally obtained appeared
. to be badly formed. 'Because of

Fig. 8. Laevogyratory the vicinal facets present, most

Potassium-Rhodivum-Malonate. crystal-faces yield multiple mirror-
images, causing the angular values to oscillate often more than 30’
round their mean-values. Hence it was at first thought, that triclinic
crystals were present here. But the repeated determinations, in con-
nection with the optical investigation proved to us finally, that the
salt crystallises monoclinically, and more especially in forms differing
from their mirror-images.

The analogy of the parameters of the optically-active salt and
those of the racemic compound is most remarkable, as becomes
clear, if the directions of the ¢- and c-axes in our former dete\rmi-
nations are interchanged ?). )

Monoclinic-sphenoidical
a:b:¢—=1,0637:1:1,1667.
B = 85°97/,”.

Forms observed: ¢ = {001}, predominant, and mostly very lustrous;

“b’ = {010}, broad and lustrous; & = {010}, very narrow, often absent

and always yielding good reflexes; o, = {111}, broad and lustrous;
o, = {111}, narrower than o,, yielding multiple reflexes; o, = {111},

) . M. JAEGER, Proceed. R Acad. Amsterdam, 20. 277. (1917). There the
ratio @’:b: ¢ was equal to: 1,0783:1:1,2309; with g = 86° 36"
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and o, = {1 1 1}, about equally broad, giving sharp reflexes; s = {101},
broad and well reflecting, but as all faces of the orthodiagonal-zone,
often showing oscillating angles; r = {101}, extremely narrow and
dull; ¢ =1{100}, hardly. observable, in most cases iotally absent;
g = {021}, very narrow and dull. The external habit is that of
hemimorphic thin plates parallel to {001}, with a slight elongation
in the direction of the b-axis.
No distinct cleavage could be found.

Angular Values: Observed: Calculated :
b:o,=(010): 111)=  *50°46' —
cro,=(001): 111)=  *60 14 —
c:0,=(001): 111)= =55 45 —
c:a =(001): 100)= 85 41  83°27y,
c:s =(001): 101 = 50 4 50 8
opo, =@111): 111)= 6+ 5 64 1
s, =101 111 = 3923 3914
qg: ¢ =(012): 001)= ca. 31 O 30 11
b:o', = (010): 111)= 52 49 52 58

On {001} the directions of extinction are orientated paralle] to
and normal to the orthodiagonal. The crystals are not appreciably
dichroitic; their birefringence is feeble. The optical axial plane is
{010}, with a feeble, inclined dispersion; one axis emerges on {001}
at the border of the field. X

The crystal-form of the corresponding dextrogyratory antipode is
reproduced in fig. 4.°

* The specific gravity of the crystals
was at 18° C. found to be: d1§°=2,317;
the molecular volume is therefore:
s 238,76, and the topical parameters

Fig. 4. Dextrogyratory become: x:y:w=—06,1471: 5,7790:
Potassium-Bhodiwm-Malonate. 67493 Analysis proved that the
salt coniains 1} H,0; on heating at 120° C. it is decomposed,
assuming a brown colour.
If the specific gravity of the racemic compound be also taken

into accourt, (dioso — 2,251; V' =1257,80), it appears, in comparing
it with the corresponding potassium-rhodium-oxalate®), that the sub-

1) The topical paramelers of the racemic malonate, after interchange of the
a- and c-axis, becomes: 2 o = 6,2484: 57947 7,1829.
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stitution of the malonic acid for the oxalic acid, causes a diminution of
the topical parameters in two, but an enlargementin the third direction
as well in the case of the racemic as in that of the optically-active
compounds.

At all events this investigation has brought full evidence of the
fact, that the salts of the complex rhodium-trimalonic acid may also
be split into optically-active components, and that the phenomena
observed in their study are in agreement with PasTeur’s law in its
fullest scope. '

Laboratory for Inorganic and Physical
Chemistry of the University.
Gromingen, June 1918,
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Chemistry. — ““Investigations on PasTEUR’'s Principle concerning the
Relation between Molecular and Crystallonomical Dissymmetry :
VIL. On optically active Salts of the Tri-ethylenediamine-
Chromi-series.”” By Prof. F. M. Jazeer and Wirtiam Tromas.

(Communicated in the meeting of June 29, 1918).

$ 1. Some time ago it was already found') by one of us, that
racemic tri-ethylenediamine-chromichloride: {Cr(Fime),}Cl, + 3H, 0, was
completely isomorphous with the corresponding cobalti- and rhodium-
compounds. We prepared this salt according to a method indicated
by Prrirrer *), from the tripyridyl-chronvi-chloride : {Cr(Pyr.),}Cl, by
heating this product with ethylenediamine, and subsequent purification.
Then it was separated into its optical antipodes by means of sodzum-
a-camphor-nitronate *), and these were obtained in this way as the
pure todides. . .

In this fission 6 grams of the racemic salt were dissolved in
20 cem water, and a solution of 6 grams of pure sodium-a-camphor-
nitronate in 15 ccm water S§tbsequently added. A pale yellowish
precipitate of d-triethylenecdiamene-chromi-d-camphornitronate is form-
ed; it is sucked off and to the mother liquid 2 more grams of
sodium-e-camphornitronate arve then added, and the solution allowed to
stand for a few hours, when some more of the precipitate is separated.

After filtration the mother liquid was used for preparing the
corresponding laevogyratory component. The precipitate, thoroughly
washed with alcohol and ether, was ground in a mortar with an
excess of finely pulverised sodium-~iodide, some water added, and
the dark yellow liquid sucked off from’ the precipitate, which was
well washed with alcohol and ether, dissolved in a small quantity
of water, and again precipitated by an excess of sodium-iodide.

The mother liquid formerly mentioned, containing the camphor-
nitronate of the laevogyrate salt, was precipitated by addition of
5 grams sodium-iodide. The precipitate formed appeared, after
being thoroughly washed, to be the racemic iodide. The remaining

-

1) F. M. JaEGER, Proceed. R. Acad.,, Amsterdam. 20. 247. (1917).
3 P. PFEIFFER, Zeils. f. anorg. Chemie, 24. 282, 286. (1900).
3) A. WERNER, Ber. d deutsch Chem. Ges. 45. 865. (1912).
15

Proceedings Royal Acad. Amsterdam Vol. XXI.
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mother liquid, however, was now treated in an analogous way with
8 grams of sodium-iodide; the precipitate appeared to be this
time the laevogyrate triethylenediamine-chromi-iodide. 1t is difficult to
obtain these iodides in well measurable crystals, and they are moreover
ordinarily very small.

§ 2. The rotation-dispersion of these salts was determined in the
usual way, already frequently indicated. As the orange coloured
lignids already manifested a very appreciable absorption of the trans-

"mitted light in layers of 20 c.m. thickness, the measurements for

the limiting wave-lengtbs had to be made with very dilute solutions,
These measurements agreed very well with those made in the case
of more concentrated solutions, so that for all solutions we have
given the mean values of the molecular rolations obtained. In the
case of the dextrogyratory component solutions were used, containing
1,0133 grams (4), 0,5070° grams (B), 0,2535 grams (C), and
0,0325 grams (D) of the anhydrons salt respectively in 100 grams
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s @?f%‘ :
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ROTATION-DISPERSION OF THE OPTICALLY-ACTIVE TRI-ETHYLENEDIAMINE-

CHROMI-]ODIDES.

Wave-length

Observed Rotation:

Molecular Rotation:

in 4. U.: (positive and negative)
4260 030 (D) 28263°
4320 029 id. 27321
4420 0.27;0.35 (D, K) 25385
4480 0.26; 0.34 id. 24552
4570 0.25;0.33 id. 23619
4640 0.23; 0.31 id. 22053
4720 0.22;0.20 id. 20858
4790 0.20; 0.28; 0.27 0, 1, K) 18652
4860 0.18; 0.26; 0.24 i 17610
4920 0.16;0.23; 0.21 id, 15128
5020 0.14; 0.40; 0.21 D, H, 1) 13267
5100 0.97; 0.36; 0.18 € H I 11714
5180 0.88; 0.32; 0.16 id 10579
5260 1.60;0.79; 1.07 B, C, G 9647
5340 1.43; 0.71; 0.95 id. 8578
5430 1.27;0.64; 0.84 id 1634
5520 1.12; 0.57; 1.46; 0 12 (B, C, F, G) 6692
5610 0.96;0.48,1.22;0.62  id. 5741
5700 1.63; 0.81;0.41; 2.18 (4, B,C, E; F, G) 4801
5800 1.33; 0.67,0.33; 1.85  id. 4093
5010 1.150.56;0 28; 1.5  id. 3422
6020 0.96; 0.47; 0.24; 1.30 id, | %%:ﬁé 2012
6140 0.86;0.43;0.22,1.16 id. | 5 - §2 2621
6260 0.77; 0.38; 0.19; 1.04 /d. :‘é’sig g 2328
6380 | 0.70; 0.35; 0.18; 0.94 id. Eggﬁg 2133
6520 0.65; 0.32; 0.16; 0.88 id. E%Zﬁ 1951
6660 0.61;0.30;0.15;0.82 id. | B.Se5 1820
15%
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of the liquid; in the case of the laevogyrate antipode the six different.
solutions employed confained 1,3512 grams (&), half or a quarter of
this (&, @) in 100 grawms of the liquid, and 0,0927 grams (H),
0,0464 grams (I), and 0,0232 grams (K) vespectively of the
anhydrous salt in 100 grams of the liquid. )

The dispersion-curve for the molecular rotation, shewn by mea-
surements is plotted in the diagram (fig. 1). It has much analogy
with that of the corresponding cobalti-salts, but only a slight analogy
with that of the triethylenediamine-rhodium-compounds.

Probably the magnitude of the votation for corresponding wave-
lengths in the case of these analogously built complex ions greatly
depends on the magnitude of the afomic volume of the central
melallic atom, in such a way that the rotation appears higher, if
the atomic volume of the metal is smaller. As for instance:

) Atomic VOLUME
COMPLEX SALT: MoLECULAR RoTATION OBSERVED: OF THE
l - METAL
{Co (Eine); } Iz +H.O. | Mzgpg = 7230°; Msye9 = 21580°; Mgggp = 2114° 6.76
{Cr (Eine), } I3 + HoO. | Mzggp = 4093 My = 11714°; Mege = 1880° .72
{Rho (Eine)s } I+ HoO. | Mysng = 3125% Myipg = 3965 ; Megpo = 2243° 8.50.

The values for 1=—6600 A.U., are mentioned at the same time
for the purpose of demonstrating that this antiparallelism of
rotations and atomic volume is surely not true for all wave-lengths:
for rays of great wave-length, as e.g. in the visible ved part of the
spectrum, — the rotation of the Rho-salt surpasses even that of
both the ocher salts; only in the domain of appreciable dispersion,
is the said regularity met with.

As vegards the absorption, we were able to state the following.
In a layer of the solution of 20 c.m., a liquid containing.

1,12129/, of the salt,allows the passage of all red and yellow rays up to those of5380A.U.

015606 Dlo " n " " ” ” non " ] ” » n n " 5220 A'U'
0!2803 ol’O " » ” n n ” n n »n »n » » » n » " 5030 A' U'
0, 140‘2-0/0 ) » " " " " L " » n » n " n 4850A‘U'

0J0701()/0 » n » n » ” LS 1 ” n ” ” ” ” ” 3940A‘U'

§ 8. Numerous attempls were made to win these chromi-salts in
well measurable crystals, and to investigate the validity of Pastruk’s law
also in this case. Bul a heavy impediment in reaching this aim was
created not only by the facility with which those salts decompose
in solution, especially under the influence of the light, — but also
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by the great solubility of these salls, induecing us always to work
with only small volumes of concentrated solutions, from which good
crystals are ordinarily deposited with difficully. For the same reason
the transformation of the iodide into the chloride or bromide could
not be of any use, so that these for our purpose so very important
salts, could not be made use of in this case.

Racemic TrigrEYLENEDIAMINE-CHROMI-IODIDE.

{Cr (Bine)} 1, +1H,0.

On slow crystallisation this compound presents itself in the form
of very small, orange, apparently octaledral crystals. Crystallisation
must occur in the dark, because this salt, in the same way as all
the riaethylenediamine-chromi-salts, becomes violet under the inflnence
of the light. Also increase of temperature must be avoided, because
the solutions change from an orange colour to a dark reddish
violet by the transformation into salts of the violet aguo-type. The
crystals measured were not larger than a pinhead, and often they
were disfigured and distorted in rather a strange way. Some of
them showed under the microscope the appearance of fig. 2a, without

Tig. 2. Racemic Triethylenediamine-Chrom i-Iodide. (-+ Hy0).
it being possible however lo determine the Mirrrrian indices of
their facets with complete certainty; the crystals pictured in fig. 26
and 2¢ manifested however some measurable forms.

- Rhombic-bipyramidal.
a:b:¢=0,8632:1:0,8652.

/

The crystals are pseudo-tetragonal, and perfectly isomorphous
with the corresponding crystals of the cobalti-), and of the rhodium-*)
compound, just as we were able to prove this before in the case of
the trigonal chloride of this series®). The colour of the crystals was
orange or red; by partial loss of water of crysiallisation, they
sometimes get locally yellow and opaque.

1) F. M. JagcER, Proceed. R. Acad. Amsterdam, 18. 62 (1915).
% F. M. JAEGER, Proceed. R. Acad. Amsterdam, 20. 250. (1917)
%) . M. JaigER, Proceed. R. Acad. Amsterdam, ibid. 247. (1917).
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The forms observed are: o={111}, great and very Iustrous;
¢ = {001}, small, but well developed and yielding good reflections;
m = {110}, broad, but commonly with curved and rudimentary facets,
and thus practically not well measurable. Probably also a form
q = {021} occurs, and in the case of the crystals of fig. 2a doubtless -
a =1{100{, as a broad pinacoidal face, and r={/o £}.

Angular values : Observed : Caleulated :
c:0=(001):(111) = *52° 56’ —
p:ro=(111): 111) = 62 49 —
0-0=111): (1) = 74 10 74° 8§
0:0=(l11): A11) = 74 27 74 19

No distinet cleavability was found.

There cannot be the least doubt about the complete isomorphism
with the corresponding Co- and Rho-salt:

Crsalt..... a:b:¢c=0,8632:1:0,8652.
Co-salt. . ... a+b:c=0,8700:1:0,8699.
Rho-salt....a:b:c=0,8541:1:0,8632.

Up till now we have had no opportunity to prove this iso-
morphism also in the case of the optical antipodes, because no
suitable crystals could be obtained. There can be however no doubt,
that the said relation also exists in this case.

Laboratory for Physical and Inorganic
Chemistry of the University.
Grroningen, June 1918.
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Anatomy. — “The Involution of the Placenta in the Mouse after
the Death of the Embryo”. By Dr. A. B. DROOGLEEVER
Forruyn. (Communicated by Prof. J. Boexg).

(Communicaled in the meeting of June 29, 1918).

In various species of mammals which are pregnant with several
embryos at the same time it accidentally occurs that one or more
embryos die before birth. The subsequent fate of the placenta has
been controlled in only a few cases and it appears to be intimately
connected with the structure of the placenta. Now this structure in
the mouse considerably deviates from that in many other mammals.
So it seemed to be worth while to investigate in this animal too,
as has not yet been done, the involution of the placenta after
interruption of the pregnancy. For this purpose the uteri of 8 mice
were at my disposal containing together besides many normal egg-
chambers 20 egg-chambers without an embryo. Judging from the
degree of development of the normal egg-chambers one of the 8
mice had been killed on the 13%h day of the pregnancy, one on the
15, four on the 16t one on the 17th and one on the 18th day.

The 20 empty egg-chambers are more fully described in a paper that
I offered to the “Tijdschrift der Nederlandsche Dierkundige Vereeni-
ging”. Here I shall only communicate the results in a general way.

Never was any other trace of the embryo left than some free
cells which could not be duly recognised. Many portions of the
foetal membranes survived the embryo, but they did not all do so
during the same time. So among the empty egg-chambers some
groups could be recognised with more or less remainders of the
foetal membranes. .

In the first group the giant-cells (in the mouse trophoblastic cells
which are greatly enlarged and have become independent) and the
membrane of Rewcnerr were left and moreover parts of the ecto-
placental cone and of the proximal or distal entoderm of the yolk-sac
or of both. The proximal entoderm of the yolk-sac could be
well recognised by the appearance of the cells, but it had
always been broken into pieces. The distal entoderm of the
yolk-sac sometimes lined large pieces of the membrane of RuicHERT
internally ; besides free cells of it occurred. The ectoplacental cone
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" never inclosed embryonic blood-vessels, but sometimes some con-
nective tissue of the allantois entering the ectoplacental cone together
with the large blood-vessels. Always the cells or the syncytium of
the ectoplacental cone could be recognised. In some cases they
changed into young giant-cells, which in normal circumstances too
can originate from cells of the ectoplacental cone. Often spaces filled
with maternal blood lay between the cells of the ectoplacental cone,
as is the case in normal egg-chambers. RrrcHerr’s membrane could
easily be recognised as the homogeneous membrane that develops
beneath the trophoblastic epithelium when it changes into free
giant-cells. After the disappearance of the embryo the contraction
of the uterine wall had pressed the greater part of the ectoplacental
cone into the space previously occupied by the embryo. Moreover
this contraction bad folded ReicHERT’S membrane. Sometimes this
membrane had muoch diminished in size, but it always showed the
aperture through which the cells of the ectoplacental cone previously
cohered with the allantois.

Generally the giant-cells very clearly showed their power to ingest
erythrocytes and other portions of the maternal decidual tissue, but
they had hardly changed in this group. This was not so in the
second group of empty egg-chambers where, as to the foetal elements,
only the distal entoderm of the yolk-sac, the membrane of RkrcarrT
and the giant-cells were left. There several of the latter cells had
grown out till they reached dimensions that were extraordinary
even for giant-cells. In normal egg-chambers it is the task of the
giant-cells to attack the decidual tissue and the maternal blood and
to leave part of the ingested food to the embryo. As soon as they
have been loosened from the trophoblastic epithelium or the ecto-
placental cone they lead an independent life. After the death of
the embryo -the only change is the fact that of course the giant-
cells can provide no longer any food to the embryo. They keep
all to themselves and consequently thrive extraordinarily. In all
directions they acquire the same dimensions, as the pressure of the
embryo which in normal egg-chambers flattens them much, has
been suspended. Therefore the space occupied by the giant-cells is
much larger than in normal egg-chambers. Their number only seems
to me to be larger, because they are not dying away so soon asin
normal egg-chambers, not because more of them would have devel-
“oped. Yet here ioo the fate of the giant-cells is to die away. This
is more conspicuous in another group of empty egg-chambers where
giant-cells are the only foetal element that is left. Especially here
one sees ihe body of the giant-cell losing its affinity for the dyes
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and dissolving, leaving the naked nucleus behind. Afterwards the
nucleus submits to the same fate.

The giant-cells have not been able to consume the whole layer
of decidual tissue before they disappear. Yet this layer must be
removed if the normal situation of the uterine-wall is to return.
Therefore the giant-cells are supported by another type of cells,
apparently amoeboid wandering cells with phagocytal qualities. These
cells are of a hitherto unknown kind and in normal egg-chambers
they do not occur, not even post partum. Their shapes and sizes
are very variable. They have a nuclens which generally lies ex-
centrically and sometimes two or more nuclei. Their cytoplasm
stains remarkably intenseley with eosin dissoluble in water,
whereas eosin dissoluble in alcohol stains them, it is true,
but not extraordinarily. I propose to call these cells eosinophilous
phagocytes. About their origin nothing is known to me, but I think
that they are maternal cells. The eosinophilous phagocytes were
lacking only in one of the twenty empty egg-chambers, and this one
obviously had been preserved within a day after the death of the
embryo. In the first place they appear in small groups between the
- group of giant-cells and the layer of unattacked decidual tissue.
These groups enlarge into constantly thicker layers, which are
always situated either between the decidual tissue and the giant-cells
or between the former and the uterine cavity. The eosinophilous
phagocytes attack only the maternal decidual tissue and not the
giant-cells and they continue to do so after the disappearance of the
giant-cells. So a fourth group of empty egg-chambers exists where
one sees no foetal rests at all, but only eosinophilous phagocytes
which remove the layer of decidual tissue, which has in the mean
time greatly diminished in size. 1 could not observe the disappearance
of the eosinophilous phagocytes.

As is known, in egg-chambers of the monse the uterine cavity
disappears at the mesometrical side of the embryo to extend at the
antimesometrical side of the embryo starting therewith from the
portions of the uterine cavity that are lying between the egg-chambers.
Before the parts of the new uterine cavity reach one another in
the middle of the egg-chamber, which occurs on the 17t day of
the pregnancy, a more or less thick partition of decidual tissue in
the egg-chamber separates the parts of the new uterine cavity,
which approach one another. Now this partition can be found in
many empty egg-chambers, but in some it has been ruptured,
in others it is attacked by eosinophilous phagocytes, and in still
others it has been removed prematurely by eosinophilous phagocytes.
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I cannot even guess the cause of the death of the embryo, but 1
observed that the embryo may perish at different ages. At least I
think I have met with a case where this occurred on the 8t day
and with another where this occurred on the 16 day. He who
disposes of younger specimina (my youngest embryos were of the
end of the 13 day) probably will also find eggs that hae perished
before the 8t day. Moreover it appears that in one and the same
uterus embryos may die away at very different ages. I discovered
in the same uterus one of the empty egg-chambers with the smallest
and one with the greatest quantity of foetal rests, and I conclude
that one embryo had been dead a much longer time than the other.

Leiden. Anatomisch Kabinet.
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Physics. — “The Limit of Sensitiveness in the String galvanometer.
By Prof. I. K. A. Werrnum SA10MONSON.

(Communicated in the meeting of June 29, 1918).

In EiwnTHOVEN's stringgalvanometer the deflectional constant is
subjected to the same 'law as holds good in the movable needle-
and movable coil galvanometer: it is proportional to the square of
the periodic time of the movable part. In the string instruments
_the duration of the oscillations is modified by altering the tension
of the string. The sensitiveness finally depends on this tension as
well as on the dimension and material of the string, and lastly on
the strength of the magnetic field.

The tension of the string can only be altered within certain limits.
The upper limit is given by a tensile siress exceeding the elastic
strength. The lower limit is the total absence of tension. But even
when no pull is exerted, the string can still vibrate transversally.
The frequency of the vibrations it then makes, is a function of the
dimensions of the wire and two piroperties of the material i.e. density
and the elasticity-modulus, and may be vepresented by

m dl/E ,
8Jrl’ o - (@

in which IV denotes the frequency, / the length, ¢ the diameter of
the string, ¢ being the density and £ Youne’s modulus, whereas
m is the smallest root of the transcendental equation cosm coshm=1.
The value m =4.730 ... (RavLwier On sound I. Art. 174).

As we may discard the influence of temperatuve on the elasticity,
this formula gives lhe lowest frequency for transverse vibrations
obtainable in strings, which in a definite material and with given
dimensions cannot be lessened. We may therefore say that the
periodic time of the string in the KintTHOVEN galvanometer, and
consequently the sensitiveness of the latter is limited by the impos-
sibility to lessen the frequency; and as the elasticity of the material
is responsible for transverse vibrations which might occur in a
perfectly relaxed wire, the trne limit of the sensitiveness is to be
found in the elasticity, and as we shall see also in the density and
specific resistance of the material of the strings.

With the formula (1) we can always calculate the minimum of
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the frequency of the transverse vibrations of the string, if we know
its dimensions and the material of which it is made. In table I a
few numerical data are given regarding various materials which-
may be used for making sirings. In this table the length is taken.
as 10 cm and the diameter as one micron (10— centimeter).

-

TABLE I
e e —— ————— ——— ————————————————— ———— S
E———-l-——-— N T
98100000 & /sec.
Cu 11000 8.9 0.3100 3.3
Ag . o o 7500 10.5 2356 4.25
Au . . . ... 7500 " 19.2 1724 5.80
Al .. 6750 2.7 4408 2.27
PE ... 16500 21.4 2448 | 408

It is very difficult to measure directly the vibrations per second
in wires of 1 micron diameler. The air resistance in this case is
so considerable as to cause the movement to come to a dead stop.
We should have to examine such strings in a perfect vacuum,
Furthermore we are not able to make wires of I micron except in
platinum, and perhaps in alumininm and gold. Silver wires of 1 micron
are as yet not atlainable. Buf the dimensions used in this table and
the figures in the last columns permit us to calculate in a simple
way, e.g. with a slide rule, any periodic time when other dimen-
sions are given: the vibration time being proportional to the square
of the length and inversely proportional to the diameter.

A wire clamped at the end without any tensile stress will sag
under the influence of a load P, uniformly distributed over the
total length. The maximum deflection & will be

' P B
T EIS88L "
where [ represents the axial moment of inertia of a section of the
4

(2)

. I

wire. As for a round wire /= <7 e gel
.7 =S il 3
‘T exEd @)

In the string galvanometer the transverse load P is equal to Hz!
Dynes, if H bhe the stiength of the magnetic field in Gausses, ¢

- 242 -



237

the current strength in Webers (=10 ampere) and [ the length of
the wire in centimeters. If we put this value for P in 3):
=2 W
bn Ed*
giving the deflection of the middle of a string clamped at the ends
without tension, and of a length [ and a diameter d, placed in a
magnetic fleld H, as soon as a current of © Weber passes throngh
the string. We need hardly insist on the fact that this formula
gives the absolute limit for the sensibility for small currents.

The next table II shows this limit for strings made of different
materials. For the dimensions of the string we again fake 10 cm
and 1 mieron, for the current-strength 10-13 Weber (1012 ampere),
for the field 1intensity 10000 Gauss. The last column gives the
deflection in millimeters if the absolute deflection of the middle
be magnified 1000 times. We can use the fignres of this column,
if we wish lo calculate the possible deflection with strings of other
dimensions in a field of a different strength, and when observed
magnified to another scale. The deflections are proportional to the
fourth power of the length and the inverse of the diameter of the

string.

TABLE 11
E 1 Hi De- 5V= 10003, d = 1t
98100000 6E ﬂection( [=10cm, 1= 10~13 WEBER |
Cu 11000 4916.10~20 49.16 mm
Ag 7500 7210.10—20 72.10
Au 1500 7210.10~-20 7210
Al 6750 8012.10—20 80.12
Pt 16500 3277.10—20 32,77

The figures in the last column may also serve to calculate figures
for existing strings. With an aluminium string of 2 microns and
56 millimeters’ length in a field of about 16000 Gauss, I found a
detlection of 0.40 millimeters for 10—!2 ampere, which took place
in about 20 seconds. From the figure in the table we calculate that
the deflection ought to be 1.20 millimetres. In Eintuovin’s publica-
tions on silvered quariz fibres we equally find figures about the
possible sensibility, the order of which does not disagree greatly
with the theoretically possible deflection if we take for the sensitive-
ness with silvered quartz fibres the sa:me'value as'in the case of silver
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wires. The same may be said about my own observations with
quartz fibres. Generally the defllection actually observed is some
3—5 times smaller than we ought to expect from the theory. The
explanation is found when we consider the behaviour of silver strings
of 16.5 microns and of copper strings of 15 microns diameter. These
wires still give vibrations when the tension is reduced as far as
possible, but in every case the frequency is about 1.5 to 2.1
times greater than that calculated from formula (1). With a silver
string of .16.5 w and 53 mm length I could not reduce the frequency
under 20 per second instead of 14 as calculated. When magnified
47 times 1 microampere caused a deflection of 1.31 millimeter; the
siring being placed in a field of 14000 Gauss. The theoretical value
is 3.7 millimetres with 14 vibralions, wbich would come o about
1.8 millimeters with 20 vibrations. As there may be a slight differ-
ence between the figure taken for the diameter and the actual
diameter, the agreement may be considered not unsatisfactory, the
more so as the value of I must also be considered as merely an
approximate one. Finally we must state that the string was not an
entirely straight one, and that in being mounted it had probably
retained a slighl torsional stress.

In a few other observations of the same kind with wires of
different malterial I found a deflection of 8.1 mm where 9.1 mm
was expected; also one of 36 mm, where 40 had been calculated.
Generally speaking, the agreement was by far the best with the
thicker wires. Yet in all cases the agreement was close enough to
allow an extension of the theory to the sensitiveness for small
potential differences.

From the formula (4) we find an expression for the sensibility
for small potential differences by dividing both parts by w, the
resistance of the siring:

h Ml

—_ e ...
w  6a Edw

()

This formula gives the deflection in centimeters of the middle
part of the string when a potential difference of 10 Volls is applied
to the terminals. But with this formula we have not taken count
of the damping. The movement of the string in the HinTHOVEN
galvanometer is damped partly by air friction, partly by electro-
magnetically generaled counler-eleciromotive force. In the following
cases we shall consider only the electromagnetic damping; which
with thick wires greatly exceeds the air resistance. As the electro-
magnetic damping is caused by the number of the lines of force
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cut by the string during its movement, the form taken by the string
in its deflected condition is of the greatest signiticance as well as
the sirength of the magnetic field. A string under tension deflected
in a homogeneous magnetic field takes the form of a parabola. In
that case the damping factor is

a 6

w.10° ©)
Whenever the string would take another form whilst being deflected,
the factor § would take another value. This factor represents the
mean deflection taken over the whole string as compared with the
maximum deflection. A perfecily relaxed string, clamped at the ends.
and uniformly loaded takes the form given by the formula

PPy 2t
y:z’}ﬂ(—i————Q—l—:—}——Z}). N )
in which y gives the deflection for a point at distance x from the
end. If we put x = 4/ we get the deflection for the middle of the
string, which has already Dbeen given in formula (2). In order to
find the mean deflection we integrate (7) over the whole length:
i
yfdm;—:fi_l‘— L (8)
; ETI 720 )

Comparing (2) and (8) we find
!

8
Ao [Ymay = —
!/f % [Ymazx 15

0

D:%

so that we may state
_ 8 HI g
: G w1 o O

Taking M as the mass of the string, we can always represent

N . ¢ * . ( )

if K be a lateral force and if we suppose the damping to be very
slight. If the string should make critically damped vibrations, the
damping would be

D=VIME . . . . . . . . ()

Eliminating X from (10) and (11) we get, in connection with (9)
8 H*

MN = — 2

4n MN = —TT (12)
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In (12) we substitute for the mass M = ad"lg and for the resistance

lo . .
w :;d-.‘z, giving: -

H*=175mx10".goN. . . . . . . (13

which shows a simple velation between the allowable and
necessary strength of the magnetic field, the frequency and the
density and resistivity of the material. If we were at liberty to
choose any figare for N, the length and the thickness of the string
would seem to be of no consequence. But we started from the
premise that the frequency should be as small as possible with a
string of predetermined length and thickness, and elasticity. Hence we
must put the value for NV taken from 1) in (13) giving

4 o
H:1.45105I/—P—TV9E9’. N 0 )

Now we can substitute this value for H in (5) and by likewise

l ‘.
substifuting w:% we arrive at a formula for the sensibility for
L

potential differences:

"k ? 4 ]
~ =—=6040 l/——— e
tw ay'd Eo? ) (15)

This expression for /4/uw gives the extreme limit for the sensibility
of a completely relaxed string in a magnetic field of a strength
exactly calculated to render the movements of the short-cireuited
string critically damped. The volt-sensibility increases by /* and
decreases by d1/d. It also depends on the density, resistivity, and
elasticity of the matevial. In table III we find the constants for
different materials and in the fourth column the comparative
“material-factor’” for each material. These have been muliiplied by
10° so as to indicate deflections per microvolt with strings of 1 u

TABLE 111
g | Bt o000 (600,  E~05| H Njsec
"98100000| ¢ ‘ o
Cu| 8.9 11000 1.62 4 325 | 0.3100
Ag | 105 7500 1.7 1034 320 | 0.2356
Au | 19.2 7500 2.20 1073 AT | 0.1724
Al 2 6750 2.81 622 284 | 0.4408
Pr | 21.4 16500 9.40 205 - 1078 | 0.2448
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diarreter and 10 c.m. length with a microscopic magnification of
1000 times. The next column shows the strength of the field A in
Gauss, and the last column contains once more the frequencies.

Gold fibres, if critically damped, will give a larger deflection than
strings of any other material, but of the same dimensions. The time
of vibration, and consequently the time of deflection is larger than
with other strings. Hence we cannot easily compare the results.
This table is only useful if we wish to calculate the possible
deflection with strings of other dimensions. In order to get compar-
able figures we shall have to consider sirings of the same diameter,
which have the same vibration time. A formula for this case can
be given by calculating

b oyesa00 L Lo
7w Va If‘/Egﬂg

This formula represents the deflection caused by 10 Volts through
a string of a diameler d, completely relaxed, and vibrating once a
second, whilst placed in a magnetic field of a strength, sufficient to
cause the movement of the string to be entirely damped. .In this
case the length is predetermined for any matetial by the condition
that the frequency is one per second.

In table IV we give a few figures which can be calcnlated by
this last formula.

16)

TABLE 1V.
5400 .| Deflection per uV. with d = 1p.
Yoy H l w
V' Eo’g and ¥ =1000 X
Cu 2410 500 | 5.56 | 1150 241 mm
Ag 2448 658 | 4.85 | 1080 245
Au | 1878 997 | 4.15 | 1163 188
Al 2757 426 | 6.63 | 2430 216
Pt 726 .| 2190 | 4.95 | 5940 B,

From this table we see that aluminium is the best material for
strings in an Ewraovex galvanometer if used for the measuring
of small potential differences. A string of 1 u, completely relaxed
and 6.65 cm in length, gives vibrations of one second. With it we -
can gel a deflection of 276 mm for 1 microvolt, if the field be
adjusted at 997 Gausses; and ihe microscopic magnification amounts

. 16

Proceedings Royal Acad. Amsterdam. Vol. XXI.
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to 1000 times. If the string were placed in a perfect vacuum the
movement would be critically damped. Silver follows with 245 wm
deflection if the length be 4.85 c¢m. Copper requires a longer string
viz. of 5.56 cm and gives about the same deflection. Practically we
shall have to make our choice between aluminium, silver, or copper,
whenever we want a high sensitiveness for small potential differences
with a cntically damped movement. From the formula we conclude
that with a given material the thinner the string the higher will be
the sensibility for small potential differences

Finally we shall have to consider one other possibility for ren-
dering the voltsensibility as high as possible.

We take again the case of a perfectly relaxed string, clamped at
the ends. If the weight P be uniformly distributed over the entire
length /, we..must use the formula (1). But if the string is loaded
in the middle only with the weight P, the deflection will be exactly
twice as large:

_ PP
T EI192 .

If we put the string, of a length / 1n a stronger magnetic field
H’ but of a very short length 2 so as to make Hl— H’2, and if
we suppose 4 to be very small as compared with /, we shall come
very near the conditions represented by the last formula (17). Especially
if we use strings of not too small a diameter there will be scarcely
any difficulty of making the magnetic field 10— 20 times stronger
and the string 10—20 times longer than the field. In this case we
practically double the deflection, but at the same time the damping
will bave become too great. The damping factor will have become
nearly 1.0 instead of 8/15. Hence the magnetic field must be made
V2 times weaker. Finally the sensibility for small potential differences
will become only 12 times greater.

h (17)
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Anatomy. — “The egg-cleavage of Volvox globator and its relation
to the movement of the adult form and lo the cleavage types
of Metazoa.” By Dr. H. C. DersMaN. (Communicated by Prof.
J. Bokg).

(Communicated in the meeting of June 29, 1918).

For the zoologist still more than for the botanist Volvox is an
interesting object. Already in this organism, where it is still dubious
whether we have to consider it as a plant or as an animal, we see
indicated the main lines along which the phylogenetic development
of the Metazoa has taken its course. Borscmri?) rightly observes
that Volvox is no longer to be considered as a colony of Protozoa,
hut as a pluricellular organism of simple structure. Not only do the
cells communicate with each other by plasmodesms, forming thus
one single mass of protoplasm, but also there is a difference between
mortal somatic and potentially immortal propagation cells as is
characteristic of Metaphyta and Metazoa. Between these two Folvox
holds an intermediate position, reminding one more of the former
by the possession of chlorophyll but pointing more in the direction
of the animal kingdom by the rest of its organisation. .

Long ago the first stage of development in Metazoa, the blastula,
has been compared to Volvox and was termed by HuxLer?) e.g.
“the animal Volvox”. The resemblance afterwards appeared to be
still greater than HuxLey could have suspected, for Volvox is by no
means a homaxone sphere rotating indiscriminately in all directiong,
but shows a distinct opposition between an animal and a vegetative
pole. The line joining them can be described as the main axis, of
the organism, which is not strictly globular, but a little elongated in
the direction of the main axis. With the animal pole directed forwards
it swims with a rotary movement round the main axis just as is
the case with the pelagic larvae of lower Metazoa and also still of
Amphioxus. At the animal pole the cells are smaller and further
from each other and contain also less chlorophyll than those at the
vegetative pole which are darker green, by reason of the higher

1) O Burscant, 18831887, Protozoa II, p. 775, in Brony's Klassen und Ord-
nungen des Thierreichs.
%) T. H. Huxuey, 1877. The Anatomy of Invertebrated Animals, p. 123, 678.
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proportion of chlorophyll, and communicate by more numerous and
broader plasmodesms. The cells at the animal pole each contain a
red stigma as characteristic of flagellates sensible to light (to which
also the Volvocinea belong), whilst those at the vegetative pole are
lacking them. The two kinds of cells pass quite gradually into each
other. The propagation cells are restricted. to the vegelative half.
Any one having an opportunity to study Volvox can easily verify all this.

The propagalion occurs either by means of egg-cells and sperma-
tozoa, or parthenogenetically by so-called parthenogonidia. The latter
mode occurs, just as in Rotatoria and Infusoria, during a number
of generations, the former mode at the close of such a period, the
encysted egg being the result. The cleavage stages of the egg and
of the parthenogonidia in which development proceeds in a similar
manner, exhibit again a striking resemblance to those of Metazoan
eggs. The figuves given of these stages for Volvoe, Pleodorina,
Eudorina, Pandorina, and Gonium, remind one especially of stages
of the spiral cleavage type, which probably we may designate as
the original cleavage type of the Zygoneura or Protostomia, and
which is still found with Polyclads, Nemertines, Polychaetous Anne-
lids and most Molluses. It therefore seemed to me very interesting
to find out how far the cleavage of Volvox corresponds to the spiral
type. The statements made by former investigators appear to be
insufficient and too contradictory to answer this question in a satis-
factory way *).

\ ) ) Fig. 1. Volwox globator, parthenogonidium, four-celled
stage, seen from the vegetative side.

When, therefore, the opportunity presented itself to study more
closely the cleavage of the parthenogonidia in Volvox, which appeared

1) Statements on the cleavage of Volvox are found in:

J. GomosHaNkIN, 1875, Genesis im Typus der palmellenartigen Algen. Versuch
einer vergleichenden Morphologie der Volvocineae. Mitl. Kaiserl. Ges. naturf.
Ireunde in Moskau, Bd. 16 (Russian, an extract is found in Botan. Jahresber. f.
1875, p. 27).

E. Overron, 1889, Beitrag zur Kenniniss der Gattung Volvox, Botan. Centralbl,,
Bd. 10, p. 177. ]

L. Kuein, 1890, Vergleichende Untersuchungen tiber Morphologie und Biologie
der Fortpflanzung bei der Galtung Volvox. Ber. naturf. Ges. Freiburg, Bd. 5, p. 15.
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to occur in considerable number in the Victoria regia-basin of the
Leyden botanical garden, I readily seized it. The study was made
on living material. During development the parthenogonidinm, which
continues to communicate by plasmodesms with the surrounding
cells, considerably increases in size'), so that the older stages are
often easier to study than younger ones, for which the use of oil-
immersion as a rule is to be preferred.

By two meridional cleavages the parthenogonidium is first divided
into four equal cells, which each will give rise to a quadrant. The
eight-celled stage has already been figured repeatedly for Volvor
and other Volvocinea, but not the transition of the four- into the

Fig. 2. Beginning of - Fig. 3. Transition 4—8§,
the third cleavage, animal vegetative side
side

eight-celled stage. Figs. 1, 2, and 3 teach us that during this cleavage
a torsion amounting to 45° occurs between what we may call for
the sake of shortness the four vegetative cells and the four animal
cells. In the terminology of the spiral cleavage type we should call
this torsion a dexiotropic one since, if we look at the egg from the
side of the animal pole, the four animal cells appear to lie to the
right of the four lower cells.

It seemed to me interesting to make oat if this third cleavage
always takes place in the same way or if, as could equally be
imagined, it is sometimes dexiotropic and sometimes laeotropic. In
the cleavage of Balanus, which shows a similar torsion, I found e.g
both possibilities occurring indiscriminately *). In the spiralcleavag:
type the third cleavage is always dexiotropic with the exception of
inversely wound Gasteropoda where the whole cleavage proceeds in
an inverse manner. So mnot only the adult form but equally the
earliest cleavage slages present the reflected image of what we find
in dextral Gasteropods. / >

1) All the figures in this article have been drawn the same size.

) H. C Dcsman, 1917. Die Embryonalentwicklung von Balanus balanoides Linn
Tijdschr. Nederl. Dierk. Ver. (2), DI 15.
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I found that in Volvoz the third cleavage always proceeds m
a dexiotropie manner, and the suggestion lies at hand that here too
some peculiarity of the adult form might stand m a certain relation
to this phenomenon. What, for example, 1s the direction in which
Volvoz rotates round the main axis, 1s this always the same or at
one time dexiotropic and at another laeotropic? As has been already
observed by earlier investigators and as I can confirm here once
more, the rotation always occurs in this way that, seeing it from
the ammal pole, we may designate it as clockwise, i.e. in the
direction of the hands of a clock or dexiotropie. It lies at hand to
suggest a 1elation between these phenomena, as has been stated
equally in Gasteropods. That 1n the latter there can be no question
of a direct cansal relation between the torsion of the adult animal
and that of the cleavage eells will be evident at once if we bear
. mind that the spiral cleavage type occurs equally well in forms.
that are not wound at all, as Lamellibranchiata, Chitons, Polychaetous
Annelds ete We will revert to the question whether possibly in
Volvor we might think of a more direct relation between the rorsion
during cleavage and the direction of the rotation during movement.

In the eight-celled stage (fig. 4, 5) which has been figured already

Fig 4. Stage 8, Fig. 6. Stage 8,
animal side. vegetative side.

more than once, the four vegetative cells alternate with the four
animal cells. They constitute together a little cell-plate representing
phrlogenstically the Gonium-stage, but which at the border already
begins to carve in. This cwmving in accentuates itself during the
transition into the 16-celled stage and in Volvox evidently manifests
itself somewhat earher than m Pleodorina, Eudorina, and Pandorina,
where also 1mn the stage 16 the cells are stll lying m a concave
little plate, while 1n Volvow it has then already passed into a hollow
globule with an opening, the “phialoporus”. The eggs always have
the vegatative side, with the phialopore, directed to the surface of.
the maternal organism.
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The passage of the eight- into the sixteen-celled stage, which in
the spiral type is always performed by a laeotropic cleavage, is
characterised in Volvoxr by a progressive torsion of the cells of the
vegetative side with regard to those of the animal side and this in

Fig 6. Beginning of the
fourth cleavage, vegetative Fig. 7. Trapsiion 3—16,
side. ammal side

the same direction m which it has already manifested itself in the
foregoing cleavage, which is what we may call dexiotropic. This
expresses itself in the shape of the cells immediately when the fourth
cleavage sets in, as fig. 6 teaches us. The torsion here has already
become a lLitle greater than 45° as becomes evident if we compare
the situation of the inferior parts of the vegetative cells (a,—d,)
with regard to the cross of the cleavage furrows at the animal pole.
- The fourth cleavage (fig. 7, 8), therefore, under the influence of

b2 b*

Fig. 8. Transition 8—16, Fig. 9. Stage 16,

vegetative side. animal side.
the above torsion, must be describéd as dexiotropic. For this reason,
and in regard to the further cleavage, I think it inadvisable to
apply here the nomenclature proposed by Conkrin for the spiral
type, but will modify this a little. I call the cells of the four quadrants
resp. @, b, ¢, and d, and to their descendants I give each time the
exponent 1 to the cell that lies to the animal side, and the exponent
2 to that lying to the vegetative side. Thus all the cells with the
letter a are descendants of the cell a of the four-celled stage, forming
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together one quadrant which, moreover, I have surrounded with a
thick line in the figures. Now fig. 9 answers wholly to the image
presented by a 16-celled stage of the spiral cleavage type, however,
one would expect the cells ¥, a'*, ™ and b to represent together
one quadrant. This hasbeen shown not to be the case, and if one takes
a view of figs. 8 and 9, the dexiotropic torsion that has occurred
during the cleavage, at once sirikes the eye. Between o' and a®*
this torsion now amounts to between 45° and 90°. The phalopore
is surrounded by the cells o’*—d** and a'*—d**, the former consti-
tuting the four longer, the latter the four shorter sides of the octangular
phialoporic border. Sometimes one of the cells a**—d*! also reaches
the border, the latter then being formed by nine cells.

The fifth cleavage, leading to the 32-celled stage, 1s again laeotropic,
as 1s shown as well by a view from the animal (fig. 10) as from
the vegetative side (fig. 11). Thus the dexiolropic torsion is again

Fig. 10. Transition 16—32, Fig. 11  Transition 16—32,
animal side. vegetative side.

continued here, and as fig. 11 and especially “fig. 13 shows, this
torsion of the vegetative extremity of each quadrant with regard to
the animal extremity (the cell a''') now amounts to nearly 90°
While the cell a** forces itself between a'* and a®, as was already
the case in the 16-celled stage, so thar #*** is pushed aside a little
(figs. 11, 13), a** while dividing is pushed to the phialoporic border
by a', which also divides. As a consequence a'**—d'** now form
the longer, a***—d?** the shorter sides of the octangular phialopore.
Often also all eight sides are of equal length.

The arrangement of the cells in the 32-celled stage is so regular
(figs. 12 and 13) that no doubt one would not suspect from it the
torsion stated here by watching the cleavages.

The last cleavage studied by me is the one that leads from the
82-celled to the 64-celled stage (figs. 14 and 15). The direction of
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the divisions gradually becomes subject to more variation, yet the
equatorial direction just as in former cleavages — though with a

AT

- aﬂ]
m b2
c2e

a'? 22

b221

57 't
a,‘3ll

522 dZE\

d112 g’

Fig. 12. Stage 32, animal Fig. 13. Stage 32 (the same

side. egg), vegetative side.
deviation caused by the torsion — continues to predominate. That

the torsion still proceeds is evident from fig. 15, which shows that
it is already more than 90°.

At the beginning of this investigation I almost expected to find
that Volvox divides according to the spiral cleavage type. The figures
given by some investigators seemed to me to point in this direction.
No doubt this result would have been interesting with regard to the
derivation of the different cleavage types of Metazoa and their
mutual relation. A more direct relation between Volvox and the
lowest forms with a spiral cleavage tjpe would not then appear
improbable, since, as shown above, there are other points of agreement.
That Volvox possesses chlorophyll would be no insuperable obstacle

(aZEZZ) (aZZZJ)

Pig. 14. Transition 32—64, Fig. 15. Transition 32—64,
animal side. vegetative side.

since it can hardly be donbted that animals must descend from
organisms with chlovophyll. No production of organic from inorganic
substance would Lave been possible otherwise.
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‘We have seen, however, that the cleavage of Volvox may not be -

counted as belonging -to the spiral type in the form in which!it oceurs in _
Metazoa, though the arrangement of the cells is more in & spiral

than it is with the latter. Though there are certain pointsin common

1 yot refrain from further speculations inthis direction.

In another respect, however, the results reached seem to me to
be interesting. We have been able to state during the cleavage a
progressive torsion of the vegetative cells with regard to theanimal
cells which becomes especially manifest from a comparison of figs.
2,4, 7,9, 10, 12, and 14 and of figs. 3, 5, 6, 8, 11, 13, and 15.
So we have every reason to assume that in the adult form also a similar
arrangement of the cells prevails. In the spiral cleavage type the
succeeding dexiotropic and laeotropic divisions nearly annul the effect
of each other, so that in the blastula the cells belonging to one
quadrant nearly occupy an area situated between two meridians
distant 90° from each other, as is represented fig. 16a. Fig. 165
shows the situation of the cells belonging to one quadrant in the
case where the torsion does not surpass 90°. How great the latter
has become in the adult Volwox cannot be made out. Now in the same

dexiotropic direction also the rolation occurs, as we have seen, and

it seems to me probable that in this case we may look for a more
direct relation between the two phenomena than with the torsion of
Gasteropods.. Let us assume to this end that not only the colony but

also each of the cells of Volvox has a certain-polarity and thus a’

main axis in the direction from ‘the animal to the vegetative pole of
the colony. This polarity of -the cells e.g. manifests itself in the
c011e5p0nd1ng direction in which all the flagella beat causing a water
current from in front backwards, which makes the organism move

o | ' 7
Fig. 16a. - . Fig. 16D.

in the direction of the animal pole. If a Volvox be pressed between

a cover-slip and an objecl-slide so that it cannot move anymore, this"
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water current can easily be demonstrated by watching the little
particles suspended in the water, If further we assume that by the
dexiotropic torsion, during the cleavage the direction of the main axis
" of the cells undergoes a dexiotropic deviation and the flagella thus
beat in the direction of the arrows in fig. 165, then. the dexiotropic
“rotation of the colony follows directly from this assumption. That
indeed . the flagella beat in this way needs no farther proof, but
follows from the rotation itself. - -

‘It would be interesting no doubt if a variety of Volvoz globator
rotating to the left, were discovered. It can hardly be expected
otherwise than that the cleavagé here will equally belong to the
inverse type. L o

Have we accounted now for the rotating movement of Volvox
by the torsion presenting itself during the cleavage? In a causal
sense we have, if our suggestion is right. But how is the torsion of
the cleavage cells to be accounted for? Phylogenetically now I,
should feel inclined to consider the torsion durihg the cleavage
rather ‘as a consequence of the rotation of the adult animal than as
its cause. The. study of onlogeny ever anew teaches us that we
must not consider the structure of the adult animal phylogenetically
as a product of the developmental processes, but we rather must account
for the latter by the structure of the z\tdult animal. Thus I would
sée also in the torsion during the egg cleavage of Volvox nothing
but a very precociously appearing character of the adult form related
to the movement of the latter. This character, which cannot be
demonstrated in the adult form, could be revealed only by the study
of its development.
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Physics. — “Contributions to the study of liquid crystals. 111. Melting
and  congelation-phenomena with para-azoxy-anisol.” By Dr.
W. J. H. Morn and Prof. L. S. OrnstEN. (Communicated
by Prof. W. H. Juruws).

(Communicated in the meeting of September 29, 1917),

- In our second paper on the extinction of liquid crystals we observed,
that among others with para-azoxy-anisol there is, with regard to
the extinction, a difference between the liquid crystalline condition
which arises by melting the solid crystals (““exsolid”) and that which
arises in cooling the isotropic liquid (“exliquid”’). Where with
para-azoxy-anisol we had stated the existence of two solid phases,
the question lay at hand whether in exsolid and exliquid we had
perhaps got two different liquid crystalline phases. To make this
out a research after the exact position of the points of transition
was desirable. '

Method of Research.

There we made use of a kind of radiation calorimeter, which is
schematically represented in figurel.
The substance to be examined (about
1 c.m.?) half filled a gold beaker
M with thin walls, against which
on the exterior on the one side a
brass wire, on the other a constantane
wire hasbeen soldered. The two wires
form a thermoelement, by the help
of which the temperature of the
beaker and its contents is measured *)
and serve at the same time to hang
it within a brass eylinder. This

IS

* LI
S

1) Before we came to this way of fixing up the “thermobeaker”, we had followed
the usual method for our determination of the temperature, i.e we had placed a
thermometer and Jater on a thermoelement within the substance to be melted. Then
a number of “Schmutzeffecte” were produced, which on close investigation had to
be ascribed to convection currents. Our method is of course quite free from this
disturbance.
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cylinder is closed by a cork at the top and one at the bottom and,
that it may be heated electrically, it is provided with a layer of isolated
wire. The whole stands on a little table under a glass, 'which only
allows of passage to the wires of the heating-current W and those
of the thermocurrent 7.

The research consisted in the determination of the temperature-
time curve with a constant heating current. If this heating current
is closed, the temperature first rises quickly, then more slowly and,
asymptotically approaches a limit value. If now (also béfore the
limit-temperature is reached) the heating current is weakened and
then kept constant, the temperature first falls rapidly, then more
slowly till a second lower limiting temperature is reached.

When within the temperature-vegion in observation the substance in
the beaker melts, congelates, or in general undergoes some change
of phase, this will be observable on the 7'/ curve. So during the
supply” of heat to the beaker the melting will appear as a sharp
twist in the ascending branch. The place of the twist indicates the
mélting-temperature and, that with a much higher degree of accuracy,
than would even be possible with a measuring of the temperature
within the substance. :

The second contact place of the thermo-element was in melting
ice during the time of observation. The thermo-curvent was measured
by a quick-indicating galvanometer of MoLr. To keep the deviations
within bounds the thermoforce was first for the greater part com-
pensated with the help of a constant current-source and a shunt,
and besides the sensitiveness of ihe galvanometer was strongly
reduced.

The deviations of the galvanometer were registered and the 7%-¢
curves thus photographed. The figures 2—6 are reduced vrepro--
ductions of .our original pliotos. The figares put underneath give in
an arbitrary measure the temporal value of the heating-current.

An abscisslength of 8 em. corresponds to a quarter of an hour.

The dotted line indicates the same temperature of about 118° in
the different figures.

1

Discussion of the Results.

Fig. 2. The two ascending branches fully agree and at 4 the
first point of transition shows itself sharply, i.e. the melting point
of the solid substance. This temperature, which amounts to about 118°,

we lLave always chosen as point of departure. Tle strong oscillations
17%
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of temperature at B are without importance for our investigation
and may be left apart'). ‘ 3

€esn180-mae s €2 P o v o3 garenl30.0mnd

Fig. 2.

The second point of transition is difficult to observe in the ascending
branch on account of its steepness, in the descending branch it
appears more clearly at B. Further we observe in the descending
branch a strong undercooling to far below 100° and then a sudden
development of heat and congelation. The highest temperature reached
in this process (13°,5 below the zero-line) is the point where a very
unstable solid phase congeals, which we shall call phase II (phase [
has the melting point at about 118°), and which after a short time
spontaneously and under the development of heat passes into another

1) They have their cause in the fact that the volume of para azoxy-anisol
changes considerably in melting. The internal sidewall of the beaker gets for this
reason detached from its contents and can temporarily rise to a higher temperature,
so that a drop., dripping from the solid centre, again occasions a sudden falling

of the temperature.
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phase. Probably directly into phase I, for at a supply of heat the
same melting point of about 118° shows itself.

Fig. 3. After the same initial development as in the case represented
by fig. 2 the same deep undercooling is again followed by the
appearance of the solid phase 1. But now we have to take care
that immediately after this phase arises, heat is supplied by streng-
thening the heating-current, and that to such value that phase Il is
melted but the arising liquid crystalline phase remains nndercooled. W hilst
at F its temperature has become constant, we have, in order to
hasten the process of congalation, reduced the heating-current, and
in result of this the temperature has scarcely fallen a few degrees
before under the development of heat the liquid crystalline substance
congeals and now at a temperature of 2° below the zero-line. We
call this new condition solid phase III. '

Fig. 4- also gives the origin of phase III from the undercooled

liquid erystalline phase. The heating-current during the preceding cooling
was chosen in such a way that the formation of phase II was excluded.

Fig. 5 gives once again the origin of plate III with the exelusion
of phase II. But where the undercooled liquid crystalline phase in fig. 4

’-:so'
-
- 20°
-~ 10°
—
L ®® o o e\ e e e e e e -____7-.=———-m-
or
- 10°
| 2o EDIamd focroneniacint cariiiiieictan a Qllesees mr noen aaemsees a. eecmneaca) rreswQl cevns)

Fig. 5.
was ex-liquid, we have taken it exsolid in fig. 5. Besides this figure
also gives the melting of phase III and there the remarkable pheno-
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menon presents itself, that phase III melts at a temperature which
we know as the meliing point of phase I. Thus it is shown that in
this way phase IlT, during its formation, gradually passed into phasé 1.

Fig. 6 is reproduced as it allows of stndying the second point
of transition. At F ex-solid, at @ ex-liquid pass into the isotropic

[so’ B

e F " \H G //_ .
- . N

Fig. 6.
phase under the absorption of heat, [ gives the phenomenon of
transition while heat -is developed and the three transitions F G
and H happen really at the same temperature.

CONCLUSION.

Whilst thus, as far as the situation of the points of transition is
concerned, we have found no indication of a difference between
exsolid and exliquid with para-azoxy-anisol, we have discovered
several phasesin the solid condition of aggregation in our investigation.
Beside the three phases which we have distinguished as I, Il and 11,
there certainly still exists a fourth '), with a melting-point of about
108°. 1t seems that this phase, which during this investigation never
once showed itself, can only exist in capillary layers (between glass).

This " short, more or less schematic summing up of the wost
striking facts, which present themselves in an investigation of the
melting- and congelation phenomena of para-azoxy-anisol, must
suffice, however interesting a closer examination of this substance
and perbaps of other subsiances according to the method indicated
may be from a standpoint of phase-theory, for our interest is greater
for problems of a different nature.

Physical Laboratory, Institute for Theoretical Physics.

Utrecht, September 1917.

li Cf. our second contribution. Verslag Kon. Acad. v. Wetensch. XXV, p. 1114,
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Physics. — “Contributions to the study of liquid crystals. 1V. A
thermic Effect of the Magnetic Field”. By Dr. W.J. H. MoLL
and Prof. L. S. Osnsruv. (Communicated by Prof. W. H.
Jutivs).

(Communicated in the meeting of March 23, 1918).

The fact that the particles of liquid crystalline substances are directed
by a magnetic field, justifies the question whether perhaps the
action of the field, may entirely or partially manifest itself as heat.
We shall in this paper develop the results.of an investigation into
this matter.

We made use of an arrangement for this investigation, which in
the main points is the same as that described in our previous
paper ') on the subject. The p-azoxy-anisol was again heated in a little
gold beaker, being within a little oven which was heated by elec-
tricity. But our little oven had to serve in this case as thermostat,
and above all it was necessary, that the temperature inside of the
oven was as far as possible equal everywhere, so that a temperature
gradient within the substance to be investigated would be excluded.
Instead of our original, very primitive little oven we fitted up as
such a brass tube 10 cm. long and 2 cm. wide, provided along
pretty well the whole length with a single widening of their manganin
wire, closed off at the bottom by a brass plate, at the top by a
brass screw-stopper, in which only a narrow opening to leave pas-
sage to the thermo-element. To present a current of air along the
heating-wire, the latter was wrapped up in chenille, and closely
around this there was a double brass mantle, through which water
circulated of the temperature of the room.

This arrangement was put (with the axis of the little oven in a
vertical direction) between the poles of a Dubois-magnet, and its
(horizontal) field may be looked upon as homogeneous at the place
of the beaker. The magnet could be turned round a vertical axis.

The electromotive force of the thermo-element was almost fully
compensated, the changes arising were registered by photography.

In our investigation as to whether the connection of the magnetic
field has a the{'mic effect, we arrived in the beginning at results,

1) Compare the foregoing paper.
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apparently in contradiction to each other; until at last with the
help of a thermo-element of a peculiar structure we have come to
understand the phenomena which dominale the effect.

i 1 In fig. 1 this thermo-element is represented, as it is
hung within the gold beaker B. (The wall of the little
beaker must be thought transparvent). B is attached by
two pins S to the screw-stopper. of the little oven; D
are two wires twisted together, brass and constantane,
which are soldered by their ends to a thin plate of
Nziﬁﬂ “I silver-plate Z (5 X 7 mm., 0,02 mm. thick), which is

"’ A" jmmersed for somewhat more than half in the p-azoxy-

Fig. 1. anisol.

With the help of this thermo-element we have indeed been able
to state the thermic effect, but learned to distinguish between the
effect of a transversal- field (with - the lines of force perpendicular
to the silver-plate) and of a longitudinal field (with the force-lines
// the silver-plate).

[I“ “ﬂ"’” | ““l

I\mm

« 5 GRAAD -CELSIUS™™*

z Z
© B
£ = 3
2
[»]
p)
A B c D B

Fig. 2

Fig. 2 may make this clear; a_curve, taken by photography,
is represented. At A a transversal field is connected with the
result that the temperature of the silver-plate rises slowly;
15 sec. later at B the field is broken up and a still slower
cooling of the plate is the result; 15 sec. later, at C (before the
temperature has as yet regained the original value) the transversal
field is put on for the second time; 15 sec. later at D it is again
broken up; and at last 15 sec. later a longitudinal field is put on
at K and this causes a quicker reaching of the thermostat temperature.
A new connection of the longitudinal field remains without effect).

The principal conclusion from our experiments is this, that the
effect observed must have its origin in the immediate vicinity of

1) It need hardly be mentioned, that in the isotropic phase the connection and
disconnection of the magnetic field offers a thermic effect.
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the metal wall, and that within the liquid crystalline matter a
magnetic field offers no thermic effect or only a very slight one.
For then the effect of a transversal and a longitudinal field would
have to be equal.

Where the influence of a magnetic field means in the end (he direction
of the more or less stretched particles of the liquid crystalline substance
we come to the conclusion that against this directing there is only
important resistance to be overcome near the wall.

Now we have accepted an action of the wall for the explanation of
some extinction phenomena '), and that in such a way that the wall
directs the particles parallel to itself. The resistance which is to be
overcome for a transversal fleld is quite in accordance with this
way of seeing the question.

Then as regards the nature of this resistance, we might imagine
it to be of elastic origin; the particles would then get another
form at the cross-action of field against wall (heating), and return
at the disappearance of the field again elastically to their original
form (cooling), in which proces the longitudinal field hastens this
return.

Conclusion.

With para-azoxy-anisol the thermoeffect of a magnetic field is
investigated with the help of a thermo-element of peculiar structure.

The investigation shows that an effect is only apparent at the
wall of the thermno-element, which effect probably has its origin
in the elastic change of form of liquid crystalline particles.

Utrecht, Febr. 1918.
Phlysical Laboratory, Institute
Jor Theoretical Physics.

1) See our first and second papers.
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Mathematics. — “The primautwe Diwisor of F—1 By J. G.
VAN DER CoORPUT. (Commumcated by Prof. J. (.. Kiuyve).

(Communicated in the meeting of September 29, 1917).
This paper is an extension of the article of Prof. J. C. Kruyver:
“The primitive Divisor of am—1.” (These Proceedings, Vol. XIX,
page 785. ’

- 27

Definition 1. If £ be a positive integer, the product H(.@—eT),

extended over all the values ¢ of a reduced rest-system, modu]o k,
is called the primitive divisor Fy(z) of at—T1.

Definition 2. If £ be a positive integer, ¢ = (k) leplesents the
number of positive integers Z £, which are prime to %.

Proposition 1. If % be a positive integer, then the priniitive
divisor of #¥—1 is a polynome of the degree ¢.

Definition 8. The numbers 4, (pSA2S0) are defined by the -
relation g

C Py () =AEO 4, 2,

A}

k being an arbitrary positive integer.

Definition 4. In the functions y, (n,k) of the variable inieger n
(k being a positive integer), which are called the arithmetical characters
of n, modulo %, » represents an arbitrary integer, prime to £.

The functions y.(n.4) and y,(n,£) are identical or different, according
as u and » are mutually congruent or incongruent, modulo %.
Hence it follows, that there are ¢ different arithmetical characters
¥ (n,4), modulo % and these functions possess the following properties :

L wom,k) X(n,k) = g.(mn,k).

I w(mk) = y.(n,k) if m=n (mod. k).

III. The modulus of y,(n,k) is equal to O or 1, according as n
and % are commensurable or incommensurable.

IV. y.(n.k) is equal to O or 1, according as n and % are com-

mensurable or incommensurable.
n
V. x_a(n,k) is equal to the symbol (—) of LEGENDRE.

%
VI w(Lb) =1
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VIL 5 A (n By =0, if v=|=1 (mod. k).

n=1

VI Ay (7, k) oA (7 k) = %o (s £),
if & be equal to the product of the two incommensurable integers
k, and £,.

Definition 5. y(n,k) and y,(n,k) are two conjugate functions;
they are, therefore, identical, if y,(12,4) is real and they are conjugate
imaginary, if y,(n,k) is an imaginary function.

Proposition 2. 7{,(n,7c) is an arithmetical character of », modulo £.

Proof. Each function of », satisfying the conditions 4.1, 1T and III,
1s an arvithmetical character of n, modulo £.

Definition 6. The functions a,(n,k) of the variable integer g,
(v and £ being incommensurable numbers) are defined by the relation

2w imn [ 2mim
2 Yo (myk)e * —a, (n, k) = 3 (m,k)e * .
m=1 m=1
Proposition 8. If £ be the product of the two incommensurable
numbers £, and £,, each of which is prime to the integer », then
we shall have )

a, (n, k) ay (n, k) = a, (n, ).
Proof. In the expression

T 2rimyn 2mimn 1. 2imgn % (i ko-fmghey)n
‘_,y,(ml,/c Ye B = wlmyuk)e & == 2 Yo (m %)) Yo (ke k
my==1 Mg==1 my=1 mg==1

we have m, =1,2,3,...kandm,=1,2,3,...,4%,. Wemay make
n,k, + m,k, congruent to m (mod. k) and £=2m21. Then we
have m=1,2,3,...% and

Ko (g &) =¥, (my By) % (1, ;) (according to 4, VIII)
= XV (ml 39 k )XJ (m?kw kz) (aCCOl‘ding to 4:, Il)

= %o (kay ) %o (Bys k) %0 (s k) 75 (my, ) (according to 4, 1)
Consequently

_21'111111 2mingn E M
7‘ (/c.‘,, 1) P& ]Ll’ ) 2 /- (ml,/c;)e by 2:}:“ (mz’ka)e ko= 22’ (m, ’Z‘)e k
m=l1 mg==1 m==1
and (make n=1)
z-rzml is 2-&2 k& 2wim

21 (kg 2)) 1o (kys B,) E 2o (myk)e B = to (mgyk)e ke = 3 o, (m, k) e F
m=1 me=1 m=|
The first two factors occurring in these formulae, are according
to 4,III not equal to zero, because %, and %, are incommen-

A
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surable. If the last two formulae be divided one by the other, we
shall obtain, according to definition 6
a, (b, n) a, (k,y 7) = a, (k, n) . :

Proposition 4. It the following conditions are satisfied :

k, and £, are two squareless incommensurable numbers and their
product is equal to £, . )

n is an arbitrary integer and » an arbitrary number, prime to £,

D, is the G. C. D. of »—1, % and £,,

D, is the G. C. D. of »—I1, n and £k,,

D is the G. C. D. of v-—1, n and %,

then we have

w00 @) (m 5w @) o)1 (0 7 ) =u o D1 ()

1 2

Proof. D, and D, are incommensurable, because £, and £, are
incommensurable. The numbers D, and D,, therefore also D, D,,
are divisors of D and D is a divisor of D, D, ; consequently .0, D, = D,
Hence it follows

w(Dy) w(D,) = p (D),
¢(D,) p(D,) = ¢ (D)

kl) k,) .
Ay yv = (| =4 157 |
%[ n D, ye ?D, "y

according fo 4, VIII.

Proposition 5. If » be an integer, prime to the positive integer
k and the integers n and n’ satisfy the relation nn’' =1 (mod. £),
then we shall have % (n,4) =7, (n'.k).

Proof. From the relation nn’ =1 (mod. k) it follows that n and
n’ are prime to £ and according to definition 5 and 4, III y%,(n,k)
and y,(n,k) are two conjugate functions with modulus 1.

Consequently

and

% (0 B p (n ) =1.
Moreover we have, according to 4. I, II, and VI,
o O B) o (my B) = 3, (nnd, B) =30, (1, B) =1,
hence
Lo (ny k) = oy (. K).
Proposition 8. If & be a squareless number, prime to » and D
represents the G. C. D. of v—1, n and %, then we have

k
ay(ny k) = u (D) p (D) % (n, 5) .
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Proof I. £ is a prime number
a). k is a divisor of »—1 and n; consequently D = ¢&.

k
v (D)9 D)% ( 5) =1 E—Dx (1)
= —(k—1), according to 4. IV,

2nimn L—1

E gmmn .
B rmhbe =2 1=r-1
m=1 m=1
and
Eo_ mim gy Smim
2 pmhb)er = 2 ek = —1,
m=1 m=1

consequently, according to definition 6,
k
oo =— @D =s@e@z(ng).

B). 1f £ be a divisor of n and not of »—1, we shall have
D=1,

; .
b (n, '-5) =% (7’1 IC) = Og (accordi]]g to 4, III),

2rimn
k

kB — —
2y mbke r = = y, (mk)
m=1 m=1
=0, (according to 4, VI,
congequently .
a, (n, §) = 0,

so that now both members of the sought relation are equal to zero.
7). Let £ be no divisor of n, so that we may make
nn' =1 (mod. k), mn=m'(mod.-k), kZm'2> 1.
According to proposition 5

X (m B) = 5 (2, B),
consequently

L (n, &) o (my B) = 3, (@, B) 1o (0, ). = o, (m'ny B) = 3, (m, ),
because

to | —

m'n' =man' =m (mod. k).
Hence it follows

r 2nimn Eo_ 2mim’
Epmb)e P =pmk) 2w ke k,
m=1 m'=l

consequently

»~

a @ k)=y@mk=u (D) P ('D) 7.:- (n! lf)) ’

because D —=1.
II. & is the product of two different prime factors. Take & =#,£,
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(k, and k, are two different prime numbers). According to I we have

@ o) =)y @1 1’-})

@l 1) =« (D) ¢ (D) % ( j’})

D, being the G. C. D. of v—1, n and £,;
. D, being the G. C. D. of »—1, n and £,.
If these two formulae are multiplied, we shall obtain
o) = D) 9 (D) (3
according to the propositions 3 and 4.
ItI. £ is the product of three or four different prime-factors.
Take % equal to the product of the two incommensurable numbers
k, and k, each of which is equal to a prime number or to the
product of two different prime numbers. The proof is given in the
same way as in IL ete.
Proposition 7. If £ be a squareless number, prime to the integer
v and D,y represents the G. C. D. of v—1, n 4 1 and %, then
the in definition 3 defined coefficients 4, satisfy the relation

? k
= A, " (—Dn+1) P (D11+)) y & (n‘I‘ Ay ):Os
=0 Dy

whatever be the value of the integers n and ».

Proof. )
2mimn 2nidm
wimkye © =2 Are* =0,
A=0
for, if m and £ have a common factor, %, (m, £) = 0 according to
2 mumn

4, 11 and if m is prime to £, e * isa primitive root of the equation
z¥—1 =0, i.e. a root of the equation

¢
Friz)= 2 Aot =0,

4 =0
so that then the last factor is equal to zero. Hence
2 2nimn 2miim
0=y (mkle ¥ 2 Ay e &
m=1 i=0
p k 2mun (n4-3)
=2 4, 2 ¥ (mk)e Eo,
=0 m=1
consequently
2mm
7 k ko T
0= A D)D)t n+ 3 —— = o (mk)ek 7,
2=0 n 4 2 m=1

according to definition 6 and proposition 6.
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The last factor is not equal to zero, for then the sum

: o A 2
Sy ke * =p(Dy) p(Dy) %» (ﬂ. E) =gy (myk)e ®
m=1 . n/ m=1
would be equal to zero if n=1,2,3,...,% that is the equation

. k
- 2 Ay (m, k) 2 =0
m==1

2 mn
would possess the root zero and £ different roots ¢k, and this is
impossible, since the coefficients ¥, (m, &) are not identically equal
to zero, according to 4, III.
Consequently we conclude

? ' k -
Z 7 ) n Lo }’ :()'
= A o (Do s} p (D) % (n+ n+2)

Proposition 8. If £ be squareless, then we have

3> A4 u( Dy p (Dag) =0,

=0
D'y4, being the G. C. D. of n 4 »-and % In this formula n may
be any integer number whatever.
(This formula is to be found in the above mentioned article of
Prof. J. C. Kruyver).
Proof. Make in proposition 7 v =1; then we shall have

-Dn+) - -D,n—}— It

| k k
- vln Ah— | = ZHi + 2, ; ) =1
4 ( + -Dn+l ' ( I -Dn-{-) '

according to 4, IV, since n 4 2 and

and

k \

- have no commou factor,
D N4
because £ is squareless.

Hence it follows

7
)EO A M(—Dln—H) (/(Dn+) )=20,

Proposition 9. If 4 be an odd squareless number, then we have
. ¥ yl
= A (?——_]i_—) =0,

=0

N

2
(’n ] ) being the symbol of Legendre. In this formula 7 may be
b

i
any integer whatever. (This formula is also to be found in the article

of Prof. J. C. Kruyver).

)

- 273 -



N 268

Proof. Make in proposition 7 » = — 1: then we have D"-H =1,
since v —1 =—2 and £ is odd.
Hence . -

¢ (D) = (1) =1,
¢ Dnp) =0o1) =1,
n- 4

A E\— k) —
% (’H‘ ,m‘)—x-l(n-l-ﬁ ) — T)'

according to 4, V. Consequeritly
%4 ("“)—_—. 0.
=0 k
Definition 7. If £ be an integer > 2, the coefficients By and C)
((F; 2 >0) are defined by the relation
2 !
ale %)= % B, @

4=0

no |

and
k4

2mit
H(a, —ek )= C) a?,
)_0

in which the produncts are extended over all the values ¢ and z of

a reduced rest-system, modulo %, for which (%)::—{—1 and

()=

Proposition 10. If %2 be an odd squareless number, we have
? i

1 2

E B; bits = 0 and 2, Gy ey =0,
=0 A=

if we make

k A
by = u (_D' )(p (D')) + (k> 1 la (e—1)2 Vk

k i

D', being the G. C. D. of 2 and £ In these formulae = may be
any integer whatever.

Proof. D', is greater than 1, if (%) =0, according to 4, 1V;

and

consequently
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Sud)= 3 ud)=0 if (7:'-'): :
djk D
d//m P
If (—) =1, the equation = B;a’ =0 has a root ¢ * , hence
4 =0
£ 2mim)
2 . {m
SBekt =0 'lf(-—)zl,
A=0 . k
Consequently -
- ?

1—[—(—)! EBekr SZud=0,
kJYi=o dlk

m

for the third, second or first factor is equal to zero, according as

(?) is equal to 0,1 or —1. .
(4
Hence
A 2nimn m i;' 2miml
S, +8 ==tk zlﬁ—(’)‘ SBekt X u@d=0,
m=1 kJVi=o djk
d|m
R .
p Imimn Ty 21n_mk
§,=Z=e¢ek* I Bye * X u(d)
m=1 = dlk
dim
B * 2rip(n-2)
2 d f
=B, X pd e d (make m = ¢d)
=0 dlk =1
% AN 2rig(n4-s) A
=2 B, E#(—,)Ee & (make —:d')
=0  dk \4 /=t d
di emplntd) ’
Because the sum = ¢ ¢ is equal to d’ or 0, according as (n+2)
o=l
is divisible or not by ', we have
2
2 k
Sl:'E.B) E M(—').d,
=0 dlk \4
& (n2)
k

. . D’?l 4
Since £ is squareless, and -——d—,t have no.common factor, so

n4-2

k . Dy ’ i D'y
that u{ = | = _ . . More.
18 “(d’) U (D'n-H ] ) isequal to u (D'"-}-l) y( 5 ) More

over we lhave -

18
Proceedings Royal Acad. Amsterdam. Vol. XXI.
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consequently

If ;m and £ have a common factor, (%’)_-:0 and in the other

case we shall have
2 pd=pl)=1,

dim
hence
2 u(d) =
@)zr0- ()
and ;
.".mmn '1;‘ 2riml
( 2 B)e k& Zy,(d)
k Ji=0 d|k

d|m

S, == ¢
mz=1
- 'Z" k /m 2nim (n+-2)
=3B =2 (—) e k
=0 k
_‘f.

— 335 ({—2) P17

=0
according to the theorema of Gauss. Hence we conclude
ki

2 k A
=8 +8,==5 3(.&( )q)(.D,,_H)—}— ( nt )1:‘/40(—1)n [/k$
)=0 -D7l+

hd
2
=2 DB b .
2=0
By changing the symbols of Legendre everywhere into their opposite
values, we find in the same way the relation
P

2
2 Cyet=0.
A==0
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Physics. “On the Evaporation from a Circular Surface of a Liquid’”.
By Dr. H. C. Burerr (Communicated by Prof. W. H. JuLius).

(Communicated in the meeting of December 29, 1917.) ¢

In a publication recently published Miss N. Tromas and Dr. A.
FrrausoN') communicate observations concerning the evaporation
from circular water surfaces. These observations are made under
different circumstances viz. in a dark, very quiet room, in a lighted
room and in the open air. It appeared, that in every case the
quantity of water evaporated in unit time, might be represented by:

E=Km,

in which 7~ is the radius of the water surface and K and n are
constants that, except on the external circumstances, also depend
upon the distance of the surface of the liquid and the rim of the
basin in which this is contained: Now while, as the writers remark,
usually in the literature the opinion is found, that the evaporation
is proportional (o the area of the surface, i.e. that n = 2, it was
shown by their experiments that this exponent was always between
1 and 2. Now Strran®) has treated the evaporation from a circular
surface of a liguid, supposing that the vapour diffuses in the space
above the plane in which the level of the liquid lies, while at
the liquid the concentration of the vapour is a constant.

Thé result of the computation is, that the speed of evaporation is
proportional to the radius of the surface. So it is apparent that in
the experiments of THomas and FEereusoN the conditions that Steran
supposes in treating the problem, are not fulfilled. '

As I have already been engaged for some time upon the theoretical
and experimental treatment of the diffusion in a flowing liquid *),
it was of importance to inquire whether my results agreed with
the above mentioned investigations. For this purpose we must extra-
polate the values of the exponent n for the case that the surface of
the liquid is on a level with the rim of the basin. When this is

1) Phil. Mag. XXXIV p. 308, 1917.

%) Wied. Amn. XVII p. 550, 1882.

) My principal purpose in this is to investigale whether the solution al the
surface of the ecrystal is saturated or if perhaps, when the solving takes place
sufficiently rapidly, an undersaturation arises.

18*
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not the case it hardly seemns possible to apply the mathematical
analysis to the problem. )

For the three cases the extrapolated exponent is resp. 1.4, 1.5 &
1.6 and 1.65. In the last case, in which we are most certain that
the air above the liquid is in continuous .movement, n proves to
agree quite sufficiently with the theoretical value ¢/, = 1.67, which
will be deduced hereafter, so that therefore in this case we may be
sure, that the air-currents effect the evaporation. In experiments
in more quiet air, the values of n approach the value n =1 more
closely, which value is found by Steran.

In the following sections we will give a theorelical treatment ot
‘the diffusion in a flowing gas. As the evaporation from an arbi-
trarily formed surface is easily deduced from that of a rectangular
one, we firstly choose this last shape, We imagine the space above
the plane z—=0 filled with a flowing gas, while the plane z =0
itself is formed by a fixed wall, of which a part consists of a surface
of the liquid. Let this part have the shape of a rectangle with its
sides parallel to the axes of 2 and y, situated at positive y and
bounded by the axis of ». Further we will choose the velocity of
the gas to be parallel to the axis of y¥ and to be proportional to z,
80 vy=az. As namely the gas at the plane z =0 through external
friction must have a velocity equal to zero, we may put:

vy =az ta, 2" +a, 2"+ ...,
and we may neglect the second and following terms of this series

when as will generally be the case, the vapour is concentrated in
a thin layer above the plane z = 0.

When we pul ¢ for the concentration of the vapour and D for
the coéfficient of diffusion then, as is easily seen, c fulfills the altered

equation of diffusion:
de

S=Dblo—div(®) ) . . . . . (D)

Further we suppose that ¢ al the surface of the liquid fulfills the
boundary condition :

1y The last term in the second member may be explained in this way: In the
_ element of volume dz dy dz flows through the element of surface dy d# an amount

of vapour : ¢vx dy dz inward and dy dz outward. By computing

d
CUx + Ry (cva)

these amounts also for the axes of y and 2, we get far the total amount that
flows outward div (cv) dx dy de, when v is the velocity, considered as a vector.
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. ce=CY
in which C is the concentration of the saturated vapour.

e
Now we will suppose that the state is stationary, i. e. that a—: =0.

Then ¢ satisfies the equation:
D 0%c L 0% _l_a’c de e
— — T | = a2 — P
0z  0y*  02° dy )
while v, = v, = 0 and v, = az. In this equation we will further take
a!
a—cz—_—_—O. Of course this is only approximately true for the values
&
of 2 that concern points within the rectangle. Ifor points beside the

rectangle ¢ will be very small only when I/B is small with res-

a
pect to the dimensions of the rectangle, which we will always suppose.
So we will treat the problem as a twodimensional one, i.e. as if
the rectangle has an infinite breadth in the direction of X?). So we

2

will neglect —c
0z®

2
Finally we remark that % being large, consequently [ a—i may
Y

¢
be neglected with respect to nz—. One might object to this when

dy
¢ is zero or very small, but then is ¢ = (' or at least then ¢ is

approximately a constant, so all terms of the differential equation
2

0%
are zero or very small, and so it will be allowed to omit —. That

oy*
0% ) . .
D 5 may not be mneglected, notwithstanding the small factor D,
z‘-
is caused by the fact that the evaporated substance will be concen-

— : : : c 0%
trated in a thin layer, so that-c¢ varies vapidly with z; ?andb -
F4 -

therefore are large.
After these simplifications the differential equation for ¢ becomes:
0%¢ a Oc¢
—_———z —
- 0z D 0y
As, 1n consequence of a  sufficiently rapid stream, a diffusion

(ILI)

!y When by the rapid evaporation an undersaturation arises, this will probably

be proportional to the speed of evaporation.
%) Experiments with crystals that solve in a flowing liquid, have confirmed this

supposition.
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against the stream is impossible, we suppose with regard to the fact
that the arriving gas is free from vapour that ¢ =0 for y = 0. For
the same reason we may further assume that the surface of the
liguid extends from y =0 to y= o, while for arbitrary y the
concentration will not be influenced by the presence of liquid at
the boundary z=0 at grealer values of y. As was already said we
take for z=0 the boundary-condition ¢ = C, while for =100 ¢
of course must be zero.

Problems of this kind may be solved in a general way by making
the range in which 2z may vary finite, further by constructing a
solution with the aid of a series of proper functions, and finally by
going to the limit, whereby the range is made infinite. I hope to
explain this method at length in my dissertation; here however it
may suffice to give a much simpler treatment, because the purpose
is only to find how the quantity of liquid evaporated in unit time
depends upon the length of the rectangle, i.e. upon y.

When we introduce in (III) as a new variable:

a
=z B —,
== D

this equation assumes the form:

0% 0c
—=_—=C—. . . . . . . . ({II
The boundary conditions of ¢ are here:

¢c=0 for y=—0

e=2C 1 §=0
c—20 v {—ow

The solution of the transformed equation will nol contain a or
D, because these quantities occur neither in the differential equation
nor in the boundary conditions.

Therefore is:

c=¢Ey)=0p (z lﬂ/-;%, y).

The quantity of the liquid that evaporates in unit time from the
part of the surface between y =— 0 and y is found by computing
the quantity of substance that flows through a plane perpendicular
o the axis of y. As the velocity of the gas is az, the quantity of
vapour that flows in unit time through a unit surface perpendicular
to the axis of y, is asc; so the total mass of vapour that flows
away per unit breadth in the direction of z, amounts to:
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E= azcdz:a‘j'z(p(zlﬁ/%,y)dz. .
0 ' 0

a

When now we introduce again ; — szD

, this quantity becomes:

E:a.(b‘/g)zﬁ(p(g,y)dgza'/ﬂDﬂla'lp(y) . . ({Va)
0

We may transform (IlI) also by putting:

D
N = Yy.—.
a
Then we get the equation:
d%  0c 1178
—6; =z -a—;]‘ . . . . . . . ( )

To this belong the boundary conditions:
c=0 for 24=0
ce=C z2—=0
c=20 " 2 = 0.

Here again the solution will be independent of @ and D viz.:

= =F(nr7)

From this we find:

E= azcdz:afzf(z,yg)dz:alf"(yB) . (IVb)
a a
0 0

When now we compare the found values of E, (IV5) proves to
agree with (IVa) only when:
F(p)y=4.ph,
where 4 is a constant. So L becomes:

E—._—a.Aﬂ"DQ/a

—— = Aadh Dby, . . . . ULV
a’ls

Of this result the fact that in the first place interests us is that
E proves to be proportional to y%.

To deduce from the acquired result what E becomes for a surface
of an arbitrary shape we imagine that this surface is divided into
narrow strips with the long sides parallel to the axis of y i.e. to
the current. As the breadth of these strips may not be taken too
small when we wish to apply the acquired results, but on the other
hand may not be too broad when we want to consider them as
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rectangles, it proves that the circumference of the surface of the
liquid may not be too irregular and also that the linear dimensions

D
of this surface may not be too small with respect to }/'—.
a

Then however for each of these rectangles [ is proportional to
the breadth and to the */;¢ power of the length. The total value of
E is found by integrating over the whole surface, and it is easily
seen thatl this quantity for conform figures is proportional to the
/,7¢ power of the linear dimensions, of which this exponent */, as
it were refers to the length and */, to the breadth.

As all cireles are conform it is proved by this that the evapora-
tion from a circular surface of a liquid is proportional to the °/,d
power of the radius as is also found by Miss Tromas and Dr.
FrreusoN, when the circumstances were in agreement with those -
that are used at the theoretical treatment given above.

The theory that is given here I have found confirmed by expe-
riments of the solving of cryslals in a flowing liquid, which will
be treated in my dissertation. The quantity of the solved substance
proved to be proportional to the !/,¢ power of the velocity of the
liquid, with the breadth and with the */,7¢ power of the length.

Institute for theoretical Physics.

Utrecht, December 1917.
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Anatomy. — “On the topographical relations of the Orbits in
infantile and adult skulls in man and apes”. By Prof. L. BoLk.

(Communicated in the meeting of March 23, 1918).

In the Proceedings of this Academy of 1909 two papers by the
present author were published, dealing with the position, shifting
and the inclination of the Foramen magnum in the Primates. In
these papers it was shown that the fopographical relations of this
Foramen in the infantile skulls of the Primates and more parti-
cularly with the Anthropomorphous apes present only small deviations
from those in the human skull. It is only in their subsequent growth
that a difference between the development in man and the Primates
becomes apparent. This difference comes in the main to this that
in man the original topograhical relations, such as are found in
the infantile skull, are permanent, the' skull retaining infantile
characteristics; in the remaining Primates, on the other hand, and
especially in the Anthropoid apes, these juvenile conditions are
replaced by others. The chief phenomenon, which may be
briefly stated afresh here, is that in infantile skulls of man and
anthropoid apes the foramen magnum lies in the middle of the
cranial base, and during growth is shifted backwards over a longer
or shorter distance in the direction of the occipital pole of the
cranium, while in man it remains situated in the anterior half of
the cranial base. It is difficult to reconcile this result of my investi-
gations with the conception, often met with in literature, that the
more occipital position, as found in these apes, would be the
original one, so that it would be in man that a forward shifting
would take place. Now of such a forward displacement, presumed
on theoretical grounds, nothing appears during individual development
in man. On the .contrary. From ‘about the eighth year, ie. in
conjunction with the commencement of the loss of the milk-teeth,
also in man a slight backward shifting is stated, which is not of
much significance, however. So the characteristic difference between
the human and anthropoid skulls is that in the former infantile,
not to say foetal, characteristics are retuined. While the infantile
skulls of man and anthropoid apes thus show a great similarity in
this respect, the adult skulls grow dissimilar, and it is not the

- 283 -



278

human but the antropoid skull which deviates more and more from
its original shape.

The object of the following communication is to draw the attention
to an analogous phenomenon in an entirely different part of the
skull, namely in the orbital region, and regarding more particularly
the following question: what are the topographical relations of the
orbits in infantile and adult skulls of Primates? The answer to this
question gives an insight into the phenomena of growth in this
border-region between the cerebral and facial skull. These are well
fitted to give a definite shape to our conception about the morpho-
genetic relation between the human and anthropoid skull. In this
communication the main points
only will be stated, the more
extensive paper will be published
elsewhere. For the present
purpose the best starting-point
is a form in which the differ-
ences in topography between
the infantile and adult skull
are as large as possible, their
character thus being clearly
revealed. The Gorilla skull
serves this purpose well.

We shall mainly deal with the topographical relation of the orbits
in regard to the cramial cavity. The easiest way of surveying this

Fig. 1.
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is by means of horizontal sections, passing through the middle of
the orbits. In fig. 1 such a section is sketched through the skull of
a young Gorilla child, in fig. 2 through that of an adult male individual.

In the lateral wall of the orbit in the infantile skull two parts
may be distinguished, an anterior one which borders the orbit
outwardly and forms the free outer wall of the orbit, and a posterior
one forming a partition between the orbit and the fossa media of
the cranial cavity. Between these two parts the lateral wall of the
cerebral cranium is connected with the lateral wall of the orbit.
This arrangement implies that the cranial cavity partly extends
laterally of the orbit, in other words that this cavity partly enters
into the Cavum cranii, so that there exists a common partition-wall
between the Cavum orbitae and the Cavum cranii. Upwards in the
direction of the roof of the orbit this partition-wall between the
two cavities becomes larger, as the cranial wall frontally more and
more joins the supra-orbital ridge. The free exterior wall thus
becomes smaller and is entirely lacking near the roof of the orbit
in the youthful Gorilla skuli, as the cranial wall i3 attached to the
orbital roof along the supra-orbital arch. Thus the whole orbital
roof has become the partition between this cavity and the Cavum
cranii. This means that in the infantile Gorilla the orbits lie entirely
under the cranial cavity.

How is this in the adult skull?

[t appears from fig. 2 that now on the lateral wall of the orbit
the just-described two parts can no longer be distinguished; the
posterior intracranial part has disappeared, since the lateral wall of
the skull is attached as far backward as possible to the lateral wall
of the orbit. The whole lateral wall has become an outer wall.
From a topographical viewpoint this means that the orbit no longer
enters into the cranial cavity, but has come to lie before it. This
conclusion is contirmed by a closer examination of the orbital roof.
In the infantile skull the frontal wall of the cranial cavity is
altached to the orbital roof along the circumference of the orbit,
which means that the whole roof of the oibit forms a partition
between the cranial and orbital cavities and does not form a free
exterior wall. In the adult individual, on the other hand, the cranial
roof is altached to the orbital roof very much {owards the back,
as 15 seen from fig. 3, representing a sagittal section through the
orbit of an adult Gorilla. The roof of the orbit has here for the
greater part become a free exterior wall.

From this short comparison it already appears that the topogra-
phical relations of the orbit with regard to the cranial cavity are
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very different in the young and the adult Gorilla. This difference
may be briefly sumwmarised as follows: in the young individual the
orbit for the greater part enters into the Cavum cranii, in the adult
individual it lies b¢fore the cranial
cavity. So there is a forward dis-
placement diiring growth, caused by
lengthening of the orbitin a forward
direction only. By the aid of figs.
1 and 2 this can easily be proved
if the Septum orbitale is particularly
kept in view. In both figures the sec-
tion passes exactly above the Lamina
cribrosa, i.e. through the anters
ior extreme part of the cranial
Fig. 3. cavity. "

In the septum orbitale of the infantile skull three parts may be
distinguished, a middle one, formed by the Lamina cribosa, an
anterior and a porterior part. Also in the adult skull these three
parts are visible in spite of the pneumatising. Comparison now shows
that the lengthening of the septum is almost entirely brought about
by the increase in length of that part of it which lies before the
lamina eribrosa. One has only to compare the dotted lines in the
two figures, indicating the plane through the anterior edge of the
Lamina cribrosa. These lines are also serviceable for gaining an
insight into the forward shifting, resulting from this mode of growth.
In the small young skull almost the whole of the orbital cavity
lies behind this line, in the adult skull only the posterior part.

Thus the growth of the skull of Gorilla has an evident influence
on the position of the orbits with regard to the cranial cavity. That
this is accompanied by a considerable change in the shape of the
orbital cavity, is also perceived by comparing figure 1 and 2. In
the adult skull the posterior part of the-orbit has been drawn out
in the shape of a funnel or canal.

The" change of position of the orbit caused by growth can be
illustrated in a simple manner by projecting the outlines of this
cavity on the median plane, which is easily done by means of the
well-known Martin pantograph. Fig. 4 shows such a projection taken
from the skull of a Gorilla child in which the tooth-change had
commenced (the medial incisors have been changed; fig. 5 a similar
projeclion of the skull of an adult man*). The cranial base is partly, the

1} Fig. 5 is on a smaller scale than fig. 4.
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outline of the cranial cavity entirely indicated. Position and direction
of the lamina cribosa are also shown. To the transformation of the
cranial cavity during growth, chiefly consisting in a flattening,

-

Fig. 5.

attention may be passingly drawn. These figures require litile
explanation, the change in the topographical relation of the orbits
with regard to the cranial cavity is seen at a glance. Itshould only
be. pointed out that the shifting of the orbits quite before the cranial
cavity must be regarded as the direct cause of the origin of the
very strong bony ridge characterising the anterior part of the cerebral
skull of Gorilla. This bone-ridge is, as also appears from fig. 3,
nothing but the necessary upward enclosure of the orbital cavity,
the newly-grown roof of this cavity. Without this bone-ridge the
orbit would lack an upper bony enclosure.

Before proceeding to a description of the conditions in man, we
shall Dbriefly sketch those in- the two other anthropoids by means of
a few projection figures. Figures 6 and 7 refer to a young Orang
still in possession of its complete milk-dentition, and to an adult
individual of this genus. More strongly still than was the case with
Gorilla the topographical change of the orbils with regard to the

-
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cranial cavity appears in these two individuals. This is mainly the

result of the circumstance that the little skull of the Orang child .

was so much .younger ‘than that of the Gorilla child. With this

Fig. 6.

Fig. 7.

very young Orang the orbit is still entirely enclosed by the cranial
cavity, the whole roof of the orbit is here still the floor of the
anterior cranial cavity. In the adult Orang the orbit has come much
more forward. So here also a considerable forward shifting has taken
place. In orang this was not accompanied by the formation of a
ridge as in Gorilla, firstly because the orbits and in particular their
roof did not advance so far before the cranial cavity, and secondly
because the anterior cranial wall in Orang bad thickened evenly.

The changes in the topographical relations with Chimpanzee

appears when we compare figures 8 and 9. With this genus the

forward shifting is smaller again than with Orang, although still’

congsiderable. The projection in fig. 8 has been taken from a little

skull with complete milk-dentition, that of fig. 9 from an adult skull.
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From this short summary it appears that the three anthropoids
agree in this that as the result of certain phenomena of growth the
topographical relation of the orbits with regard to the eranial cavity

.- “‘-..J

-

(e QY A ‘
BT

Fig. 9.

is altered. The chief change is that in the infantile antropoid ape
the orbits lie under the cranial cavity, in the adult individual more
in front of it. This is most strongly seen in Gorilla, where almost
the whole orbit lies before the cranial cavity. The sagittal sections
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N

through the orbit in fig. 10 (Chimpanzee) and fig. 11 (Orang) when
compared with those of fig. 3 (Gorilla) show this difference in
shifting with the three Anthropoids very distinctly. i
What is now observed in man? We refer in the first place to
figs. 12 and 13. In 12 a horizontal section is given through’
the orbits of a new-born infant, in 13 through the orbits of an adult
individual. In both figures a dotted line indicates as before the frontal
plane passing through the anterior edge of the lamina cribrosa, i.e,

=
o

- o BTN

through the anterior border of the cranial cavity. When therefore
we wish to answer the question whether the orbits are also in man
shifted during growth, and, if the answer is affirmative, to what
extent this happens, we have only to compare the position of the
orbits in both figures with regard to this line. It then appears that
there is no evidence of such a shifting. For in the infantile as well
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"as in the adult skull nearly the whole orbit lies behind this line.
As to the topography of the orbits with regard to the cranial cavity,
in man no change is observed during growth, such as was found
with the Anthropoids. We come to the same conclusion when com-
paring the anatomy of the lateral wall of (e orbits in the two figures.
When dealing with- the Gorilla skulls it was pointed out that in
the infantile skull two parts could be distinguished in this wall, an
intracranial part, partitioning the orbital and cranial cavities, and
an anterior part, bordering the orbil outwardly. Between these two
parts the cranial wall joins the orbital wall. In the adult Gorilla
the intracranial part has disappeared, the cranial wall is attached
to the posterior part of the orbital wall.

In man nothing appears of these altered anatomical relations. As
well in the young as in the adult skall the mtracranial partis fonnd,
which means that in the adult as well as in the infantile skull the
posterior part of the lateral wall of the orbit has remained a parti-
tion between this and the cranial cavity. In man the orbital cavity
always enters into the cranial cavily, which 1s moreover proved by
the fact that the frontal wall of the cranial cavity is attached along
the anterior border of. the roof of the orbital cavity, as well in
infantile as in adult skulls.

Thus in regard to the phenomena of growth in the orbital region
of the skull there is a very noticeable difference between man on
one side and the Anthropoids on the other. This difference is that
in man infantile topographical relations remain permanent. In their
juvenile stage these relations are the same in man as in the antro-
poid apes.- While in these latter they are replaced by other relations,
however, so that the adult skull becomes very unlike the infantile
one, the huaman skull retains its infantile cranial characteristics. As
has been stated in the beginning of this paper, the same holds good
for the Foramen magnam. From this ensues that when we compare
the human and anthropoid skull those of the anthropoid apes may
not be considered as primitive forms from which the human skull
should be derived.

19
Proceedings Royal Acad Amsterdam Vol. XXl
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Mathematics. — “Null-Systems in the Plane”. By Prof. Jawn
pE VRIES. B

(Communicated in the meeting of January 26, 1918).

1. In a null-system RN(e, B) a group of « straight lines n passing
through a point NV is associated to that point; to a straight line n
belongs a group of 3 points IV lying on n. A point is called
singular, when it is null-point of o null-rays; a straight line is
called singular if it has oo null-points.

The null-systems, for which « or 3 is equal o 1 (Znear nuwll-systems)
are characterized by the fact that they always bave singular null-
points if ¢==1, always show singular null-rays if 3=—=1. Considerations
concerning the case a =1 are {0 be found in my papers <“On plane
Linear Null-Systems” (These Proceedings vol. XV, page 1165) and
“Lineare ebene Nullverwandischaflen” (Bull. de ’Acad. des Slaves
du Sud de Zagreb, July 1917, Auszug aus der im Rad. Bd. 215,
S. 122 veroffentlichten Abhandlung).

That a non-linear null-system does not necessarily possess singular
“elements, appears among others from the consideration of the null-system
N(3, 3n—6) formed by the points of inflection and their tangents
appearing in a general net of curves of order n'). Only for n =3
we have in general a group of 21 singular null-rays, viz. the
straight parts of the binodal figures.

2. Let us suppose that a (e, §) possesses ¢ singular points S,
which are singular null-points on each ray drawn through them,
and o, singular points Sy, which replace two null-points on each
ray ?). We further suppose that there are ¢ singular rays s and
6, singular rays s,; the latter are characlerized by the fact that
“they represent two coinciding null-rays for each of their points.

If the straight line n is caused to revolve round the point P,
the B8 null-points N describe a curve () of order (« -+ B), which
has an e-fold point in P.

Analogously the null-rays n, Whl(‘h have a null-point &N on the

1) See my paper “Two null-systems determined by a net of cubics” (These
Proceedings vol. X1X, page 1124)

%) In the linear null-system formed by the tangenis and their points of contact
of a pencil (¢cn) the base-points are singular points S,, the nodes singular points S.

v
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straight line p, envelop a curve (p) of class (« 4 B), of which p is
a p-fold tangent. : )

Through a point S pass (« + 8) tangenis of (p); from this it is
evident that the null-points on the rays of the pencil S form a
curve (S)*+8. Now, S is always one of the null-points, so that an
arbitrary ray of the pencil bears only (3—1) points .V outside S.
Consequently (S)*+* has an (¢ 4 1)-fold point in S.

Analogously we find that (s).4s has the straight line s.as (8-41)-
fold tangent, while a straight line s, is a (8-}2)-fold :tangent of
the curve-(Sy)uts-

3. The curve (Pa+f is of class (a + 8) (¢ 4+ B8 —1) — ala—1).
Through P pass therefore (2¢ 4 B) (3— 1) more tangents, which
touch it elsewhere. To them belong evidently the straight lines PS,,
as S, represents two coinciding null-points. Consequently the rnull-
rays bearing a double null-point envelop a curve of class (2e -+ B)
B—1) —o,.

The complele enveloping fignre contains moreover the o, class-
points S.

It is of course possible that the enveloped curve breaks up. This

e.g. happens with the null-system that arises if each tangent of a
pencil {(c¢") is associated to the (n—2) points, in which it moreover
intersects the c¢* (satellite points of the point of contact).

We have to distinguish then between tlie envelope of the
stationa'ry tangents, which each bear one double null-point, and the
envelope of the bitangents, which each contain fwo double null-
points. The curve (P) is now the so-called satellite-curve ).

In a similar way we find: The locus of the points N, for which
two of the null-rays n have coincided is a curve of order (a 4 2)

(¢ —1)— Ee;e- .
4. The ~curves (p)oyp and (q)“:,_,; have the « null-rays of the
point pg in common. To the remaining common tangents the singular
rays s and s, evidently belong *). There are therefore (--B8)*—a——d—ay,
rays n, a null-point N of which lies on p, another null-point N’ on g.
This number lias another meaning yet. If NV describes the straight

) Cf. my paper “On linear systems of algebraic plane curves” (These Pro-
ceedings vol. VI, page 712) or “Faisceaux de courbes planes” (Archives Teyler,
série II, t. XI, p. 101).

% 1f g=1, (p) and (g) have, besides the ( null-rays of pg, only singular rays
in common; consequently we have F,-|— E*= a? - ¢+ 1. The tangents and points
of conlact of a tangential pencil provide an example of this.

19%
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line p, the remaining null-points V' of the null-rays » borne by
N will describe a curve (NV’),. Its order is evidently equal to the
number of rays n, which have a null-point on p and another on g.
Let us now consider the points that (NV’), has in common with p.
Each of the g null-points of p is associated to each of the remaining
(3—1) null-points, and therefore is a (;=1)-fold point of the curve
(N’). The remaining points N’ lying on p are evidently double
null-points on one of the null-rays determined by them. Hence:
The locus of the double null-points is a curve (N,) of order
o + 2a3—u + ﬂ—g—a
The consideration of the curves (P)and (Q) prodnces analogously :
The double null-rays envelop a curve (n,) of the class B* + 2af8 +-

-+ a—f~—0—0y.

5. By means of an arbitrary conic ¢* another null-system may
be derived from a given null-system. Let N be one of the null-
points of the ray », N~ the intersection of n with the polar line
of N with regard to ¢*. A new null-sysiem arises now if on each
straight line n the null-points N are replaced by the corresponding
points N*'). The number # remains intact. In order to find what
o passes into, we observe that the null-rays n of the new null-
point N* must have one of their old null-points N on the polar
line p of N#*. The null-rays n of the points of p envelop the curve
(P)ete. On each of the (¢ p) tangents which it sends through NV*
is N* one of the new null-points.

By the harmonical transformation N («,B) s therefore transformed
mio a N* (& - 3, p). -

If N lies on ¢* while one of its null rays touches at ¢*, N*
becomes an arbitrary point of n, and n a singular straight line of R *.

In order to determine the namber of these singular rays, we
associate to each tangent n of ¢* the B tangents p, which meet n
in its 8 null-points V. ’ )

The envelop (p).ts determined by p has evidently 2 (¢ 4 pB)
tangents in common with ¢®. Besides the straight line p, which,
as B-fold tangent of the envelope (p), replaces # common tangents,
(2¢ 4 B) rays n are associated to p. The correspondence between
p and n has 2(« + B) coincidences; on ¢* lie therefore 2(a 4 B)
points NV, of which one of the rays n touches at ¢*. In other words
N* (a4 B8,8) has 2a + §) singular rays more than RN(e,B).

) The “harmonical” transformation dually corresponding to this 1 applieds
formerly to a N (1,) (vide “Plane Linear Null-Systems").
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By the dual transformation M («,3) passes into a N* («,« + B),
which has 2 (¢ + B8) singular points more than N.

6. The harmonical transformation may be replaced by a more
general transformation in the.following way.

The polar curve = of-a point N with regard to a given curve
@m+! intersects the nullray n in m points N*, which we shall
consider as new null-points of ». In the new null-system 3* each
straight line has then mB null-points N*.

As N*,lies on the polar curve am of N, N belongs to the polar
line p of N* with regard to @»+1. Now («-}p) tangents of the
curve (p) pass through N¥*; they arve the null-rays of N* for *.
I.e. N(e,B) is transformed into a W*(« 43, md) by the new
transformation.

In opposition to the harmonical transformation this transformation
produces 7o new singular straight lines.

7. If we write «—=1, 3=1, m =2, we find from a bilinear
null-system a MN*¥2, 2) for which the three singular straight lines of
N (1,1) are also singular.

We may indicate the bilinear null-system by

y1:§2§3:y2:§]§3:y8:_2§1 ga
and the curve @* by
2+ a4+ 22+ 32, 2,0, = 0.
The polar curve of (y) is then expressed by
9 (@) 2,0) + 9, @ 4 0, 8) +y, @+ @, 0) =0

For the null-system N (2,2) we have therefore

gz g: (‘7"12"‘" &, ‘7"3) + §1 ga (“"22"}_ &, "Uz) —2 §1 §: (""’az'}' &y wz) =0 (l)

glwl"i_gn‘vz'*‘gz‘?"s =0

In order to find the equation of the curve (P)* we have to com-
bine these two equations with

P&+ p. &+ p, 8 =0.
Elimination of &z then produces for (P)*
(P1@y — Py,) (Do — p.%2) (2,7 + 0,@,) + (pay — Pa,) (P8, — Pr,)
(22" + @25) — 2 (p,@, = py2,) (py8y — Pyy) (25" 4 @,2,) = 0.

The equations (1) determine the two null-points of the straight

line (§) as intersections of (§) with a conic. As a condition for the

coincidence of the two null-points we find after some reduction the
equation :

S5 80 =G HENE 885,75, — 28,5, 5,5, +8,") —4§,° 5, =0.
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. It shows that the rays that bear two coinciding null-points,
envelop a curve of the 6t class. .
From this it ensues that the curve (P)* has no other singularities
outside the node P. )
Combination of (1) with the equation _
oy w4+ T ey =20
produces for the curve (p), by elimination of @ the equation
[(, .sz — @ &) F (@ &= m (& —a, E)] & 5 + -
[(r, & — 7, 8) + (7§, — 71, 8) (@, §, — o, §a]:] &&=
2[(m, & —m, &) (& — 7, &) + (1, &, — 7, £.)'] 5, &,
This is always satisfied by & = 0, § == 0. This was to be expected
as the straight lines 0,0,, 0,0,, 0,0, must be singular rays.

-
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Mathematies. — “Cubic involutions of the first class”. By Prof.
JaN pe VRiss.

(Communicated in the meeting of February 23, 1918).

1. By the “class” of an involution in the plane we understand
the number of pairs of points on an arbitrary line. In a paper
printed in volume XVI’), I have proved that the cubic involstions
of the first class may be reduced {o six principal species provided
that it be supposed thal there are no collinear triplets.

[ will prove now that these involutions, with a few exceptions,
may be determined by nets of cubics.

Let a net [¢*] be given with siz base-points (. All ¢* that yet
pass through a point X, form a pencil (¢®), have therefore still two
points X' and X" in comimon, which form with X a group of an
involution Z,. On an arbitrary straight line [¢*] determines a cubic
involution [?; of the second rank; the neutral pair consists of two
basepoints X', X", consequently is /, an involution of the first
class®). | ’ ‘

To [c*] belongs the y'z, which has a nodal point in Cg. 1f X is
chosen on this nodal vy, one of the points X', X" comes in Cj;
so Cy is a singular point that forms groups of the /, with the pairs
of an I, lying on the singular curve y*;. Each of the two points
of y*, lying in Cr, belongs to a pair of the I,; from this it ensues
that the pairs of this /, are lying on the tangents of a conic
(curve of involution of the 1)

To [c*] belongs also the figure formed by the conic y,*, which
contains the points C,, C,, C,, C,, C;, and a certain straight line ¢,
on which C, lies. As [¢*] determines on ¢, the pairs X, X’ of an
1y, ¢, is a singular straight line.

The involution I, has therefore siv singular points and siz singular
straight lines. .

The points X'/, which complete the pairs of the [, lying on
¢, into triplets of the [/, lie evidently on y*. Let ¥’/ be the
projection of X’/ on ¢, out of a fixed point of 7?,; there exists a
relation (2,1) between Y’/ and X, so that Y’’ coincides three times

1) “Cubic involutions in the plane”. These Proceedings X VI, 974—987.
2) If the rays XX, XX” are associated to each point X, a null-system ® (2,2) arises.
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with X. From tlis it ensues that the rays XX’’ envelop a curve
of the third class, wlich evidently has C, as bitangent. The
straight lines @ = X’ X"/, which ave indicated by the triplets of the
I, form the triplets of an volution of rays i,. For this involuation
too, ¢ is singular, as 1t belongs to o' groups, the straight lines
@', 2’ form an 17,, for which yz* is the curve of involution.

2. When a point X describes the straight line p, the rays a', 2",
which connect X with X", X', envelop a curve (p), of the fourth
class, which has p as hitangent. The curves (p), and (g), have
16 tangents in common; to them belong the rays ', 2", which emanate
from X = pg, and the six singular straight lines ¢z. There are conse-
quently 8 straight lines 2", for which X lies on p, and X' on g.
In other words, if X describes the straight line p, X' and X" describe
a curve p®. The Iatter mfersects p in the first place in the pair of
the 7/, lying on p, and further in six points X, which have each
coincided with a point X', consequently are coincidences of the /,.
The coincidences of the I, form therefore a curve of the sixth
order, v°. ‘

If two base-points of a pencil meet in a point B, thereis a curve
that has a nodal point in B. So y° is at the same time curve of
Jacosl for the net [c¢*], has consequently nodal points in the six
base-points (j. In each of these points it has the tangents in common
with the nodal curve 7. Outside the points C the lines y° and v%
have only two more points in common; they are the coincidences
of the involution (X, X') lying on 7%.

‘The curve (p) is of order 1O, is therefore cut by p in 6 points.
For each of these intersections X, 2" coincides with &', consequently
X" with X"’. The locus of the “branch points”, the “complementary
curve” is consequently also a curve of the swth order, x°. Tt has
nodal points in the singular points Cy, because y;* bears two coin-
cidences. The curves y* and 2° have besides the 6 points C more-
over 12 points 1n common, they are united in pairsinto triple points
of the [,. So there are in [, siv groups, in which the three points
are united in one point.

The above mentioned curve -p® has a triple point in Cj, because
yi® has three points X in common with p, for which X’/ lies every
time in Cp.

The pairs of the [,, which are collinear with an arbitrary point P,
lie on a curve (P,*, which passes twice, through P and contains the
singular points C'). So p® and (P)* have in Ci 18 points in common;

1) For Cr this curve consists of y.3 and the siraight line C.
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the intersections X of p with (P)* supply further 4 common
points X’. The remaining 10 poinis which they have moreover in
common f{orm 5 pairs X', X/, of which the line of connection 2
passes throungh . In other words, if X describes a straight line, 2

envelops a rational curve of the fifth class.

3. Let us now consider the case that three base-points B,, B,, B,
of a [¢*] lie on a straightline a, while the remaining three. C\, C,, C,,
have been chosen arbitrarily.

To the net belongs a pencil, each curve of which consists of the
straight line @ and a conic that passes through C, C,, C, and a
certain point A. These conics determine an /, on @, the pairs of
which are completed by A into groups of the 7;. So A isa sinqular
point, a & singular stfuight line.

To the singular points C,, C,, C, the nodal curves y;* are again
associated as before; to the singular points B,, B,, B, now belong
curves f’;, which pass through the points C and 4. Bach 3;* forms,
.as i3 known, with a the net-curve that has a node in B,.

On the pair of lines AC,, C, C,, [¢*] determines a system of
groups of the I,, a point of which lies every time on C, C,, so that
AC, contains an I, of pairs .X, X'. The three straight lines ¢ = Ay
are therefore singular, they form with the singular straight line a
the curve (P)* of the point 4 (see § 2).

For Cp. (P)* consists of yz* and cx, for By of 87, a and a singular
straight line bz. There are consequently seven singular points (4, By, Cr)
and seven simqular straight lines (a, by, cp).

The straight line @ is component part of the Jacobian, the curve
of coincidences 15 now a v° that passes through the three points B
and has nodes in the three pomts C.

The curves (p), and (g), have now only 7 tangents’, in common,
which connect a point .X of p with a point X’ of ¢. In connection
with this p°® is now replaced by a p', which passes three times
through Cj, twice through Bj.

Between the points X of p and the points X*, which are every
time produced by the intersection of & on p, a correspondence exists,
each coincidence of which is at the same time a coincidence of the
I,; hence z envelops a curve of the fourth class, when X describes
a straight line.

4. Let us now suppose that one of the six base-points of |¢*] is
collinear with  the base-points B,, B,*, and with the base-points
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B,, B,*; let this base-point be indicated by A,, while the sixth base-

point will be indicated by C.
Now [c*] contains a threeside formed.by a,=4,B, B,* a,=A4,B,B*

and a straight line a,, which contains C and forms with y* the ~

curve (P)* of C. The singular straight line_a, bears an I,, of which
the pairs are completed into groups of the I; by A,.

To a, belongs again (as in § 3) a pencil of conics, the curves of
which are completed by a, into figures ¢*. This (¢*) has as base-
points B,, B,*, C and a point 4,, which is singular, becanse it
forms groups of I, with the pairs of the /,, which (¢*) produces
by the intersection with a,. Analogously there is a singular point A,
to which an I, belongs placed on a,.

To the pencil (¢*), which is associated to a,, belongs the fignre
formed by a,= B,B,*, and the straight lipe CA,; the latler is
therefore identical with the third straight line a, of the threeside
menfioned above. Analogously @, and @, form one of the conics
that are associated to @,. From this we conclude that the singular
points C,4, and A4, are collinear, and lie on the singular straight
line a,.

To the pencil associaled to @, belongs also the pair of lines CB,,
A,B*; on the second of these lines the net determines an [* or
pairs (X, X’), which are each completed into triplets by a point of
CB,. So the lines 4,B,* A,B,, A4,B,* and 4,B, are singular; we
may indicate them by b,%, b,, 0*,, b,.

Finally there is moreover a singular straight line ¢, which passes
through C and forms with the threeside «,a,a, the-curve (P)* of
C. It contains an [, of pairs X, X’, which are every time base-
points of pencils out of [¢’]. If we now take two arbitrary fixed
points M and M’, and if we associate the two ¢’, which each of
the pencils in question sends through 3/ and M’, two (c*) are on
acconnt of this made projective. As any two homologous ¢* intersect
each other iu three points of ¢, and the two pencils have a curve
¢®, in common, the figure produced by them consists of ¢,*, the
line ¢, and a conic 7*; the latter therefore is the locns of the point X",

Summarizing we find that this 7, bas eight singular points and
eight singular straight lines.

lts coincidences lie on a y*, which passes through the points B
and twice through C.

In an analogous way, as in § 3, it appears that X envelops a
curve of the third class, when X deseribes a straight line.

5. Let us now suppose that the base-points B,, B,, B, are respec-
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tively lying on the sides A4, 4,, 4, 4,, 4,4, of the (riangle which
has the base-points Ay as vertices.

In the same way as with the preceding /,, there belongs to the
straight line a,*= A,4,B, a (c*), the base of which consists of
4, B,, By and a certain~ point 4,* which is again singular and
belongs to an [, lying on a,*. Analogously there are moreover two
other singular points, A,* and A,*, which are related to involutions
I, on a* and a,* It appears now from the consideration of the
threeside formed by a,*, a,* and by the straight line a,;, which must
pass through B,, that a, contains the points 4,* and A*, (see § 4).

Evidently the singular straight lines a,, a,, a, belong respectively
to the singular points A,, 4,, 4,.

The nine singular poinis. are now placed in such a way, that
each point By is the intersection of the lines az and a;*; the triangles
4,4,4, and 4*4,*4,* are consequently circumsecribed to the points
B,,B,,B,.

Besides the six singular straight lines oy, az* there are moreover
three singular  straight lines by = AjAx*. For, on the pair of lines
A, 4% B,B, [¢’] determines groups of the /,, of which every time
one point lies on B,B,, while the other two form a pair on b,.

The curve of coincidence is now a y°, which passes through the
points B. To a straight line p a p° is associated, while the straight
line X envelops a curve of the second class,-when X describes the
straight line p.

For B, the curve (P)* consists of a 3,* (4,B,B,B5,4,% and the
lines a,, a,*; for each of the remaining singular points it consists of
four lines easily to be indicated.

For further particulars I refer to my paper mentioned above.

6. We now cousider a net [¢’] that has the vertices Az of a
fourside, with sides az, as Dbase-points. To the straight line a, a
(c®) is associated, which has as base-points 4,,, 4,,, 4,, and a certain
point A4,; each of these ¢* forms with @, a figure of the net. To
these figures belongs the threeside that is composed of a,, @, and a
third straight line a,,, which must pass through A4,,, but cannot but
contain the simgular point A,. But this threeside may at the same
time be considered as compound of the straight line a, with a pair
of lines of the (¢?), which has as base-points 4,,, 4,,, 4,, and a
certain point A4,; consequently the third straight line a@,, passes
through 4,, and 4,. The singular straight line a,, contains therefore
the three singular points A,, 4,, 4,,.

Besides the siz singular poinis A, which have each a siraight
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line ap as corresponding singular line, the [/, has as appears from _

the above, moreover jfour other singular points 4,, which are in
pairs collinear to the points A4z, and that in such a way that A4,
and d, are connected with 4y by the singular straight line ag.
In other words, there are ten singular points and ten singular straight
lines, which form a fourside and a complete quadrangle, in which
the former is inscribed in such a way to the latter that a” configu-
ration 10, of Desareugs has arisen.?)

The curve of coincidences is now a conze, as the four straight
lines ap form part of the Jacobian. This may moreover also be
confirmed by paying attention to the common tangents of the curves
(p. and (g),; they have besides the two straight lines & indicated
by the point pg and the 10 singular straight lines, moreover 4
straight lines 2 in common, which each connect a point X of p
with a point X’ of ¢g. To a line p as locus of X corresponds
therefore a curve p* as locus of the pairs X', X" and the latter
intersecis p in two coincidences. It is easy to find now that the
straight line X'= X’X" describes a plane pencil.

The /, here described has been known longest; it may properly
be called the involution of REve.

7. With-this jfive of the involutions [/, found in the above
mentioned paper have been deduced from nets of cubics. The sixth
I, is obtained if each ¢* passing through the points E, K\, F,, F, is
intersected by each ¢* passing through the points E, G,, G,, G,.
This /, was amply discussed in my paper “A quadruple involution
in the plane”, (These Proceedings XIII, 82—91).

When the base-points B,, B,, B, of a [¢*] lie on a straight line
b,,, and the base-points B,, B, B, on a straight line &,;,, this net
contains a pencil, each figure of which is composed of the two
straight lines mentioned and a ray s of a plane pencil whose centrum
be indicated by 4. .

On each ray s [¢*] determines an [;; here we have therefore a
cubic involution in the plane, which contains collinear iriplets only,
and consequently was excluded from the investigation mentioned
above. Neither is it of the first class, for on an arbitrary straight
line does not lie a single pair.

The Jacobian of this net consists of the lines b,,,, b,,, and a

1} In a more symmetrical way the points and lines of the 10; are indicated by
the symbols %I and klm; the points kI, km, lm, lie on the straight line kim (k,7, m
to be replaced by 1,2, 3, 4,5)
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curve 7', which contains the coincidences of the cubic involutions
lying on the rays.

Analogous results are arrived at by considering the net of which
the six base-points lie on a conic.

8. Let a net of nodal cubics be given, which all pass throngh
the base-points B,, B, and have their node in D. )

To 0,= B,D belongs a pencil of conics passing through D, B,
and two other points 4, and A,*. Analogously to b,= B,D a (c*
with base D, B,, 4,, A,;*. The two pencils [¢*| indicated by this have
-the threeside in common, which consists of 6,, 5, and a third line d.
From this it ensues that ¢ must contain the points 4,, 4,%, 4, and 4,*.

On the singular straight line d, [c*] determines an /,; here too
we have consequently a triple involution, which was excluded in
the investigation mentioned above, because it has collinear triplets.

On the paiv of lines DA,, B, A *[¢*] determines groups of the /,,
which have each a point on DA, and a pair of points on B, A,*.
The last mentioned line is therefore singultr, and the same bholds
good for the lines B, 4,, B, 4, and B, 4,*.

Taking into consideration that the curve of cotncidences is a y* with
triple point D, we can now deduce from the combination of two
curves (p), that besides the five singular straight lines mentioned
there can be no others. For, (p), has d as bitangent, so that d
represents four common tangents of (p), and (¢),. And, as to p, on
account of y*, a curve p° is associated, as locus of X', (p), and (g),
can only be touched yet by four singular straight lines.

As none of the singular lines passes through [, the curve (P)*
for P= D will have a &riple point. On this ¢*, which passes through
B,, B, and the points 4, lies an [/, of points X, X', for which X"
is lying in D; the straight line X X’ envelops a curve of the 3'9 class.

For B, the curve (P)* consists of a conic (3,* (which contains an
4,} and the straight lines B, 4,, B, 4,*

The singular points A,, A;* form triplets with each of the points
of-b,; to them no singular straight line is therefore associated. For
4, the curve (P)* consisis of the straight lines 4, B, and b, together
with the twice to be counted line d. -

The curve (p), is evidently of order 8 (two bitangents); it is conse-
quently intersected by p in 4 points. Consequently the complementary
curve is of the fourth order. As it has nodes in D, B,, B,, it can
have besides these points but 16—2 X 3—2 X 2 or 6 points in .
common with y*. In this /; only three groups occur of which the
three points have coincided.
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It possesses seven singular points and five singular straight lines.

9. In § 7 there was a reference to a triple involution that has
only collinear groups. Another [/, with only collinear triplets is
determined by the projective nets

kaz® + 10, 4 me,* =0, kA, 4B, + mCy = 0.

Each triplet consists of base-points of a pencil (¢*) belonging to

the net [¢*] indicated by

‘ a B Y

az’ bza CxB :O,

A, B Cr -
which has thirieen fixed base-points Sp. For the curves a,® B, — 8,24,
and a,® O, = ¢ 4; have in common the three points indicated
by a,®* = 0, 4, = 0, and they do not lie on the net-curve b,* C, = ¢, B,.
The curves of [¢*] pass therefore through 13 fixed points.

Any straight line contains three base-points of a pencil (¢*). If it
is represented by kA4, 4 (B, + mC, =0, which is always possible,
the pencil in question is found by writing

ke + B+ my=20

in
ke + 8+ my 3 9
kag® + by +me® b2 ¢ |=0
kdy + 1B, +mC. B, C,

Then we find the pencil
2‘ ka® ¢! = ka,® b
3

=7

3

and it has as base-pomts the intersections of
2 ka =0 with = £d4,=0." .

The thirteen points Sp are singulor, for each point S forms a
triplet with each of the pairs that is produced by the intersection
of the pencil with centre S; on 1the nodal curve oz, which has
St as node and belongs to [¢*].

The groups of the /, that are collinear w1th the point P lie on
a curve ()%, which passes through the points S, consequently also
belongs to [c*].

1) An arbitrary net [c*] has 12 base-points at most and intersects a straight

line in the groups of an involution I2?, (of the second rank), which has three
neutral paivs. Here the three pairs are replaced by a neutral triplet.
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Any net-curve coniains a point P, for which it serves as eurve
(P):. For the Jacobian vy*, at the same time curve of coincidences
of the /,, has nodes in §; and intersects a c¢* of the net consequently
moreover in 10 points &, which must be coincidences of the 7,.
Let 2, be one of those points; the tangent in R, at ¢* has two
more _points in common with that curve; one of them forms with
R, a triplet of /. Let P be the second of those points. The (P)*
be]ongiﬁg to P has now in common with ¢* the 13 points .S, the
point- £ and the triplet of the /, determined by R,; but the two
“curves are identical then and the tangents at ¢* meet in the 10
points R in P.

From this it ensues at the same time that the lnes ¢ containing
the coincidences of I, envelop a curve = of the tenth class.

10. In §; six tangents of ;' meet; each of the tangents in Sk
replaces two straight lines ¢, so that + has a node in 5.

If (P)* has a node D), PD replaces two straight lines ¢ and P
is a point of .

If (P)* has two nodes D, and D,, Pis node of v and PD,, PD,
are the tangents in P..

Analogously = has a cusp in P, if (P)* is a cuspidal c*.

Consequently t has besides the 13 nodes S;, moreover 225 nodes
and 72 cusps. ')

Hence we find further that = is a curve of order 27 and of genus 15.

It must correspond in genus to the curve of coincidence y’; in
tact the latlter is also of genus 15, because it has 13 nodes.

As ‘. contains six coincidences besides S, the complementary
curve x has a sextuple point in Si. On each (P,* lie 10 points of
@, viz. on the straight lines ¢, which meet in P. So (P)* and « have
10 4 13 >< 6 points in common, z is consequently a curve of order 22.

The curves y' and #** can only fouch outside the points S; and in
each of those points of contact the curves of a pencil (¢*) have an
osculation. From 9 X 22 —13 X 2 X 6 =42 it appears therefore
that £, has 21 groups of which the three points have coincided.

11. Let us now consider the case that the curves indicated in
§ 9 by a’% =0, 0°%,=0, ¢, =0 have a node in .S,. The net [¢]
may now be represented by

) A net [c] without multiple base points has 3/y (n—1) (n—2) (8n?*—38n—11)

binodal and 12 (n—1) (n—2) cuspidal curves. (Cf. e.g. my puper in volume VII,
p- 631 —-633).
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a a;* vy + a,d @,
3 0. wy + 0,° 2, |=0
v Cx® vy + ¢ a,
in which a,* etc. are functions of 2, and x,. All ¢* have a node in S;.
The groups of the [, on the rays passing through .S, consist of
the point S, twice to be counted and a point of the curve o*,
indicated by

L oa? w, o B
- ’

by @ 0,0 z,

which has a triple point in S,.

As (P)* has a node in the singular point S,, P bears eight straight
lines ¢, so that = is now of class 8. The curve of coincidence y°
intersects (P)* in the points of contact of the 8 straight lines ¢ and
twice in each of the 9 singular points S;. (single base-points of [¢*]);
from this it ensues that y° passes five times through S,.

We now consider two arbitrary pencils of the net [¢* | and associate
to each ¢* of a pencil the eurves of the other, which curves intersect
it on y". The product of the pencils that consequently are in an (8,8)
consists of the twice coanted curve y°, eight times the ¢*, which
the pencils have in common, and the complementary curve x. From
64 — 2 X 9 — 8 X 4 = 14 it now appears that x is a curve of order 14.

The curve 6% belonging to S; has nodes in Sy, and .S, ; consequently
is S quadruple point of x. A combination of (7)* with #'* now leads
to the conclusion that a'* possesses a sewtuple point in S,.

We now find by the combination of y* and a'* that 1, contains
12 groups in which the three points have coincided.

The characteristic numbers of t are easy to find, as this curve
corresponds in genus to y°, and has the 12 points of contact of y
and » as points of inflexion. It appears to be of order 20.

12. If in
o a;* 2, '
B b} @, =0
v Cz* &y

a,' etc. again represent functions of x, and z,, all the curves of
[¢*] in 0, =S, have a riple point. The groups of the [, are now
determined by .
kag® + 0. + me,> =0 and ko, + lo, 4 ma, = 0. .
The first of these equations shows that the rays have been arranged
by S, into the triplels of an involution of the second rank.

- 306 -



301

If two rays of a group coincide, we have?).
ka, + 1b, +me, =0
ka, + b, + me, = 0.
We find, therefore, for the curve of coincidences

l a.- b, ¢,
a, b, ¢, |=0,
' x, &, &,

ie. a y* with quadruple point S,.

This vesult was to be foreseen: for the net [¢*] has moreover
4 single base-points Sk; the JacoBian has consequently 4 nodes S
and an octuple point S,, breaks up, therefore, into four rays S,Sk
and a 5.

If the three rays of a group of the involution /,* coincide, we have

ay, b, Cu
yy 01 ¢ |=0.
aﬂ’ bﬂﬁ c”

There are consequently three groups of the [/, in which the three
points coincide; their lines ¢ are stationary tangents of the curve z.

As (P)* has now a triple point in S,, P bears only four straight
lines ¢. The curve T is consequently of class 4; as it must be of
the genus null and has 3 stationary tangents, it is a curve of order
three. ’

The /,* has a neutral pair; these two straightlines form a ¢* with
the conic that passes through the five singular points.

13. The net determined by
(24 ax’ Ag;z
g b B2 =0

[ Y .t C:?
has 12 Dbase points, consequently produces an L, If, bowever, the
6 conics corresponding to the 6 quadratic functions, all pass through
a point S,, the curves of [¢'] have a node in S, and pass further
through 9 fixed points besides. The variable base-points of the pencils
(¢*) form now an /,. This triple involution of the third class I have
fullly investigated in a paper, printed in volume XVII, p. 134 of
these "““Proceedings”. In a paper published in volume XVII, p. 105,
a triple involution of the second class is to be found; its groups
are arrived al by intersecting any conic of a pencil with any cnrve

of a pencil (¢*); the two pencils viz. have three base-points in common.
2

0
1) By ak is meant i , by ari the form .
Oay, Ol

. ~ 20
Proceedings Royal Acad. Amsterdam. Vol. XXI.
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Mathematics. — “Linear Null-Systems in the Plane”’. By Professor
JaN DE Vaizs. -

~—

(Communicated in the meeting of April 26, 1918).

1. A linear nullsystem N (1,m) may be delermined by two

equations of the form

.Elml +§2"vz+§awu=0

.El A‘l +§2A2 + EBAB: 01
where Aj; indicates a function of order m, in ay.

When the straight line n revolves round the point P(yz), its m
null-points &V, viz. the intersections of & — () with the curve
3 A = 0, describe a curve of order (m -4-1). As &y =0, this nwnll-
curve (Py"+1 has as equation,

Y Yy Ys
&y B, Xy =0. .
4, A, 4,

The curves (Py»+1 form a net that is represented on the point-
field by the points P; for each netcurve belongs to a definite point P.
The net has (m* 4 m 4 1) base-points. For, if for the sake of
brevity its equation is written in the form
¥: B, + 9, By, + 34 B, =0,
it appears that the curves B, =0 and B, =0 have in the first
place the points indicated by x, =0, 4, =0 in common, which,
however, do not lie on the curve B, = 0. For the (m* 4 m 4 1)
points Sz, which they have moreover in common, we have the relation
Ato,=A,:a,—=4,: 2, N

These points lie consequently at the same time on B, =0.

Each of the base-points Sz bears oo! null-rays 7, is therefore a
singular point of the null-system.

Two null-curves (Py»+' and (Q)»+' have in the first place the
m null-points of the straight line PQ in common; the remaining
intersections must be singular as they bear each two null-rays; they
are therefore identical with the (m* 4 m 4 1) singular points S.

If the point O, is laid in one of the singular points we have to
write dp=a®aym-1 4. . . where o indicates a linear function
of @, and x,. ) ;
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We find then for null-curve of O
(w7, a® —z, al) g1 4+ ... =0,
from which it is evident that the null-curve og»tl of S, has anode
in Sz
This result was to be expected, but of course holds good only in
the case of S being single null-point for an arbitrary ray passing
through S.

s

2. If a point N describes the straight line p, its nullray n
envelops a curve of class (m -+ 1), which will be indicated by the
symbol (p)ut1. For the null-curve of an arbitrary point @ intersects
p in (m 1) points .V, of which the null-rays pass through (.
Evidently p is an m-fold tangent of (p)uts.

The null-curves (p)u41 and (g),;l_{_l have a common tangent in the
null-ray of the point pg. Each of the remaining common tangents
1s a straight line n, of which one of the null-points N lies on p,
another null-point N/ on ¢. Iif N describes the straight line p, the
remaining null-points N’ describe consequently a curve (V') of
order (m* -~ 2m).

Bach of the null-points of p 1s to be considered (m—1) times as
point N’, so that (N’) in those null-points has m(m—1) points in
common with p. In each of the remaining 3m intersections of p
with (V') a pomt N’ coincides with a point NV into a double
null-point N of the corresponding straight line n. :

In a double null-point the cnrves (P) of a pencil have a common
tangent, one of the pencil-curves has a node there. The locus of
the double null-points (curve of coincidence) coincides with the
Jacobiana of the net of the curves (£’). As the latter is in general
a curve of order 3m, the conclusion may be drawn from the above
made statement that the null-system possesses in general no singular
straight lines. For, if a straight line has each of its points as null-
point, it is common tangent of null-curves (p)ut1 and (g)ut1.

The curve of coincidence y* has, as Jacobiana, (m® 4 m - 1)
nodes Sg.

This may be confirmed as follows. Through P pass (m? 4 m—2)
tangents of (Py»ti: their points of contact are double null-points,
consequently points of y3", The remaining 3mum + 1) — (m* 4+ m—2)
intersections of () with y must lie in the singular points, but then
y must have a node in each point S.

8. Let us now consider the locus » of the groups of (m — 2)

null-points, lying on the null-rays ¢, which possess a double null-point.
20%
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Through each point .S pass (m* 4 m —6) tangents of the null-
curve ¢nt! of .S; as they bear a double null-point each, .S is an
(m* -+ m — 6)-fold point of the complementary curve ». Besides the

points .S, = has moreover the groups of (in—2) null-points in common .

with (P)»+1; these points lie on the (m® -4 m—2) straight lines ¢
which meet in P. The two curves have consequently in common
(m* 4+ m -4 1) (m* + m — 6) 4~ (m* 4 m —2) (m — 2) points. For the
order of  we find from this (m*43m® —5m?>*—9m—2): (mJ-1),
e m 4+ 2m*—Tm —2, oo (m—2)(m -} 4m-41).

4. The straight lines ¢ envelop a curve = of the class (m + 2)
(m —1).

If a curve ¢»+! of the net has a node D, DP replaces two of
the rays ¢ meeting in P; P is then a point of * and PD the
tangent in P at that curve.

If P lies on a binodal e¢mt, with nodes D and D', PDand PD’
replace each two straight lines ¢ and are tangents in a node of r.

It a ¢»t has a cusp in K, PK veplaces three siraight lines ¢,
and P is a cusp of =.

Now the net [cm+!] contains according to a well-known proposition
4 m(m—1) 3 m* ++ 3m — 11) binodal and 12 m (n— 1) cuspidal
curves. :

If we moreover take into consideration (hat the base-points S are
nodes of 7, it appears that = possesses 4 (9 m' — 40 m* 4 85 m + 2)
nodes and 12 m (m —1) cusps.

We can now determine the remaining characieristic numbers of r.

From the formula » =n (n—1) — 2d—3» it ensues at once that
the order of = is 3m?*.

From 3n—r=3v—p we deduce for "the number of poinis o
inflexion 3(m—2)(2m-}-1).

The genus of v is equal to that of y3”, viz. equal to bm(Tm—11).

And we now finally arrive from

9=14@~-1) (r—2)— (4 +0)
at the number }(m—2)(m—3) (m*-+7m-+4) of bitangents.

It appears from the results arrived at that R(1,m) has 3 (m—2)
@m~-1) rays with triple null-point N® and § (m—2) (m—3)
(m*4+-Tm-4-4) rays that have two double null-pomts each.

By means of these two numbers it would be possible to determine
again the order of the complemeniary curve. For the curves y and
x will touch in the triple null-points and must intersect in: the
coupled double null-points; they have further in each singnlar point
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2(m*+4m-——6) points in common. Taking this into account we tind
indeed for the order of % the number arrived at above.

5. Till now we have supposed that the singular poinls are all
single and different, but moreover that each point S is single null-
point on a ray arbitrarily drawn through S. An example of a R(1,m),
of which the singular points are partly double null-points. is furnished
by a pencil of curves ¢, when each straight line is associated to
its points of contact with curves of the pencil. A ray passing through
a base-point of (¢) is topched outside that point by 2(r—2) curves,
while an arbitrary straight line has 2(r—1) null-points; so each
base-point is to be considered as double null-point. The remaining
singular points of this null-system M(1,20—2) lie in the nodes of
the nodal curves c’; they are evidently single null-poinis on the
straight lines drawn through them.

We shall now suppose that N(1,m) has s, singular points S,
which are double null-points of their rays. As a ray passing through
S outside that point bears (m—2) null-points the null-curve 6'® has
a triple point in S®. The complementary curve now consists of the
s, null-curves ¢® and a curve x* of order (m—2)(n*4-4m-++1) —
— (m-}-1)s,, while the curve v has been replaced by a curve ™ of
class (m-+2) (m—1) — s, and the s, class-poinis S 2.

If it is taken into consideration that ;® contains all singular
points S/ and S, it is found that »* passes through each point
S with (m*-Fm—6—s,) branches and with (m*+m—8—s,) branches
through each point S,

6. In order to arrive at a determination of the number of triple
null-points NV®), we associate to each point N of a ray ¢ the
(m—2) uull-points N’ of ¢, and consider the correspondence which
arises in consequence of this in a plane pencil with centre 7.
As the points N® lie" on the curve y3, the points N’/ on the
curve x’, the characteristic numbers of this correspondence are
evidently 3m(m—2) and (m—2) (m*+4m—+1) — (m-1)s,, while any
ray ¢ passing through 7" produces an (m—2)-fold coincidence. The
number of the remaining coincidences amounts to

3m (m—2) -+ (m—2) (m* + 4m - 1) — (m 3+ 1)s,—(m + m—2—s,)
(m—2) i.e. (m—2)(6m 4 3)—3s,.

There are consequently 3(m —2)(2m -+ 1)—38s, null-rays with a
triple null-point.

In order to find the number of coupled double null-points N
we associate o, each point N' of a ray ¢ each of the remaining
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null-points & " of ¢ The involutory relation which arises in conse-
quence of this in the plane pencil 7° has as characteristic number
[(m—2)m* 4 4m + 1)— (m 4 1)s,}(m—38); any ray ¢ passing through
T represents now (m—32)(m—3) coincidences. The remaining coin-
cidences to the number of 20n— 3) [(n—2)(m* 4 4m 4 1) —(m + 1)s,]
— (m* 4+ m—2—s,) (m—2) in—38) form pairs of double null-points.

There are consequently i(m—2) (m—3)m* 4+ Tm 4+ 4) — $(m—3)
(m + 4)s,_rays which each benr two double null-points. i

A null-system W(4,m) with (m* 4 m + 1) simple singular points
has therefore 3(m—2)(2m -+ 1) null-rays .with a triple null-point
and §(m—2) in—3) (m* + 7m + 4) null-rays with two double null-
points.

With this the results of § 4 are confirmed.

For the null-system X(l,2r—2) mentioned above s, =7*; the
number of triple null-points amounts therefore to 3(77*—22» - 12).
Forr=3 we find from this 27. For each pencil (c’) each base-
point is point of inflexion on three curves c¢*; the number 27 conse-
quently arises from the fact that the Y base-poinis serve each on
three null-rays as triple null-point. As this observation holds good
for each pencil (¢) the number of poinis N®) outside the base-
points will be equal to 3(6r*—22r 4 12). In such a point a ¢ has
four coinciding points in common with its tangent. In general a
pencil (¢*) has therefore 6(r—3) (3r—2) curves that have a poini of
undulation *). .

7. If the curves Az=0 (§ 1) have an »-fold point in 0,
S,= 0, is an r-fold null-point on each of its rays. Outside the
singular null-point S, there are then moreover (m* 4 m 4 1) — »*
simple singular null-points .S.

The null-curve of S, bas as equation 4, 2,— A4, &, = 0; hence it
has in S, an (» 4 1)-fold poins.

The null-curve (P)»+1 has in .S, an »-fold point, consequently
sends through I (m* 4+ m—2) — (»**—) tangents ¢, of which tne
points of contact lie on the curve of coincidence y. The latter has
nodes in the poinis §; so of its intersections with (P)»+! there lie
in § 3mm 41— +m—2—r"4r—2m"+m++1—") =
= (8r—-1)r points.

From this it ensues that y has in S, a (3r—1)-fold point.

In order to determine the order of the complementary curve, we
consider two pencils of null-curves (¢,»+1) and (¢,”11), and associate

1) Another deduction of this number I gave in “Iaisceaux de courbes planes”.
(Archives Teyler, sér. II, t. XI, p. 99).

- 312 -



307

to each ¢, ¥ the (n* 4 m — 2 —2* 4 ) curves ¢,m+, which it intersecls
on y®m, outside the points S. The figure prodoced by the pencils
coupled in this way consists of twice the curvey, of (m* - m —2 —
— r* + 7) times the curve ¢+, which belongs to both pencils and
of the complementary curve x,, We now find as its order (m* 4 m
—2—r"+rin+1)—6mie (m—2)(m*+ dm +1)—(m 1)
(r—1).

With regard to § 3 we conclude from this that the null-curve of
S, is to be considered » (r —1) times as component part of z.

Applying the method of § 6 again, we now find the number of
triple null-points from

3m (m—2) + (m—2)(m*+4m~+1)—(m 4 1) r (r—1)—(m—2) (m* + m—2—r*}-7)
le.
(m—2) (6 m 4 3) — 8 » (r—1).

Analogously we find for the number of null-rays with fwo double
null-points

3 (m—2) (m—38) (m* +Tm-+4) — § (m—3) (m4-4) r (r—1),

8. A very particalar linear null-system is obtained by supposing

that the functions A4z (§ 1) only contain @, and 2, In that case
Si4,+ 64, +54,=0

represents an involution of rays of the second rank, of which the

w® groups, each of m rays, correspond projectively to the straight

lines of the plane.

The null-curves have now in §,= 0, an m-fold point, are conse-
quently rational; the null-curve of .S has degenerated into (m - 1)
rays, which each contain one of the simple singular null-points .S.

If the derivatives of A4z with regard to 2, and x, are indicated
by (dr), and (Ag),, we find for the locus of the double null-points
the equation

&

& &

1

(A 1)1 (Al)l (A5)1 =0
. (4), (4,), (4,),

This curve of order (2m —1) has in S, a (2m — 2)-fold point.
By the (m + 1) vays S,Sx it is completed into the Jacobiana of the
net of the null-curves. ,

The rays ¢ with the double null-points envelop a curve = of class
(@m — 1); for (P)»+-is now of class (m - 1) m—m(m —1)=2m.

The triple rays of the above mentioned involution are indicated by

3 1]
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“4,), (4,), 4y,
(4:):s (A:)u (Al)u =0 N
(4):s (4. (4y),,

Their number amounts therefore to 3 (m — 2).

There are consequently 3 (m — 2) null-rays with triple null-point;
they ave evidently siationary tangents of the curve = enveloped by
the null-rays ¢

Analogously the &itangents of that curve are intersected in their
points of contact by the pairs of double rays that occur in the
groups of the involution. Their number, as is known, amounts to
2 (m — 2) (m — 3).

For the order of  we find now m; it has no cusps, but
3 (m — 1) (m — 2) nodes. It is, just as y#»—1, rational.

The involution bas }(m —1)(m ——2) neutral pairs. Each pair
belongs to o’ groups and corresponds projectively to a plane pencil
of null-rays. In connection with this the null-curve of the centre
of that pencil consists in the corresponding neutral pair of raysand
a curve of order (m — 1), which has an (m — 2)-fold point in S,.

The null-curve of a singular point S consists of the ray SiS, and
a curve of order m with (m — 1)-fold point S,.

-]
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Mathematics. — “Nul/l-Systems determined by two Ilinear con-
gruences of rays”. By Professor Jax b Vrigs.

(Communicated in the meeting of April 26, 1918).

1. A twisted curve o’ intersected by a straight line a in (p—1)
points, determines a linear congruence.(l,p), of which each ray u
rests on a and on «”. Analogously a curve B¢ intersected by the
straight line & in (¢—1) points determines a congruence (1,q), of
which the rays » rest on & and gv.

Through the point N pass in general ome ray w and one ray v.
If the plane »=wuwv is associated as null-plane to N a null-system
arises in which a plane » has in general p ¢ null-points, viz. the
intersections of the p rays of w with the ¢ rays of v.

If & describes a straight line /, the rays u and v describe (wo
ruled surfaces, which are successively of order (p -~ 1) and order
(g + 1), and intersect along a curve (/) of order (pg -+ p-+¢). An
arbitrary plane v passing through [ has with (/) the p ¢ null-points
of » in common, and moreover (p -+ ¢) points lying on /, which
belong each as null-point to a definite plane ». In other words, the
straight line / is (p -+ ¢) times null-ray. In R. SturM’s notation the
null-system has therefore the characteristic numbers e =1,3=pq,
y = p -+ ¢, may consequently be indicated by N(1,pq, p-+9).

2. If » coincides with «, any point of that straight line has any
plane passing through that straight line as null-plane. Now, the
congruences (1,p) and (1,q) bave in general (pg-1) rays in
common. There are consequently .(pgq 1) singular straight lines s.

The curves a¥ and B¢ are also loci of singular points. Through
a point A* of a» passes a ray v* and a plane pencil of rays u. In
any plane passing through v* lies one ray v; so A* is null-point to
any plane of a pencil that has v as axis. The straight lines v* form
a ruled surface of order p(g-+1); for a plane passing through b
confains p rays v* and a point of b bears pg rays v* Finally the
points of o and b too ave singular null-points. A point 4, of a
bears onme ray vy and o' rays w, which form a cone of order p
with (p—1)-fold generatrix. Any plane passing through v, contains
p rays u, so that 4, is to be considered as p-fold null-point. The
rays v, form a ruled surface of order (941). A straight line u
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(or v) is null-ray to any of its points; in connection with this (he
curve (/) degenerates for /=wu or =w.

3. If a plane » continues to pass through the point P, its null-
points describe a surface (P) of order (p—qg-41). For a straight
line [ passing through P bears (p -} ¢) points NN, which send their
null-plane through P.

The straight lines # and », which inlersect in P, lie on (P); for
each of their points sends its null-plane through P.
~ On (P) lie farther the (pg-+1) singular rays s and the singular

curves «P, 7, while the singular straighli line a is evidently a
p-fold line, the singular straight line b a ¢-fold line. The surfaces
(P) and () have, in connection with this, the singular lines s, a,
b, @ and 3 in common and intersect further along the curve (I),
which belongs to = PQ.

4. As the straight line ! interseets the ruled surface (v®)in p(g--1)
points, the curve (J) contains evidently p(g¢-1) singular null-points
A* and thus ¢q(p-+1) singular null-points B*.

There are further (g--1) planes passing through I, which bear

a p-fold null-point 4, each, and consequently (p-+1) planes each

with a g¢-fold null-point B,.

Let R be a point outside the straight line /. To the intersections
of the surface (R) with the curve (/) belong in the first place the
pgq null-points of the plane [R. Further the p(¢— 1) points 4* and
the ¢(p-+1) points B* The remaining common points to the
nomber of (p+q+1) (p+qg+p9) — pg—plg+1)--gp+1) i.e.
p*(@+1)+ w¢*(p+1) must be lying in the (7} 1) points 4, and
the (p-}1) points By As a on (R)is a p-fold line each of the
(¢ +1) points A4 must be a p-fold point of the curve (/). Analogously
has (/) in each of the (p--1) points B, a g¢-fold point. The curve
ar is rational, sends consequently 2(p—1) tangeni planes through
[. In each of these tangent planes two rays u coincide, so there are
g double null-points, so that the plane is g¢-fold tangent plane of
(/). Analogously (7 sends through / 2(¢g—1) tangent planes which
are p-fold tangent planes of the curve (/). As [ is intersected by (J)
in (p+gq) points, the rank of [ is equal to 2(p —1)g-+2(@—1)

p+2(p+q. ie dpg.
6. Let us inquire in how far the results arrived at are altered

when the congruence of rays (1,g) is replaced by the congruence
(1,3) of the bisecants v of a twisted cubic 3*.
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Let B* be a point of 8°, u* the ray which the congruence (1,p)
sends through that point. Any plane passing through u* contains
two straight lines w», which intersect in B*; B* is consequently a
double null-point. ‘

The surface (P)»++ has consequently 8° as nodal curve; it further
cointains the curve or, the (3p 1) singular straight lines s and
* passes p times through the singular straight line «.

The ruled surface (v*) is of order 4 p, the ruled sarface (u*) of
order (3p-+ 3), while the straight lines vy, as bisecants of 3°, form
a ruled surface of the fourth order.

If the congruence (l,p) is also replaced by the congruence (1,3)
of the bisecants of a curve «¢°, a null-system (1,9, 6) arises. The
surface (P)” has «® and $* as nodal curves and contains 10 singular
straight lines s; (P)" and (@) have moreover a curve ({)'* in com-
mon. The ruled surfaces (u*) and (v*) are of ovder 12.

6. For p=1, g=1 we have a bilinear null-system N (1,1, 2),
in which the rays w vest on two straight lines «@,a’, the rays v on
two straight lines 4,6’

The singular figure consists then of the straight lines a,a’, b, b’
and their ‘two transversals s,s’. For each singular point the null-
planes form a pencil; the axes of those pencils form four quadratic
' systems of generatrices. The surface (P)* has a triple tangent
plane ') in the null-plane of £.

) Cf. my paper “On bilinear null-systems” (These Proceedings, vol. XV, p. 1160).
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Experimental Psychology. — “The Psychology of Counditions of
Confusion”. By Prof. E. D. WikrsMA.

(Communicated in the meeting of April 26, 1918).

The contents of our consciousness distinguish themselves by
their intensity. When attentiveness is directed on them they have a
high grade of consciousness. When our attention is scattered over
many psychical contents or there is a weakening or depression of
the attentiveness, we speak of a generally low grade of consciousness,
by which we have to understand a condition in which external
impressions ov also our own thoughts can not, or with difficulty,
cross the threshold of consciousness; in which associations do not,
or incompletely, come {o pass; in which the formation of syntheses
is hampered, in other words, a condition in which the precision,
the clearness and the velocity of conception of the contents of
consciousness is diminished. Such depressions of consciousness occur
in many formns, normally as well as pathologically. The momentary
weakenings of consciousness cause normally the phenomena of
depersonalisation and of ‘“fausse reconnaissance”, as was proved by
the investigations of Hrvmans, and pathologically the epileptic fits
as the psychology of epilepsy teaches us.

More prolonged depressions occur normally in dullness, exhaustion,
sleepiness, and sleep, and pathologically in the conditions of acute
confusion as we meet them in ov afier acute infectious diseases, in
some intoxications, and sometimes in meningitis.

These processes can make their appearance in many different
forms. At one (ime the stupor is more pronounced, then again the
confusion and desorientation, strong disturbances of memory, hallu-
cinations, delusions, and motor restlessness. In whatever form the
disease presents itself the characteristics of a lowered grade of
consciousness _are always clearly present. The constant presence of
this one symptom with the great change in all other phenomena,
makes it probable that theformeris primary to those other symptoms.
This opinion is strengthened by the fact that all the symptoms of
confusion disappear for a moment if we are able to obviate or
lessen the intensity of the depression of attentiveness. In a raving
fever patient, in a patient with delirium {remens, with uraemia or
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with meningitis one can often let all symptoms disappear for a short
time by heightening the psychical level or by concentrating the
attention on something. The patient is then no longer confused,
gives the vight answers, knows his bearings, and has no more
hallucinations. -

Moreover there is so strong a correspondance between normal
depressions of consciousness sach as sleep and the dream, and the
acute pathological conditions of confusion, that of old a comparison
was readily made between these conditions. If now the low grade
of consciousness or the depression of the attentiveness is the cause
of the various symptoms of acute conditions of confusion, then itis
to be expected that such symptoms will also malke their appearance,
albeit in rudimentary form, in normal and pathological conditions
in which the grade of consciousness has sunk.

To determine this I have made a series of investigations on persons
of whom it could with certainty be assumed that the groups in which
they were classified would show large differences in attentiveness.
Among these were patienis with obvious intellectual disturbances,
sufferers from melanchohia with strong obstruction and depression,
hysterics with a narrowed consciousness, and normal persons. After
the grade of consciousness had been determined by an examination
of the altentiveness, several other psychical functions, which are
more or less disturbed in acnte conditions of confusion, were further
investigated.

In a number of other subjects I limited this examination to a few
psychical functions only, viz. to the annihilation of weak impressi-
ons by later stronger ones. The resulis of this later examination 1
shall mention immediately after describing the arrangement of the
test, while the results of the first experiments, in which various
methods of examination have been used, will follow after a descrip-
tion of the methods has been given, so that in this way a better
survey is obtained for comparing the results.

It is well known that there are many good methods for measuring
the voluntary attentiveness, which gives us an idea of the grade of
consciousness. I have made use of two of these viz. the Hsthesio-
meter, which was first used by GriessacH') to determine fatigue,
and the marking method ?) as this has been used in the determi-
nation of the psychical after-effects of school children.

1) GriesBacH Ueber Beziehungen zwischen geistiger Erml‘idyung und Empfindings-
vermogen der Haut. Arch. f Hygiene Bd. 24. 1895.

%) Wiersma. Psychische Nachwirkungen. Zeitschr. fiir de ges. Neur. u. Psych.
Bd. XXXV H 3.
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Opinions vary strongly as regards the value of the esthesiometric
method, but I do not want to dwell upon that now. I have used
the method as described by Biner®) and for the sake of brevity
I refer to the original deseription.

The subjects of the experiment were touched on the back of the
hand with the ends of (wo blunt needles of a certain thickness,
which were fixed at various distances from each other in pieces of
cardboard.

The distances between the needles were O (one needle only);
1; 1.5; 2; 2.5 and 3 c¢m. The needles must be placed on the skin
simultaneously and always with the same amount of pressure. With
such a set of needles the subject is touched in irregular order, but
with the same distance equally often. These experiments were repeated
on five consecutive days at the same time of day.

Then the percentage of double and single touches was determined
for each distance. For the purpose of judging the attentiveness I
used as a criterion the fact that a touch with one needle had
always to be felt as one point, and with two needles 2.5 or 3 cm.
apart always as two points. This has been proved by a prolonged
investigation of various normal people. If a mistake is wnade here
it has usually to Le considered as a disturbance of the attentiveness.
By computing the average number of mistakes it was possible to
get an opinion of the attentiveness. It was evidently necessary not
to reckon with the border values only, because some patients suf-
fering from dementia and often also those suffering from Melan-
cholia, always answer over all distances with 2 or with 1. In these
patients one would come to very misleading resuits. On the other
hand it has been proved, also by investigations of Binpr, that it
must not always be ascribed to inattentiveness when a touch with
one needle is felt doubly. A high degree of attentiveness could
sometimes be the cause of this. There is therefore no doubt about
it that this method does not always yield trustworthy results, but
it is serviceable for measuring larger differences of attentiveness, as
are found in pathological cases.

The second method of investigation consists of the marking tests.
It is accurately explained to the person experimented upon what he is
expected to do. A large piece of paper, on which there are printed
50 lines of groups of dots, is placed before him. These groups, of
which there are 25 on each line, consists of three, four, or five dots.
The order of the various groups, which are more or less equal in
number, is extremely irregular.

“7) Biver. An. ps. XL 1905.
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The person to be examined - was now instructed to mark the
groups of four dots with a vertical and those of three dots with a
horizontal line, in pencil, in as short a time as possible. The end
of every minute was notified by the investigator and had to be
recorded by a line. At the end of three minutes there was an
interval of two min. and then the work was started again for three
minuates, but then with this difference that now the marking was
reversed, the groups of four being indicated by a horizontal, and
those of three by a vertical line. This was repeated on tive
consecutive days, however so that on the even days the reversed
marking had to be done in the third minute before the interval.
The standard of attentiveness could be determined from the results
of this work in different ways:

1. By the number of dot groups that had been examined by
the subject.

2. By the number of mistakes. ,

After the grade of attentiveness had been determined in this way
I have investignted whether the phenomena of confusion were to
be found in the persons when the grade of consciousness sank.

The memory was examined by the following method:

The so-called “Treffer” Method of MunLer and PILZECKER.

This consisted herein that during five days eight pairs of words,
which’ were typed on a piece of paper and between whom an
associative connection had heen avoided as much as possible, were
laid before the subject on each day. One of the lists follows here;

Poplar Air

Clock John

Grey Willow

Jacob Sleep

Mateh Chestnut tree
- Violet Charles

Letter Garret

Earth Brown

These words are slowly read alond in pairs and are then with-
drawn from the subject’s observation. The first word of each pair
was then mentioned by the examiner whereupon the subject had to
name the corvesponding word. By computing the number of
correct, incorrect, and missing answers one could form an idea of
the memory.

2. The above named pairs of words were chosen in such a way
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that three ideas, which could be combined in the same general
conception, appeared three times on each list. In the list above there

are three trees, three christian names, and three colours. In other

lists theye are limbs, coins, birds, names of cities etec. A quarter of
an hour after the examination with the “Treffer” method, during
which other tests had-been made, the subject was asked which trees,
christian names, colours etc. were on the list he had seen. Here
again the percentage of correct, incorrect, and missing answers was
computed.

The further investigations were for the purpose of determining
the faculty of inculcation, and the annihilation of freshly veceived
impressions by later and stronger ones.

Inculeation and reproduction of mumbers of two figures.

A row of five numbers, which has been carefully selected so
that in each test numbers of the same tens, the combination of the
same ﬁgure:s, and round tens, were avoided, was placed before the
person to be examined. Afler he had read them aloud slowly twice
he had to repeat them after an interval of one minute. Then the
same test was repeated, but now with this difference that additions
of two . figures had to be done as quickly as possible during the

interval. This test was repeated duving five-days and the results

with the subsequent impediment, and without it, compared.

Recognition of numbers of two figures.

The test described above was afterwards made in a modified form.
The numbers which had been observed and read aloud had now
not to be mentioned, but were to be selected from a list three
times as large.

The percentage of good bad and nil-achievements in both tests
was computed. A comparison between the reproduction through
association and through recognition, and between the annihilations
of subsequent work in these psychical functions was hereby possible.

Inculeation, Reproduction, and Anwihilation of Observations
of stimple little fiqures.

The person to be examined is placed in a dark room before-a -
box-in which an opening of 10 em* has been made on the foreside.
In the box there is an electric-lamp, which throws its light on the
opening. Small glass plates to which small drawings on white paper,
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" that has been- blackened on the back-side, have been attached, are

pushed into this opening. In froni of the box there is another lamp,
which is lighted during one second automatically. As this light falls
on the drawings they are exposed to the subject during one second.
The subject has been told to remember the order of the drawings.
The number of exposures necessary before he can do this is a
measure for the faculty of inculcation.

¢ Then . the same test is again put, but with the drawings in a
different order and with this modification that the lamp in the box
is turned “~on immediately after the exposure of the drawings, so
that the full light out of the box falls on the eyes of the subject
dnring several seconds after observation of the drawings. By
determining how often under these circumstances the observation

‘had to take place for the subject to be able to name the correct

order, one could now determine the retrograde annihilating influence
of the strong light. .

Persons of various ages were examined by this method. The
number of observations, the average of two (ests, necessary to
determine the order of the drawings, without and with the siibsequent
sirong light, is expressed in the following table:

Age | Number |Withoutobstacle sgg&gtsll;gﬁt
10—15 years 19 2.3 4.2
16-40 - , 22 2.4 4.3
above 40 , 12 2.6 5.2

The children have thus to see the drawings 2.3 times. In each
observation they then remember +4 or 43.5 °/, and with a subsequent
strong impulse 14 or 23.8 °/.. When expressed in perceniages we
get the following table: )

Age Number |Without obstacle | Xc\{xig:lts?ight
10—15years| 19 43.5 23.8
16—40 22 41.7 23.3
above 40, 12 40 19.2

S 21
Proceedings Royal Acad Amsterdam. Vol. XXI.
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We now get a measure of the obstructions by expressing the
differences in percentages of the amounnts of inculeation.

Age Obstruction
9—15 years 45 o,
16—40 44.1 % . q
s over 40 52 %,

From these tables it is apparent that this investigation proves what
is to be expected, that the inculcation is smallest above 40 years of
age, and that the destruction of impulses received is then also strongest.

These lamp-tests were modified in such a way that this investigation
became serviceable for clinical purposes. Just as with the former tests
we experimented on five different days, now however not in a dark
room, but in broad daylight. Four round coloured discs were pasted
on a piece of grey cardhoard. These colours were shown to the
subject during 2 seconds. Then, after an interval of 15 sec. he had
to name the colonrs in the right order. If the answer was not
correct, the colours were exposed till the correct -answer was
given twice in succession.

The tests were then again repeated, but with this difference that,
after the observation of the colours, the light of an electric lamp,
in a little box, of which the cardboard with the colours formed the
foreside, was exposed by the removal of the cardboard and the light
allowed to shine in the eyes of the subject during 15 seconds. The
influence of the subsequent strong light could be determined by
investigating how often the test had to be repeated to get the correct
answer twice. .

This test was subsequently repeated in precisely the same way
with four figures e.g. X O A O which are drawn in pairs next to
each other on the cardboard, and afterwards also with three colours
and three figures, which were drawn in such a way that there was
a colour next to each figure. )

The result of these tests was such that in normal people a very
slight -destruction was caused by the subsequent impulse, but in
persons suffering from dementia this was the case to an important
degree. At my instigation these experiments have been repeated in
a slightly modified form and the results obtained will be published
in a thesis.
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Sound tests.

In a quiet room the ticking of an electric bell was deadened,
by distance and by wrapping the bell in a box with cotton-
wool, to such a degree that the 1utensity of the sound was
only just above the border value. On the table in front of the
subject, who regularly heard the ticking, there was a hubbub-maker
of Barany, which counld be set going automalically through an electric
contact, immediately after each tick. By having obsérvations
made after the tick, with and without subsequent noise in irregular
order, it can precisely be determined how often the weak impulse
is lost by the velrograde power of the stronger noise.

In thirteen normal persons and in three suffering from dementia
(2 dem. paralytica and 1 dem. arleriosclerotica) twenty tests were
made daily on each person during five days.

Average number of observations.

S ———  S————
Without subsequent | With subsequent
Number strong sound. strong sound.
Normal 13 97.1 . 88.9
Dement 3 50.0 0

The great disturbances in the observation and the enormous
destrnction in the sufferers from dementia ave immediately apparent.

Toucl tests.

It can be easily vervified that the observation of a slight rough-
ness, which one feels by stroking the fingers over a flat surface,
disappears when the observation is followed by a strong touch
impulse. It is not necessary that the strong subsequent impulse
should act on the same locality, but the preceding weak observation
also disappears if the subsequent sirong impulse acts on another
part of the finger, or even when it acls on one of the fingers of
the other hand. .

Tests were put in the following way, on oue half of a smooth
disc a layer of paper 3 mm. thick was pasied. When the disc
revolves swiftly, the fingers, resting on the disc, clearly feel the -
unevenness. If now a larger elevation is placed at some distance
from this unevenness so that the finger will collide with this eleva-
tion during the revolution, after it has passed the smaller uneven-

21%
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ness, then the firvst and weaker impulse will not be felt if the
subsequent stronger impulse is not too far removed from it. By
regulating the distance between the two impulses one can determine
the retrograde destructive influence of the stronger impulse. In
experiments made with people of various ages it became clear that
there are strong individual differences.

These tests are excellently suitable to demonstrate the retrograde
influence of strong impulses, but there are so many sources of errors
that I shall give up the description of the individual differences.

A much better method consists herein that the observation of a
weak elecfric impulse on one hand, which is noticed regularly,
disappears when it is followed by a strong electric impulse on the
other hand. .

After the description of the tests and the communication of the
results I shall communicate the results of the examination of the
subjects on whom the various methods of investigation had been
applied. )

Fifty-three persons were examined viz. 14 normals, 9 neurotics,
13 melancholics, and .17 with intellectual defects. This preliminary
communication would become too extensive if 1 were to give a
more detailed description of the subjects. I want only io state that
in the group of the neuroses there were 4 sufferers from hystery
and 5 from psychasthenia, while the latter also exhibited hysterical
stigmata. The melancholics were obstructed and depressed and some
of them had micromanias which were not present in others. Among
the sufferers from dementia there were patients with senile dementia,
dem. paralytica, dem. praecox and dem. epilepfica. The intensity of
the dementia was strongly varying, but in no case was it so great
that it caused any difficulty "in this fairly long investigation.

In accordance with the aim of the research, to acquire more
knowledge concerning the influence of a depression of consciousness
on the various psychical functions, it is sufficient for the present to
communicate the differences which appear in the various groups of
subjects in which there was a very large difference in the grades
of consciousness.

Esthesiometer.

The attentiveness of the melancholics and especially of the patients
with dementia is considerably worse than of normals and of the
neurotics.

The good achievements of the neurofics prove that the narrowed
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Number correct answers.
Normals 14 96.9
Neurotics -9 98.1
Melancholics 13 87.9
Dements 17 76.9

consciousness of the hysterics and the psychical disturbances of the
psychasthenics cansed them no difficulty in concentrating their
attentiveness for a short time on work which interests them.

Underlining tests.

Normal under- | Normal under- | Reversed under-| Reversed under-
lining average | lining N° of | lining average lining N°. of
work per minute | mistakes 9. |work per minute| mistakes Y/pg

Normals 86.0 41 71.1 17.47
Neurotics 74.6 5.5 59.9 23.8
Melancholics 66.8 7.1 52.9 . 91.0
Dements 54.8 26.5 42.6 110.17

The great differences in attentiveness is apparent from the number
of normal and reversed underlinings as well as from the number
of mistakes. The automatic after-action, the perseverance, is increased
strongly simultaneously to the diminution of the attentiveness. This
appears out of tlie stronger influence of the normal underlining on
the quantity as well as on the quality of the reversed during a
depression of the attentiveness. Perseverance, continuing to cling to
observations, conceptions or aclions is a phenomenon that frequently
occurs in dreams and in acute confusion.

It is also clear that the neurotics now, as opposed !o the esthesio-
metric test, achieve considerably less than the normals, probably on
account of the circumstance that their attentiveness had now to be
settled on a work for a longer time. '

Test with the method.

Parallel to the descent of the grade of consciousness the number
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Percentage of answers.

Correct Incorrect | No auswer
Normals 43.2 24.2 32.6
Neurotics 35.3 31./2 33.6
Melancholics 24.5 30.5 45.1
Dements 23.0 35.7 41.2

of correct answers decreases and the number of incorrect ones
increases. The lessening of the fixation of associations must be
considered as an indication of the very defective conception in acute
confusion, in which it is often a siriking symptom so that, no maltler
what trouble the patient takes, it is not possible to digest, to assi-
milate the exfernal impressions.

The increasing number of incorrect answers indicates a loosening
of the associations which must be considered as a rndimentary form
of a lack of the connection between the conceptions in the same
way as this makes ils appearance in acute confusion. This falling
out of the associative connection is so essential in this disease that
this has been named after it.

In our subjects the difficulty of fixation of impressions causes
disturbances of memory, as are found in acute confusion of a very
high degree, and which correspond to the depression of conscionsness.

Reducing specialised conceptions lo general ones.

Percentage of answers.

. Correct Incorrect | No answer
Normals 67.3 4.4 28.3
Neurotics 63.9 5.2 30.9
Melancholics 53.2 8.3 37.8
Dements 42.2 12.8 4.7

While the associations by contiguity and by simultaneousness
were examined more especially in the preceding test, the association
by agreement plays the greatest role in this the last research, i.e. the
reduction of a special to a general conception.
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Here again it is apparent that the impulses are more strongly
fixed in the presence of a DLetier attentiveness.

The increasing number of incorrect answers aud the strong lower-
ing of the grade of consciousness indicate that the paramnesias,
which occur in acute confusion in a much higher degree, so that
they then oflen occasion confabulation, are dependent on these.

Inculeation and reproduction of numbers, with and without
subsequent work.

l Without With
Correct | Incorrect None Correct | Incorrect None
Normals 68.3 28.9 2.9 54.3 33.1 12.6
Neurotics 66.2 26.7 7.1 52.9 27.6 19.6
Melancholics 60.9 31.7 1.4 38.8 41.2 20.0
Dements 44.0 38.1 17.9 26.4 48.0 25.6

It is in the first place apparvent from these tests that the number
of correct reproductions, with as well as without obstruction, here
decreases sharply with the stronger lowering of the grade of cons-
ciousness, and in such a way that the minute lessening of the
attentiveness in the neurotics is accompanied by a slight disturbance
of memory, while the much stronger depression of attentiveness in
the sufferers from dementia is accompanied by a much stronger one.

If we compare the correct answers with and without obstruction
. it is clear that the destrnction of remembrances is caused by the
subsequent work. When we consider the decrease of the achieve-
ments in the percentages of the correct answers, with and without
subsequent work, we come to the following table.

Destruction by subsequent work.

Normals 20.5
Neurotics 20.1
Melancholics 36.3
Dements 40

-

The retrograde destruction by subsequent work thus increases in
accordance to the lowering of the degree of consciousness. This
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phenomenon makes its appearance in much stronger measure in
acute confusion, in which often nothing is remembered. Freshly
received impressions were immediately destroyed by subsequent
psychical contents.

There is another phenomenon worth mentioning. The number of
incorrect answers increases in accordance to the lowering of the
grade of consciousness. This has also been proved by the preceding
tests. The nearotics however form an exception to this rule. Of all
the people examined they give the smallest number of incorrect
answers. This pbenomenon is explained by the characteristics of the
psychasthenies, who arve withheld from giving an answer by all
sorts of scruples unless they ave absolutely certain. The normals on
the other hand will guess at a number if they have remembered
one figure only. In tracing all the answers separately this becomes clear.

The stronger inclination of the psychasthenics to keep silence
rather than give an incorrect answer also becomes clearly apparent
if we compare the percentage of incorrect and nil-answers of ihe
total number of answers which were not correct.

Answers that were not correct.

Percentage Percentage

incorrect unanswered
Normals 90.9 9.1
Neurotics 19.0 21.0
Melancholics 81.1 18.9
Dements 68.0 32.0

The number of incorrect answers is smaller in the dements than
in the melancholics.

Recognition of numbers, with and without subsequent work.

Without With

Correct | Incorrect Unans- Correct JIncorret:t Unans-

wered wered

Normals 80.6 19.4 0 78.0 21.7 0.3
Neurotics 82.2 13.3 4.4 72.9 |° 20.0 7.1
Melancholics 69.5 25.2 5,2 62.8 30.5 6.8
Dements 57.2 36.2 6.6 48.5 42 1 9.4

|
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An important influence of the grade of consciousness 1s here
perceptible. There is hardly any difference between the nenrotics
and the normals. The power of raising conceptions of remembrance
through observations is thus lessened in accordance to the Joosening
of the uttentiveness. If this phenomenon makes its appearance in
such a degree that the observations remain independent and that
no conceptions of remembrance can be brought inio connection with
them, then desorientation takes place, a phenomenon that is usually
present in acute confusion. The retrograde influence of subsequent
work is liere not so strong by a great deal as was the case in the
preceding test. This is especially apparent from (he following table.

Destruction by subsequent work

Normals ' 3.2
Neurotics 11.3
Melancholics 9 6
Dements 15.2

In the normals the reirograde influence is nearly absent, in the
dements on the other hand it is very clear.

The uncertainty of the psychasthenics is apparent in these tests
in the same way as in_the preceding and again becomes clear if
we compare the percentages incorrect answers mutually and the
nil-answers mutually, of all the answers that were notl correct.

Answers that were not correct

Without subsequent With suBsequent
obstruction obstruction
percentage percentage percentage | percentage
incorrect unanswered incorrect unanswered
Normals 100 0 98.6 1.4
Neurotics 4.7 25.3 73.8 26.2
Melancholics 82.6 17.4 82.0 18.0
Dements 84.6 15.4 81.7 18.3

The number of incorrect answers is smallest in the neurotics,
while here the number of nil-answers is largest.

Inculeation, reproduction and destruction of the observation
of stmple figures.

These tests were not made on the 53 subjects mentioned above,
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but on 41. They were repeated-during five days. The method of
experimenting and of computing the results was the same as that
which has been described more in detail above.

Withoutsubse- | With subse- R

) Number quent light Quent light Destruction
Normals 12 81.1 38.4 52.7
Neurotics 3 66.7 31.2 53.2
Melancholics 6 58.6 25.5 56.7
Dements 10 29.5 11.6 60.4

It is remarkable that the inculcation decreases regularly as the
depression of consciousness becomes larger, and that the dements
especially achieve much less. The destruction of the newly received
impulses increases as the grade of consciousness becomes lower.

By this research it is apparent that the phenomena of acute
confusion are present in the bud in the normal and pathological
subjects examined, and that they increase as the grade of con-
sciousness becomes lower.
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Mathematics. — “On the direct analyses of the linear quantities
belonging to the rotational group in three and four fundamental
variables”. By Prof. J. A. Scuoursy. (Communicated by Prof.
CARDINAAL).

(Communicated in the meeting of September 29, 1917}
Quantities and direct analyses.

By a (geometric or algebraic) quantity existing with a definite
transformation-group we mean, according to F. Krmx, any complex
of numbers (characteristic numbers of the quantily), that is transformed
into tself*) by the transformations of that group. Qnantities only have
any signification and only exist with definite transformation-groups
and may be “disturbed” as such with other groups, whose trans-
formalions do not transform the characieristic numbers into themselves.
They are completely determined by their mode of orientation, i.e.
the mode of transformation of their characteristic numbers. The
variables of the group are called fundamental variables and are the
characteristic numbers of a fundamental element. 1f the group is
the linear homogeneous one in n variables, the simplest quantities
are those, whose characleristic numbers are tiransforined as the
determinants in a matrix of p fundamental elemenis independent of
each other, p=1,..., n. With a homogeneous interpretation of the
fundamental variables they correspond to the linear R, _,-complexes
in R,_;, provided with a number-factor. All the gquantities, whose
characteristic numbers are transtormed in-that way under the trans-
formations of the rotational group, we call linear quantities.

By a direct analysis we mean a system of an addition and some
muliiplications by . means of which we can express the relations
among quanlities of a definite kind left invariant under the frans-
formations of a definite group. Every quantity is in the analysis a
higher complex number. Till recently suchlike analyses were brought
about by choosing for multiplications some characteristically distri-
butive combiuations conspicuous in geometry or mechanics, and
uniting them into a system as well as might be. Owing to the great
namber of existing combinations of this kind arbitrariness could not
fail to arise, and this led to the formulation of many systems, the
adherents of which have been involved in a violent polemic for
these twenty five years.

1) e. g P RLEIN, Elementarmathematik vom hiheren Standpunkte aus. Leipzig
(09) II p. 59.
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Application of KuwiN's Principle of Classification.

The author of this paper observed in 1914?) that it follows from
the application of KumiN's principle of classification to analyses
belonging to definite quantities, that (o a given group of transfor-
mations and given quantities belongs a completely determined
system, which may simply be computed. This was practically done
for n =23, the rotational group, and quantities up to the second
order inclusive. In a more exhaustive investigation contemplating four
different sub-groups of the linear homogeneous group the same was
executed for arbitrary values of n» and for quantities of an arbitrary
degree®). We shall briefly state some results of this investigation
bearing on linear quantities, in particular for n =23 and n =4,
founded on the:

rotational group (a,* + ...+ a,® invariant, det. = -+ 1)
and availing ourselves of the:

orthogonal group (@, + ... 4 a,® invariant, det. —= = 1)
specral-affin. group (in. hom. with det. 4+ 1,
equivoluminar group (lin. hom. with det. =% 1)

linear homogeneous group
for further classification of the quantities existing with the rotational group.

General symmetrical and alternating multiplication.

Three mnlt—iplic.ations of fundamental elements exist with all the
sub-groups of the linear homogeneous group and for all the values
of n, viz. the general, the symmetrical and the alternating one.

The gencral product of p fundamental elements has n/ characte-
ristic numbers, being the products of the characteristic numbers of
the factors. Their mode of transformation is entirely determined by

this definition. We express the product in this manner:

o .
ajoazo....o@p=at....a&. - . . . . (1)

o]
By isomers of a,....a, we mean all the general products that

can be formed by permutation of the factors from a, L a, An
even respectively odd isomer is concomifant with an even resp. odd
permutation. The symmetrical product of a,....a, is the sum total
of all the isomers divided by their number p/:

~ 1 o

a1va2\-/....va,,=a1....a,,=[7§.‘ail....ag,, S 3]

The alternating product is the sum of all the even isomers dimi-

Ly Grundlagen der Vektor- und Affinoranalysis, Leipzig (14).
%) Ueber die Zahlensysteme der rotationalen Gruppe. Nieuw Archief voor Wiskunde
1919.
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nished by the sum of all odd ones divided by p/ and may be

expressed as Cayleyan determinant:
ar. . ..

. \_N

a1 —~az~—~ .. .. »-\.a,,=a1 . A_ a,,=1%
- iil. P a,') l
The alternating product of p fundamental elemenis is a linear
quantity for p <n. For p >n il is zero. A symmetrical product is
never a linear quantity.
The Associative Systems R,
Classifying up to the lin. homog. group inclusive, the system
belonging to the linear quantities is Z?fl, which is an associative system,
entirely determined by the rules:

)

(to be
developed

according
to rows),

g4 e =—¢€4 e =¢€;j ) eiqe;=—¢j¢e:=¢;
e - e =k ; ei+ei=kK

- ) b - } 2
€i€;....€ =¢&j..1 €iej....e =¢e%j..l
e12.n=1 €120 =1

- 4
er=xre’s....eh ], e1qe1=¢141e1=% e1=nrez....e0
[P=1+P=P+1=x-1 ij...,[=1...,¢

n(n—1)
z=(—1) ¢
e,...., e, are the covariant fundamental wunits, i.e. units of a
fundamental element, and €’,,...., €, are the contravariant funda-

mental units belonging to characteristic numbers, (ransforming
themselves contragrediently rvelative to the fundamental variables.
When classifying up to' the equiv. group inel., the system R, is
constituted, being obtained from the preceding one by the identification
I=r
and ‘being entirely determined by the rules:
€ 4 €= —gj- & = e )

e - ei=k 2 T P N RPN (/)

* )
ee; . ... € =¢€j..1
12 . .. .a=1

B=]-I=o—t
Quantities, whose units, apart from an eventual factor I, do not
contain two equal fnndamental units as factors, exist unlike the

1) In a more exhaustive investigalion “Die divekte Analysis zur neueren Relativi-
titstheorie”, Verhand der Kon. Akad. v. Wet. Sectie [ Deel XII N'. 6 we consider
eiej——eiej

= 9;’3’

also not linear quantities and we write ; e = eijand e; -+ 65 =

etc. For more convenience we write here o;+ ¢ = e;;.
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others with the lin. homog. group too, and are called projective
quantities. Then they are of the subd-degree (Dutch : ondertrap, German :
Unterstufe) p, when the number of the factors of the units is p,
p=1,....2n, and we write them ,a. The others are called
orthogonal quantities. All linear quantities may be composed of
projective ones and powers of k.

When classifying up to the special affin. group inclusive, for n
odd the system &, is obtained from the preceding one by the

identification :
=% . . . . ... (5
The sub-degree p, pZn coincides with the sub-degree (n~}-p) and forms
the degree (trap, Stufe) p. For n even no system is feasible here, because
e =—einl, . e e (6)
hence identification of 1 with an ordinary number is impossible.
When classifying up to the orth. group inclusive, K arises out
of R;, by the identification
k== . . . . . ... ....0
The system makes no difference between projective and non-
projective quantities. The sub-degres p, p<n coincides with the
sub-degree (2n—p) and forms the by-degree (neventrap, Nebenstufe) p.
When classifying up to the rotational group inclusive, for n odd,
R}, arises out of R; by the identification
I=k=x . . . . . . .. ... (8
Neither does this system make any difference between projective and
non-projective quantities. The sub-degrees p, (n—p), (n -~ p) and (2n—p)
coincide and constitute the principal degree (hoofdtrap, Hauptstufe) p;

n—1 n
pEn, w’ = Tfor n odd and 7’ = 5 for n even. In all these

3

systems the associative product of dissimilar fundamental units is?

equal to the alternating one.
The sysiems R, are the products of original systems and principal
rows ') according to the general formulae:

n—1

(9)

Y Cf. Grundl. pages 11-—18.
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for n odd and . ER
R n = 022
n S )
R, =, 052 )

for n even, where (); denotes an original system of the order 7 and
H; a principal row of the order 7. But for some divergence in -} and —

(1)

signs the systems'Rg are identical with CLIFFORD’s n-way algebras?).

If none of the units is privileged the choice of the numbers
occurring in the identifications is altogether determined by the
dualities existing in the different groups. There are four altogether,
and we shall call them:

a- p—1a a-f
a- nf1d a-v
a-2m—1a a—-d
a-a fr— &

From the mode of transformation we conclude for the ex1stence
of these dualities as subjoined:

Duality: ] -y l a—-d u—¢&
Group: n even nodd n even n odd n even n odd
linear _ _ _ +
homog. - - -
equivo- + — + — + =+
. for n=2 for n=2 —a-d
lumin. | jdentity identily
special- ) N .
i i = - —¢-f3 | =a~
affin + + identity | identity -3 { 8
+ - + :
orthogon. | —g—y —=a-f identity | identity | identity
rotation | identity | identity | identity | identity | identity | identity | identity

-+ = existing, — = not existing. 2
1) Curronp's systems have been worked out by J. Jouy, Proc. Roy. Ir. Acad.
5 (98) 78—123, A manual of quaternions (05) 3083—3809. He gives geometrical
apphcatlons after the manner of the quaternion-theory withoul decomposition of the
product. A. M'Avray has elaborated this matter as well, Proc. Roy. Soc Edinb.
28 (07) 503—585. These papers do not aim at a foundatlon on the theory of
invariants or a closer investigation of the fundamental groups.
?) The squares of the dualities not founded on contragredience have been indicated
by blacker demarcation. These dualities only exist when % is even.
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The associative Systems Rz and Ry
If we call the unities of the sub-degrees (n—1), (n+1), and 2n—1)
corresponding to e.:e’, e, and e, and the contragrediént unities e,
the rules of calculation for n =3 are:

e = — el i
e = —e'1l
e123 =1
e'123=1 a-g: — -
RL — e’ = €23 a-y: -
—ez3l’ = e’ a-d: -
Ir = It =41 g-g —
enn =k ey =k w—— 1
. e1e’y = e'1-el =—1 cycl, 1,2, 3%.
e1 = |—e3 I= —e I= —¢hs |
€23 = e = €3 = —e1 1
e123 = |[~—e13l= —er3 I= 123 =] - a-f:— (1
Rg|—e1 I= ey = e = €23 “r:—
—ews I= |—¢1 I= —es I= e Z:: ;j_ J
eroal= | —e'193 = —e1s = 1031 =P=—k3=+1cycl. 1,2,?
enn =k ey =—k¥| en =k €1 =—k?
—kes=|e = €23’ = —k el
A kPer =) e = el = k2’23 “'ﬂ’f
& e199= e1es’= =I=ké=— 1,“‘}’11/‘?/;,“— (12)
e11=k e11’ =—k2 a-d=a—B. )
o—&=q—[?
cycl. 1,2, 3.
e123 I=|—es = =—k=41
) —e3’l= ey = —e I= —ez3l a-f:—
R N - e L
e123= — e123l= =] tity.
e =—1] sy =-1 a—¢g: identity.
cycl. 1,2, 3,

1) “Cyel 1,2,3,...;n" means that the numbers 1,...,n may be substituted
by any even permutation of these numbers.
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€1 =eg3 a-3 identity
Ry | era=—1 a-y " (14)
enn =-—1 a-d ” ,
= J-¢& "

cycl. 1,2, 3.

With a non-homogeneous rectangular interpretation of the funda-
mental variables e, is a polar vector, o', an axial bivector, e, an
axial vector, €', a polar bivector?), I a projective, and k an ortho-
gonal “pseudoscalar’’, ke, a polar, and k’e,, an axial versor (qua-
ternion with tensor L) without scalar part. R3 includes and discri-
minates all these quantities, B3 identifies polar’ quantities with axial

ones and I with an ordinary number, Rz 1dentifies a]l the polar
quantities and all the axial ones as well, and k with a common
number, wheveas in Rj only the difference between vectors and
ordinary numbers exists.

The rules of calculation for n =4 are:

g = - e’23¢ 1 ’

ez = —e's |

e = — e’z | B

8234 = e'r I

1234 = e'1234 e

R! el = e'234 G-y

—enl’ = e'34 a=-0:—
—enul’ = e'12 a-&:+

e’ = e'1 * =+ 1

Ir = I =41 cycl. 1,2, 3, 4.

en =k =k

e1-e’1 = e’14e1 =-+1

Y In space these quantities have the symmetry-properties of a line-part with
direction, a plane-part with rotative direction, a line-part with rotative direction
and a plane-part with - and — side, all conceived as parallel removable with
respect to themselves. For » odd it holds good that polar quantities change their
sign, when the -~ direction of all axes is inverted, and that axial ones do not
change their signs.

22
Proceedings Royal Acad. Amsterdam. Vol. XXI.
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[* —— —
g1 = |—iey = |—ier I= e'a3y | )
erz2 = |— €3 I= el2 = |- e3s I
ess = |— ez I= ess = |—en I
g3y = |—ie1 = |-—ie.s [= e1 | a-B: + ) (compli-
' 1234 = e'1234 = 61234 = €'1934 =1 a~v:4-) cated)
CR{ et 1= | —iehas I= | —ien = €234 ' a~d:+ (15)
I — I - a-&g=0a~4d P
—¢€l2 1= €3 = — ¢12 I= €14
_ _ cycl. 1,2, 3, 4.
—e3y I= g2 = |—e3 I= e'12
eoss I= | —ieoss = | —iesss = ¢4
e1234l= e’1o34l= e1e34l= ¢'1284] =PR=ki=+1
e1n =Kk e =k8 enn =k e1n =k3
e12s1 I = e1o3l= =I¢=+1
e23sl=|e1 = —iey = —ier 1 ( "
. — — ., (compli-
—e3 I=]ee = el = — e3¢ | a-f:+ cated)
— — a-y =a— 16
Ry | —er2 I=lexs = ess = — ez I v 8 (16)
— ol a—d: identity
€1 = | €234 = —1Iée1 = —1 €934 a-€" lde‘ntity
e1234 = - 1234 = =l cycl 1,2, 3,4.
e1n =+41 ein =+1

The dualities ¢ -3 are complicated ones in this case, i. e. dualising
leads say for «-g from e; to €';, from €'; to —e;, from — e; to — ey
and from — €'; again to e;. This complicated duality always exists
for n even'), as long as one of the units is not privileged. If one
of the units. is privileged, or, to put it otherwise, if we derive the
system belonging to the group, leaving invariant the quadratic form

— a,® + a1’+ et oapt

we find, when classifying up to the orthogonal groups inclusive,
the system:

1) The complicated duality exists also in GrRAsSMANN's Ausdehnungslehre for
n even.
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€ = el € = e123
er  =-—ep2s €1 =-—eos
€01 =— €1
ez =+ eiz- a—{? e
€0 =-+1 e =+1 _ (17)
_ a-y=o—f
Rjen =—1 ern =-1 ! iden-
' — 035 it
eorzs = 1 eo123 =1 o Y. .
- — e iden-
e I= eo —eo I= eo “TE ity
er I=4e; —e1 I=+e eyel. 1,2, 3.
eo1 I= ess=eos —eon = em=e2s |.
ez I=—e3=eos, I2=—1, —e12l=—eo3=c¢03

with non-complicated duality. This system may also be obtained
from the preceding system R (page 334) by the transition e, —e,,

—ie, — g, etc, e, —e, ie,—> e, etc. It it noteworthy that, for
n =4 the theory of relativity ({or the space-element) exactly corre-
sponds to this more simple system.

For non-homogeneous rectangular interpretation of the fundamental
variables, e,, and e,,, are a vector, vesp. a trivector of the first
kind and Ie,, and Ie,,, are the corresponding quantities of the

second kind '). I is a projective and k an orthogonal pseudoscalar.

R conlains and distinguishes all these quantities. Rj.identifies a
vector resp. a trivector .of the first kind with a trivector vesp. a

vector of the second kind and k with an ordinary number.
fu

Decomposition of the Associative Product.

The associative product of two projective quantities of the sub-
degrees p' and ¢' and the principal degreespandq,p,q¢' <n,p=<yq,
consists in the most general case of p -+ 1 parts, each of which
being a product of a projeclive quantity with a certain number of
factors k. As a distributive combination each of these parts is a
product itself. The number of factors k is called the fransvection-
number of this product and this nomber is at most equal to the
smallest of the numbers p’ and ¢’. We call these products, if p’
and ¢’ are both <or both 2n’, beginning from the lowest and
otherwise beginning from the highest in sequence:

1) The customary distinction for # odd between polar and axial quantities does
not hold good for # even.

22%
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(first) vectorial product x
second ,, » 3

(only for p even) a-th widdle product, a=§-+ 1.

second scalar product 2
first scalar product -

With this notation, which is in agreement with the existing dualities,
products that are identical with the rotational group obtain the same
name and the same symbol. Owing to the identification of I and k
with common numbers the first middle-product is identical with the
product of ordinary numbers mutually and with other uantities,
hence its symbol may be omitted as being customary.

The rule of transvection.
[f each factor is an alternating product of fundamental elements:

pa=ai....ay
eb=b1." by
we can form the combination:

(8, .b1) (@y—1.b2) ... (@y—it1.bi)a1. .. dysbigr.... by
repeat the same for all p / resp. ¢'/ modes of notation of ,a and b
and add the results.

The sum then consists of p'/ ¢'/ terms, equivalent to each
other in groups of {(p'—2)/ (¢'—i)/ i/. This sum divided by (p'—2)/
(@—=2)/ ¢/, or, stated more briefiy, the sum of (p) (¢%) ¢/ arbitrary
different terms, is called the i-fold-combinntion of ,a and ,b. The
i-fold combination is now equal to the product with the transvection-
namber i. The transvection-number of a product being known, we
can hence write it down from memory by this rule.

The free rules for R, and R,.

Hence the free rules for Rj, RS, R3, R) and K} are:

Transv.
0 a X b= quantity of the second sub degree. '
1 a.b= scalar in k resp. 1.
0 a.(Xc)=aXb.c= scalar in I resp. 1.1)
1 aX(bXce)=(.b)c—(a.c)b
1 a(bXc.d)=(a.b)(cXd)+(a.c)(dXb)+(ad) (bXc) (18)
1 @xXbp)X@eXd)y=0.c)(@aXd)—®b.d)@xe)+....
2 (@xXb).(cXd)=(.c)(a.d)—(b.d)(a.c)
2 (@Xp@eXd.e)=(.c)(a.d)e—(b.d)(a.c)e+.... )
3 (@axXb.c)(dXe.f)=(c.d)(b.e)(a.f)+(c.e)(b.f) (a.d)+...

) In alternating products the brackets have been omutted for the association
(-)., so that we write the alternating product of aj,...., a,:

al Xa2><...-><an'><an’+1-an’+2. cea nap-
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The four systems differ only by the different signification attached
to I and k. Rj is the common veclor-analysis, in which no difference
is made between polar quantilies and axial ones and belween vectors
and Dbivectors. Rj3 distinguishes between polar quantities and axial
ones. [n GiBes’s form of this vector-analysis, owing to the groundlessly
introduced 4 sign ine,.e, =— I, the formulae acquire apparently
irregular changes of -+ and — signs and the transvection-rule
becomes ineffectual, so that the formulae stand side by side independ-
ent of one another and can be used only by means of a table

When applied to units the rules for R3 and Rj are:
er Xeg =— ez Xe1 =eg2 e23 X e12 = €31
€1 .6 =—1 eie . erg=—1

RS e . e23=—1 e12 I=leiz=—es cycl. 1=’2,3.
e1 Xeig =—g2 I =+1 -

e1l=le1=—e23

R e Xe,=—¢eXe =¢
8 € . ep=—1
The rules (18) and (20) can be dualised according to all existing
dualities as given in the table.

The free rules for B; and Ry are:

Transv.
numb -

0 a X b= quantity of the second sub-degree
a.b=scalar in k resp. 1

aX{®Xe)=aXxXbXc

a.bXc)=(.b)yc—(a.c)b
a.(bXc¢Xd)=aXbXc.d=scalar in I resp. 1
aX(bXcXd)=(a.b)(cXd)+(a.c)(dXb)+(a.d)(bXc)
a(bXeXd.e)=(a.b) (cXdXe)—(a.c)(dbXdXe)+...
(@aXbp) X(eXd)y=aXbXc.d

@Xb) = (cXdy=(b.c)@Xd)—@®.d)@Xc)+....) ;. (1)
@Xb).cXd)=(@0.c)(a.d)—(b.d)(a.c)
(@Xb).(eXdXe)=(b.c)@XdXe)+...
@Xp)X(eXdXe)=(.c)(a.dye+...
@Xpy(cXdXe.f)=(.c)(a.d)(eXf)+...
@XpXe)yX@XeX)=(c.d)(b.e)@axX+...
@XbpXe).@XeXf)=(.d)(b.e)@a.f)+...
@XpXey@XeXt.gy=(.d)(.e)(a.fHg+...
@XbXc.d) (eXiXg.h)y=(.e)(c.D)(b.g)(a.h)+...

independent of the units used, viz. e, e,, e,, e, or e, e, e, e,.

cycl. 1,2,3. . . (20)

B W WD =N O =D =D —

1) The index 2 under * is for simplicity omitted.
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GWhen applied to units the rules for Rg and for e, e,, e,, e,are

er Xea =—eaXe =ei2 e12 * es3 =eis
\ e; .el =11 e12 . ez =— 1 .
el Xew =es=ies ez . €34 =e34 cycl. 1,2, 3, 4.
el . €12 =e2 er2 X e193.=— €3 dual e —3
€1 . eu=lI eiel=leiz=—exn )
er Xeje3=es3 ei23 X ex34 = — €14 (compli- (22
erl=—1le =emy=—1ie ef2z . ez =—1 cated)
b12>§e34=l ez | =—leass=e1
=-+1

and for e, e,, e, e,:
(See for formula (23) page 339).
The qnantities of an even by-degree form a sub-system with ¢
units and the rales: ’

ip# lp=—l2 % i1 =i3 jt# je=—jox ji=—1i3
i % jo=—jo® ii=]s ji#da=—i2 % j1 =
i1 ii=—1 it ji=+1 cycl. 24
. lii=iil=—j1 ljt=jI=+1i1 1,2, 3.
it Xji =j1 Xi1 =1 ’ (i1=e23)
2=—1 j1=c¢en

But these are the same rules as those for the units e,,e,, e,, i,
te,, 1€, of R3 with ordinary complex coefficients, so that the fre:
rales for R, also hold good for quantities of an even by-degree
of R?, if, instead of X and. we introduce the symbols » an

9a # ob = quantity of the second by-degree

2a X eb=scalar in I and 1

9a X (2b % 2c) =2a % 2b X oc

2a » (2b # 2¢) =(2a X 2b) 2c — (2a X 2¢) 2b

24 (2b % 26 X ad) = (22 X 2b) (2¢ % 2d) +....

(2a = 2b) * (2¢ % 2d) =(2b X 2¢) (22 # 2d) +....

(2a % 2b) X (2¢ % 2d) = (2b X 2¢) (2a X 2d) +....
(2a * 2b) (2¢ = 24 XX 28) = (2b X 2¢) (22 X 2d) 2e +....

(2a % 2b X c)(adx 2¢ X 2f)=(2¢ X d)(2b X 2e)(ea X of)+....
Hence these rules may be written down from memory, as wel
as the others.

(25

The System Ry and the theory of velativity (in an element of
JSour dimensional space).
. Fragments of Ry bhave been used by various authors') on the
theory of relativity. With thewm five products occur and two of thest

) H. Mingowskl, M. ABrRaHAM, A, SoMMERFELD, M. LAug, PH. FrANE.
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and for o, e1, €2, €a:

eo X e1-=— e1 X o = eo1 = — €01 eo X e1 =— e1 X eo = gl =— eol

61 Xee =—ez Xe1=e;z= €1 e1 Xez =—e2 Xe1 = e12 = €12 (
€ .e0 =+1, e .e1=—1 '€o.~60=+1, el .e1=—1

e1 X e23 = €128 = €0 , €0 X €12 = o1z = — €3 e1 X eas=ez3=¢o, €0 X €12 =€o12=—¢€3

€1 . €e12=—¢€2.€1 . €10=—6€0, €0 . €01 =6€1" ;1 .312=—E2, e~1 . -3_10=-6—0, EB. :01=;l
eo.;o=l, er . e1 =1 e .eo=—1I, e . e =—1

eo Xe1 = — e23=— €23 ‘60 X e1 = — ez3 = — €33 _
e1 X e2 = eo3 =— €03 “e1 X e2 = eg3 =— €03

eol=(—[eo=e123=;o —eoI=1leo =e123=eo

er [=-1er =eopa=—e1 —e1 I=1e1 =epes =— &1 .

eor X eag =1 ‘ eo1 X eas=—1

€01 % €02 ==— €12=— €12, €0l ¥ €12 =— €02 = €0z €01 ¥ €02 =— €12 = — €12, €01 % .612 =— €02 = €02
€23 % €31 = eq2=e€l2 €22 ¥ €31 = €12 = €12

eo1 - eo1 =41, e1e.e12=—1 e . eoi=+1, €12 . era=—1

ot I =1eo1 = e23= €23, e1a I =lerz =— egs =;os, — g1 I =— I eo1 = €23 = €23, —erzl=—TFen = —eos=¢ep3

=1 (—Ip=—1
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said products are doubled by introducing the “dual’ bivector (dualer
sechervektor)'). E. Wiwson and G. Luwis have further elaborated
the system and obtain all the products, but three®). All these
conclusions are founded on analogies with the common vector-analysis
and the multiplications form no parts of the associative multiplication.
Therefore the free calculation-rules cannot immediately be pnt down
from memory according to the transvection-rule, but in so far as
they exist they only allow a use by means of a table. The names
scalar and vectorial too, have been divided over the existing
multiplications by analogy and not in agreement to the duvality «—jy.

WiLsON-LEw!S SOMMERFELD, LAUE, efc.
+aX b axX b=gzc [ab], vectorial product
—a. b a. b=c¢ [ab], scalar "
+aXeb aXob=13c Ic=[a 2b*], vect. pr.w. dual bivect.
, +a. 2b a.sh=c — [a 2b], vect. pr.
+ka=+tak al=—1a=3b¥
+ aXsb a.3b=4* i
—a. b aXsb=3¢ |
+2a X 2b 2a X ob = 4c ¥) *;“ I 1¢ = (2a 2b*), scal. pr.w. dual biv.
2a # 2b =g ,E [2a 2b], vector pr. (G. MIE)
i —2a . 2b oa . sh= ¢ ; — (2a 2b), scal. pr.
1 koa=+zak |2al=12a=sb%) - b =+ oa*
u kk=—1 =1 % r
| tka=xtszak| sal=_—Iz;a=b¥
h 3@ . 9b= 3¢
f —3a.2b aaXsh= ¢
+3. b A. b=c¢
saX b=z

) This is not a proper duality, because in the only duality existing with the
orthogonal group, a-y, a bivector e.g. o3 is not dualistic to the “dual”
bivector Tejy, but to e, itself. -

% The connection with an associative CLIFFORD algebra and the absence of
three products has already been briefly pointed out by J. B. Smaw, “The WiLsox
and Lewis Algebra for Four-Dimensional Space” Bull. of the int. ass. for quat,
(18) 2427,
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Therefore this duality does not altain expression, not even in the system
of WiLson and Lewis, though they use units of the kind e,, ®,,0,, €,.

The foregoing table (subjoined p. 340) presents a summary of
the products used by various authors.

The table has been arranged dualistically. Each product has been
indicated by an example. For the muliiplications we used in the
columns 1 and 3 the aunthor’s own notation, but for the quantities
we used all through the notations adopted in this paper. The dual
bivector only has been written with the customary asterisk, while
the commutative scalar of Wirson and Lewis has been indicated
by k. The products marked with #*) do not correspond exactly to
the other systems, because these systems do not contain the non-
commutative scalar I.

The system R contains the existing fragments and all the
existing multiplications and rules, and owing to the free rules of
calculation (21 and 25) it is eminently snited for practical purposes.

The system RS and the elliptic and hyperbolic geometry in three
dimensions.

With a homogeneous interpretation of the fundamental variables
RY corresponds {o a projective geometry in three dimensions, a non
degenerated quadratic surface being invariant. If the units are
selected according to (16) the equation of the absolute surface in
point- resp. plane-coordinates is:

e+ + ) +2"=0

w? +ut 4 u - ur=0
and the geometry is elliptic.*If, on the other hand the unils are
selected according to (17) the geometry is hyperbolic. The free rules
of the system are the same for both cases. To a fundamental
element a point with a number-value corresponds, {o a quantity of
the second degree a sum of linear elements (Dyname) and to a
quantity of the third degree a planar element. The sub-system of
the quantities of the second by-degree is a formi of biquaternions,
which was first mentioned by Crirrorp') as a system of linear
elements in a non-euclidic three-dimensional space. Hence the
system R¢ completes these biquaternions to a system which also
contains points and planar elements.

}) Preliminary sketch of biquaternions. Proe. Lond. Matk. Soc. 4 (78) 381—3895;
Further notes on biguaternions. Coll. Math. Papers (76) 385, 395.

i
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Physics. — “The thermal conductivity of neon.” By S. WEBER.
Suppl. N°. 420 to the Communications from (he Physical
Laboratory at Leiden. (Communicated by Prof. H. KaMERLINGH
ONNES).

(Communicated in the meeting of Febr. 23, 1918).

§ 1. Introduction. In a communication by Prof. H. KamzrLiNeH
Onnes and myself ') attention was drawn to the considerable devia-
tion from the law of corresponding states which shows itselt in the
comparison of the viscosity of argon and helium. This circumstance
brought out the importance of an investigation of the viscosity ot
neon down to the lowest temperatures to be reached with this
substance. In this connection we also planned an investigation
of the heat conductivity of these gases at the lowest temperatures
to which measurements can be extended. Indeed according to the
kinetic theory a very close connection exists between internal friction
and conduction of heat. The two are only distinguished by a factor
(specific heat X numerical factor) and for monatomic gases, where
the theory as regards viscosity is confirmed in many respects, this
factor is independent of the temperature. According to the theory .
of heat conduction and viscosity the same law of dependeunce on the
temperature will therefore be found in the two cases and it is im-
material which of the two quantities is submitted to investigation.
If both are measured, the results afford a means of mutual control.

Personal circumstances allowed me, before the research above
sketched out could be carried oul at Leiden, to undertake the in-
vestigation of the heat conduction of gases in the physical labor-
atory of.the Pmiries Incandescent Lamp Factories. It was there, that
the research contained in this communication was carried out. Only
that part which refers to the lowest temperatures will still have to
be performed at Leiden.

The neon required for this investigation was put at my disposal
by Prof. Kamerrinem ONNEs, who had prepared it from a large
supply of gas-residue rich in neon presented to him by G. Craubpk *);
I am glad to offer him my sincere thanks. According to a commu-

1) Leiden Comm. N 134¢ April 1913.
?) Leiden Comm. NO. 147¢ p. 38.
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nication from Prof. Kamerriven OnNEs the gas probably still con-
tained a trace of nitrogen. For this reason I purified it once
more by GEHLBOFF’S method *).

Whichever of the known experimental methods®) one may choose
for the investigation of the heat conductivity of gases, there are
always two sources of error which will have to be specially con-
sidered : the difference of temperature between the surface und the
gas in contact with it and the convection. With diminution ot
pressure of the gas the influence of the convection becomes smaller,
that of the temperature-drop greater. For the latter, similarly to the
analogous quantity in the internal friction, the slipping along the
wall®), depends on the ratio of the mean free path tothe dimensions
of the apparatus. '

Whereas it has been found impossible to calculate the inflnence
of convection ‘) on the heat conduction, M. Knupsex °) and M. von
SmoLucHOWSKT °) have been able to bring the theoretical investigation
of the temperature-drop to a successful issue. .

In accordance with Kuxpr and WarBure ’) the temperature-drop
A® at the solid wall is defined as follows:

- de
LB =—y. w
where n represents the direction of the normal and © the tempe-
rature. Kunpr and Warsure by their experiments established the
fact, that y is proportional to the mean free path 2.

Von SmoLucrowskl based his first investigation on the kinetic theory
as developed by Crausius and was led to the following approximate
formula, in which I have introduced the accommodation-coefficient as
defined by Knupsex ®).

M= (n

1y, = 0,70 +

a

Later on SsmorucHOwskl made a new calculation of ¢, in this

) Gexpuory, Verh. d. . Physik Ges. 13. (1911) p. 271.

2) Comp. A. WmkewmMany, Handbuch der Physik 1II, 1906 p. 525.

3 H. Kameruiver Onves, C. Dowsmany and S. WeBger. These Proc. XV (2)
p. 1386

4 A. OBerBECK. Wied. Ann. VI[, 1879, p. 291 and L. Lorenz, Wied. Ann.
XIIL. 1881, p. 582.

6 M. Knupsen. Ann. d. Ph. (4) 3 4, (1911), p. 665.

8 M. von SmowvcHowskr, R. v. Smoran. Wien. Sitz. Ber. [2u] 107, (1898), p.
304 ; 108, (1899), p. 5. .

) A. Kunor and E. Warsure. Pogg. Ann. 156, (1875), p. 177.

8) M. K~ubsen. loc. ecit. p. 608.
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case starting from Maxwenl’s hypothesis?), that the molecules may
be looked upon as centres of force which repel each other with a
force proportional to »—5. 1n this way he found
15 2—a

v, = —.
/1 27 2a

(1)

In these formulae 2, represents the mean free path as determined
in Crausivs’s theory, therefore:

5 — aVon 7
4 W
If the mean free path, as found by O. E. Mever’s®) method of

calenlation,
N 4 1 ]
A= ——————— ., . (1M
I/s 0,80967 V5.0 (L)
is introduced into formula 1I, we find:
2—a ‘
v, = 2,82, . ,
- /} 2a ~g

§ 2. In a paper®) which has appeared in the Annalen der Physik and
to which the reader may here be referred, the absolute value of the
heat-conductivity at 0° C., K, has been investigated for a number
of pure gases. In the experimental determinations SCHLEIBRMACHER'S *)
method was used modified in such a manner that it was possible
to eliminate the influence of convection on the heat conduction.
Simultaneously the value of the temperature-drop at 0° C. was
determined for the same gases and an excellent agreement was
found between the experimental value and the one calculated from
formula II, it for a the results obtained by Knupsen‘®) were used.
Amongst the gases experimented on was the same distilled neon,
with which the present experiments were made.

The result of the measurements for neon was

K, = 0.00010890 gr. cal.'grad. sec. cm. and 7/, = 2.391.

For pure neon and bright platinum Kxupsey found a = 0.653, hence :
2—a

7/, = 2.82.

a

) J. Cr. Maxweis. Scientific papers Vol. II, p. 23.

2) 0 E Mever. Kinet. Theorie der Gase p. 111.

It makes no difference whether MEYER's calculation or a different one is followed
here, seeing that the factor which has a different value in the various results
drops out from the final result by the introduction of the pressure.

5) Sopuus WEBER. Ann. d. Ph. (4), 54, (1917), p. 342.

4 A. ScHLEIERMACHER. Wied. Ann. 34, (1888), p. 623.

§ M. Knupsen. Ann. d. Ph,, () 46, (1916), p. 641.

jort e
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The value of K, is certainly accurate to 2°/,, and agrees well
with the measurement made by BanNawitz') on neon, which Professor
Kamerriner Onnes™ had drawn for him from the same vessel from
which he had supplied me with the gas I used.

§ 3.-For the ‘determination of the temperature-coefficient of the heat
conductivity for neon the same apparatus could not be nsed as for
the absolute measurement, and on this account I‘resolved to apply
GorpscamipT’s *) method. This method introduces another important
improvement info ScrLuERMACHER’S method. The loss of heat at the
ends of the wire is eliminated in a simple manner by making measure-
ments first with a long wire and then with a short one of the same
diameter, and heating the wire in both cases with the same electric
current. The difference between the amount of energy developed in
the short and in the long wire gives the energy which is lost
radially by a wire of the same section and of a length equal (o the
difference of the two experimental wires.

The first apparatus which was used in testing GorLp-
scaMIDT’S method 1is represented in the figure, the con-
stants and the dimensions being collected in table I ?%).
The figure shows that the thin platinum wires are
stretched along the axis of the glass tubes by means of
platinum springs.

In the -measarements the two wires and a normal
resistance of 1 2 are connecied up in series. When the
condition has become stationary, the potential-differences
between the terminals of the long and the short wires
E; and By are measuved, as also the difference at the
terminals of the normal resistance I. The poiential
differences were measured with a compensation-apparatus
by Worrr which is free of thermo-effects, possible thermo-
forces outside the apparatus being eliminated by com-

]
L

mutation.
From the resistance the mean temperatures of the platinum wires
f; and f are calculated. Using these results the following expressions

3y E. BAnyAwiITZ. Ann. d. Ph. (4), 48, (1915), p. H77.

% R. Gorposcumior, Physik. ZS. 12 (1911), p. 418.

8) The value given here for 27, was found by weighing, since it is only used
in the correction for the temperature-drop and nol in the calibration itself, as this
was carried out with almospheric air (see further on).
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TABLE 1.

App. a App. b -~
Diameter of the platinum wire 2ry = 0.005246 cm | 2r = 0.005246 cm
Length ,, ” » l =-11.843 n R =3.138 »
Electric resistance at 0°C of the platinum wire Wy = 54187 |w, =1.4481 ()
Temperature-coefficient of Wy, «o—1n0 ®g—100 = 0.003888 Zg-100 = 0.003888
Conductivity of the platinum wire ’, = 0.1649 r =0.1649
Diameter of the glass tube 2R = 149cm |2R =1449cm
4-‘%—’, where 4 = section of the platinum wire 441i = 1.2039.10—6 4111% = 4.5437.10—8

for L and S may be computed:

1 1
L:0.2388.E1.[.Z—-— and §=10.2888. I I.k~——

7] . b

If the loss of heat at the ends could be neglected, L and S would
represent the radial loss of heat per degree and per cm for the
long and for the short wire respectively (in a surrounding of 0° C.).
In that case L and S as well as the quantity D defined below
would all be equal.

Attending now to the difference in length of the two platinum
wires we may according {o GoLpscaMiDr assume, that the heat given
off by this portion of the wire is not influenced by the heat con-
duction of the terminals. If D represents the loss of heat per unit
length of a wire of the same section in an infinite cylinder of the
same shape with a temperature-difference of one degree with the
outside at 0° C., and if the loss of heat may be taken proportional
to the temperature difference, ¢, being the temperature-difference of
the uniformly heated wire with the surroundings, we have

Wt (W — 1
=2 a"("Wf_V_V;o) “) and D= 0.2388 (Er—Ey). 1 =

From the value of D the mean conductivity K on the way
which the heat follows between the wire and the wall may be cal-
culated according to the relation ').

2
D= & N 114

1) M. von SmorucHowski W. A. 64, (1898) p. 101.
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where y is the coefficient of the temperature-drop at the wall.
Using this apparatus 1 have made a few experiments to test
GoLpscHMIDT’S theory.
In a set of measurements with the appavatus filled with dry pure
carbon dioxide the temperature of the bath being (° C. the following
values amongst others were found for t[: tr, LS, ts and D.

p=21.61cm ¢ =5.409 tr —=4.630 ta=—b.693
L =418.0.10—7 § =-485.2.10—7 D—3891.6.10~7
. Ly =38919.10—-7 8§, =3891.9.10—7

p==628cm ¢ —=5.4538 tr =—4.669 ta==5.739
L =409.7.10—%" S ==481.1 10—7" D=388.5.10—7
Ly, =—388.7.10-7 §.,,, =—=3888.2.10 7 _

These measurements show very clearly that entirely erroneous
values may be arvived at for K, if the loss of heat along the ends
of the wire is not taken into account.

[t can now be shown by means of a simple calculation that the
value found for L or & after having been corrected for the heat
carried away along the ends agrees with the value of D. The
quantities of heat @, and @, which in the stationary condition are
conducted away through the surface and the ends of an electrically
heated wire respectively (apparatus a) are given by ') ﬁ

Q, Q, 2Tge Q z?

——=c¢{2*+m?, = and =¢f m*—

t—t t—t 1 t—1
’ ’ 1——Tox ’ 1-—~Tga
© T

At

and m* = 0-2388 « W,.I°, = being an auxiliary

¢
quantity which is determined by the third equation.

In these equations @ is the entire quantity of heat developed in
the wire (app.a, Q=L .[. ), t the mean temperature of the wire,
f, the temperature of the glass wall, / the currentand W,, 4,z and/
the resistance at £, the section, the conductivity and the length of
the heated wire respectively ; Tga stands for the hyperbolic tangent of .

When the values found for LI and S# are corrected in this
manner, the figures given under L, and Seorr are obtained; they
are seen to agree very well with D. In this way it appears, that
the application of GoLpscHMIDT’S method is allowable, if the dimen-
sions of the apparatus are chosen correctly.

where ¢ =

1) §. Wesrn. Ann. d. Ph. (4) b4, (1917), p. 169.
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§ 4. In the determinations with neon an apparatus was used the
dimensions of which are contained in table 2.

In order to be able to use the apparatus at the temperatures of
liguid air it 1s necessary to compare its resistance with the resistance
of a platinum thermometer, whose resistance is known. If this
thermometer is calibrated, so that from its resistance the absolute
temperature on the Kelvin-scale can be deduced, it becomes possible
from the resistance of the conduction-apparatus to determine the
corresponding absolute temperature. For this purpose [ have chosen
the platinum thermometer Pt the standard thermometer of the
cryogenic laboratory at Leiden. For this thermometer there is a
table ') which gives the relation between W, or properly speaking

-~

w
e and the absolute temperature.
¢

TABLE 2
App. 1 App. 2.
2ry = (.005240 cm 2ry> = 0.005240 cm
I = 9,992 " k = 3.373 "
2R = 1526 ” 2R- = 1526 ”
Wo = 4.5762 §} Wy = 1.5416 {1
, og—100 = 0.003891 100 = 0.003891

1 have carried out the comparison in the following manner: in
a closed cryostat, provided with a stirring arrangement and filled
with pure liquid oxygen, the double conduction-apparatus and an
oxygen-thermometer according to Stock *) are mounted side by side.
When the condition had become stationary, the resistance of the
apparatus w’ — W —w was measured and simultaneously the vapour-
pressure of the oxygen-thermometer was read. The following
corresponding values were obtained in this way.

Vapour-pressure of oxygen p = 742.35 mm and w’ =0.75828 2.

From p according to Kameruing® OnnNEs and Braax’) the absolute
temperature 7' of the oxygen-bath is calculated by means of the
following relation which holds from 83 and 91° X:

1) G. Horsr. Leiden Comm. NO°. 148a.

%) A. Stock and C. Nigrsen. Ber. d. D. Chem! Ges. 39 (11), 1906, p. 2066.

3) H. KamerLingg Onnes and C. Braax. Leiden Comm. N 107a, comp.
Howrst loec. cit.
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. 369.83
- 6.98460 —logp '

This gives 7'= 89.896° K.

From the table for P¢; the following mutually corresponding
values are found:

w' w
T w, (WZ)P tr
89.896 0.24988 0.25079
The two platinum-thermometers can now be compared at each

temperatnre with an accuracy sufficient for our purpose’) by means
of Nernst’s formula

w w' _ 1 w
7)o~ o =<(1 =7 ),

Introducing the above value in this formula we find ¢« = 0.001221.
Using this value for a it is now possible to calculate the value

sl

0

w w'
of | — corresponding to each value of —-asmeasured andhence
Wo Pf’[ 2

by means of the table for Pf; to determine the temperature on the
Kelvin-scale. .

The apparatus is then placed in a bath of finely ground ice and
distilled water and by means of dry air free of carbon dioxide and

R 1 1
of pure neon the denominator in eq. IV, n —-—{—y(——}——), is
o r, R

determined, which gives rﬁ, whereas R is found by calibrating the
0 .
tube with mercury. When these measurements are completed, the
apparatus is put in a bath of solid carbon dioxide and benzene, and
new measurements with neon are made; this time, however, the
measurements are conducted in the following order: first the resistance
W —w is measured without the wire being heated, whereby the
temperature of the bath is determined; then the conductivity
measurements are made, first at higher pressure, then at lower
pressure and again at the higher pressure, as shown in the tables,
and finally the resistance of the wire is determined once more
without heating.
The temperature of the bath was found not to bave changed
during the measurements. ]
The correction for radiation is calculated from the dimensions of

1) See G. HowsT Leiden Comm. N° 148 and P. G. Carh, H. KAMERLINGH ONNES

and J. M. BureeERs Leiden Comm. N¢ 152¢.
23

Proceedings Royal Acad. Amsterdam. Vol. XX|

- 355 -



350

the apparatus and the formula for the complete radiation of platinum *).
The corrections as used were as follows: Ry =— 1.70. 10-¢,
Ro - 0.48.10—6, R_73 =0.13.10-¢ and R__lgg = 000510_6, R being :
the radiation per degree. .

The measurements are collected in the following tables.

In these tables column I gives the pressure ., in ems Hy;
reduced to 0° C. and 45° latitude; column II At, the temperature-
difference between the central portion of the long wire and the bath ;
column I D= (—l_%&, where  is the difference of the quantities
of heat given off by the two wires expressed in gr.cal./sec.; column

Atm. air at 0° C.

At D D IAt: 17.50 D /corr.

28.355 | 17.428 | 0 0004358 | 0.0004353 | 0.0004367

13.069 | 17.495 4342 4337 4367
3.010 | 17.860 4258 4251 4378
Neon at 0°C.
pcm at D D’At =9 20 D/corr.

) 33.791 9.029 | 0.0008165 | 0.0008162 | 0.0008222
20.182 9.077 8122 8118 8219
10.181 9.192 8023 8018 8215
5.729 9.367 7818 7812 8215

1.804 | 10 252 7220 7206 8160
0.709 | 12.726 5868 5840 7900
0.217 | 23.109 3349 3292 7078

) In the paper quoted above (Ann. d. Phys. (4) 54, 1917, p. 330), where the
complete radiation was investigated for platinum and tungsten, it was pointed out,
that the correction for radiation cannol be determined by a separate experiment
in vacuo. This is due to the fact thal the distribution of temperature along the
heated wire is quite different in vacuo than in a gas.
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Neon at 99°.81 C,

P cm at D D ,At=]2.00 4 corr.
37.454 9.945 | 0.0009965 0.0009971 | 0.00010077
20.225 10.044 - 9867 9872 10067

7.473 10.389 9547 9547 10057

4.290 | 13.795 9241 9205 10064

1.718 | 15.772 8123 8072 9952

0.673 | 21.362 6081 6000 9570

9,329 13.136 9690 ) 9661 10075
21.262 12.830 9914 9888 10074
38.973 12.721 9998 9973 10072

Neon at 194°.72 K.
(Solid carbon dioxide in benzene).

P cm at b D IA 1=8.02 D 'corr.
39.915 7.934 0.0006584 | 0.0006583 0.0006608
21.649 7.966 6557 6556 6603
13.453 8.000 6530 6529 6606

6.844 8.102 6451 6450 6597

5.046 8.169 6398 6397 6597
40.167 7.944 6576 6575 6600

Neon at 99°,0 K.
(Liquid oxygen).

? cm at D D lAt=3.54 % ’corr.
32.342 | 3.481 0.0003740 | 0.0003740 | 0.0003746
20,543 3.480 3741 3741 3751
10.309 3.510 3710 3710 3718

5.121 3.514 3706 3706 3746

2.642 | 3.558 3663 3663 3739

0.826 3.728 3506 3505 3739
32.165 3.490 3730 3730 3131
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IV D’=D—R, where E is the radiation (as A¢ is not quite
constant, D — R has been reduced to the same temperature-difference)
and column V D', arising by the correction of D’ for the
temperature-drop at the wall. The latter correction is made by the
formula (comp. formula IV on p. 346):

-1 1
. . v R r
Disory, =D (1 + '—1") y Where y, = °‘7’Pcm-
Pen R
in—
r

With the differences of temperature which are used we may
assume with sufficient accuracy, that K corresponds to the temper-

Ot
ature ¢, + E; hence we have:

Atm. air: T=2731 + 8.75 D'ogrr. = 0.0004371
neon: , = 273.1 + 4.60 . = 0.0008218

., ., ==278.1 + 99.81 4 6.00 w  ==0.0010071

w o == 194,72 + 4.01 w = 0.0006602

W = 89.90 + 1.77 w = 0.0003740

Hence taking the temperature-coefficient of the conductivity for
air as 0.0033, the following results are obtained:
Atm. air: I'=273.1 D'eo; = 00004248
neon: I'= ,, w = 00008135

For the conductivity at 0° C.?) of dry air free of carbon dioxide
I have found XK, ==0.00005680; using this value K', for neon is
found as follows:

K -—81—3E 0,00005680 = 0.0001087 gr-cal/
0_4248. ’ = V. sec grad.cm.

in good agreement with my previous determination K,’ = 1089.10—".

This result shows that the {wo calibrations of the apparatus are
in good mutual agreement; the following results are now obtained

for neon:

T K’ K 001c(S) K o1 (B=5)

273.09 4-105.8t1 | 0.0001344 | 0.0001344 | 0.0001364

273.09 ° 1087 1087 1087
273.09 — 74.37 0879 0869 0869
273.09 — 181.43 0499 0468 0505

1) S. WeBER. Ann. d. Phys. (4) 54, (1917), p. 352.
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Columm I contains the absolute temperature 7; column II the
conductivity found X’; column IIT the values computed by means
of SurHERLAND’s formula. The value of C in this formula, 57.5 for
neon, was derived from the first two measurements ?).

It appears, therefore, that SurmrrLAND’s formmula cannot represent
the dependence on the temperature of ihe conductivity for neon at
the lower temperatures. That SvraERLAND’S formula is not satisfactory
at low temperatures, was proved before by investigations on the

1) In connection with the value of C and the high viscosity of neon n, = 2981 . 10~7,
it is of interest to calculate the diameter o of the neon-molecule. Using Crapman’s
formula {(London Phil. Trans A. Vol. 216, 1916, p. 279)

c.0

n=10491 Q1 + &). . o
V2_nc’.n(1+—g~,>

where the small correction eq is determined by C, we find, with » = 2.77. 109,
o =2.32.10-8.

An approximate value of ¢ may also be obtained by means of the critical
constants. From VAN DER WaaLs’s formulae in the notation of H. KaMERLINGH
Oxnes and W. H Keesom: Die Zustandsgleichung, Comm. Supplem. N°. 23,
Fussn. 284 it follows, using

- psz,g—w—’tand R, . Ty = K, Zuf

b wf v bwf
K, Ty
: buf=—==. Ryr. — .
that wf K' wf o
. K, . ,
According to vAN DER WaaLs (see Fussn. 459 l.c.,)—K- is approximately equal
3
to the theoretical value '/, hence:
R T
bw/:—.--éz%:rr. N.g?

Using N =62.10% and by means of the critical constants p; = 26 86 (intern.
atm.) and 7= 44°.75 K. (H. KaverLiveH ONNES, C. A. CRoMMELIN and P. G. CarH:
Comm. N°. 151d) we find o = 2.36.10-8,

If we use the isothermals for neon at 0° and 20° (. (H. KAMERLINGH ONNES
and C. A. CroMMELIN Comm. NO. 147d) and assume, that ¢ in vaN DER WAALS's
equation of state is independent of the temperature, one finds (comp. U. KAMERLINGH
OrxnEs, Comm. NO. 102a p. 5)
bw —_ Bno_B [

20R
From the value of the virinl-coefficient C4 at 0° C. one obtains

C
by = [/8/5 2 = 0:00136

Using the former of the two values the result is ¢ == 2.90. 10—8.

==0-001398.

-
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viscosity of helium and hydrogen (comp. H KamerLines Onnes and
Soprus Wuskr; Comm. N° 134). | have therefore fried, whether an
improvement is not brought about — as appeared to be the case in
T\4+4
ll £
m)
As shown by column IV 3=135 gives” a very good agreement.
According to Maxwerl’s theory in a more general foim '), where
the forces between the molecules are taken proportional to r—*, we
should have to take for neon 23 4+ 1=mn=11.
The measurements give for the temperature-coefficient between
0° and 100°C., Bo_igo, 0.00226; this agrees very closely with the
temperature-coefficient of the viscosity, for which Rankive®)found 0.00225.

K
Comm. N°. 134 — by using a formula of the form [——:(

Lo

§ 5. From the experimental values of D' and the corresponding
pressures p the values of D'y, and y, can be determined according

to the relation D', :D'(‘l —{—Y—‘). In this manner the following
p

results for y, were obtained:

r n  Meale Neale,
384.90 0.400 0.363 0 408
282.29 0.250 0.250 .0.250
202 7 0.157 0.168 0.154

93.4 0.055 0.0676 0.055

The values found for D', are given in the 5t column in
the tables on p. 350 and p 351. In the tables for 0° and
100° C. D',,,. will be found to become too small below about
p =4 cm.; this is quite intelligible seeing that the theory about the
temperature-drop is derived under the assumption that the mean
free path 2 is small compared to the dimensions of the apparatus.
For neon at 0° C. and p=4 em. A2=0,000375 em., 2r, the
diameter of the experimental wire being 0,0005240 em., hence
?:1,4. It appears therefore that the theory for the temperature-

drop given by Kuspr, Warsure and Smorucmrowskr is applicable

1) 8. CuapPman. London Phil. Trans. A. 211, (1912), p. 433 and 216, (1916),
p- 279.
3 A. O. Ranking. Physik. Z. S, 11 (1910) p. 497 and 745.
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over a wider range than might have been expected according to
the kinetic theory.
R

n —

0.250
68.44°

Ty

at 9°.2 C.

It follows from ¥. p_—_—l 7 .7; that y.p=

R r,
when the pressure p is measured in dyne/cm’ and 2 n cms.
we find according to O. E. Meyer (p. 344) from the viscosity

T\12
p)u=18.93.(§;>. This gives at the temperature of the wire

i =9°2 C,
7y = 2.46
Hence with a = 0.653

2—a

2a

The agreement 1s not so close as it was with the value found
previously, but the deviation is not larger than can be explained
by accidental errors.

It appears from the table that y, changes with the temperature;
this was to be expected as 2 depends on the temperature according

1) =2.38.

TN\12
to the relation 2 =2, (}—) . Calculating the values of y, which have

0
to be expected at the various temperatures, the results y, ca., given

in column 3 are obtained. On comparing these with the experimental
results the latter are seen to change more rapidly with the tem-
perature. This can be explained by the assumption that the accom-
modation-coefficient @ is not independent of the temperature. The
same assumption is also tendered probable by the results for hydrogen;
Knupsen ') found that in this case @ had a negative temperature-
coefficient —0.001. Assuming the value —0.00076 for the temperature-
coefficient of a for neon we find for y, the results given in
column 4 under v,cq -

§ 6. By the aid of the principle of “similar motions’ as given by
H. KamernineE OxNEs?) a comparison may be made between the
heat conductivity of different substances for which the conduction
through the molecules themselves may be disregarded. It is found
that at equal reduced temperalures we must have:

1) M. Knupsex. Ann. d. P'i. (4) 34, (1911) p. 682.
% H. KaMERLINGH OnNEs. Verh. Kon. Akad., 21, p 22, 1881.

@
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K,

1

K,

2
M, %.P,%,I.Tﬁ M:*‘f.Pf,g TZ}
where P; and 7% are the critical constants.

When a comparison is made in this manner by means of the
experimental results between the conductivity of helium and argon
with that of neon?), it seems in the mean tiine as if the reduced
heat conductivity of neon changes in a different manner with the
reduced temperature from that of argon and helium; in order to
obtain more evidence on this point it becomes even more important
than before, also in view of J. J. THomsoN’s theory (that neon would
consist of two isotopic elements with molecular weights of 20 and
22 respectively), to determine the conductivity of neon at reduced
oxygen- and neon-temperatures and that of helium at reduced
hydrogen-temperatures; as was mentioned in the beginning of this
paper, it is the intention to carry out this research in the cryogenic
laboratory at Leiden.

In conclusion I am happy to express my sincere thanks to
Dr. Ir. G. L. F. Pumps for his kindness through which 1 was
enabled to carry out this research.

I also wish to thank Mr. H J. Micmiersen for the excellent inanner
in which he assisted me in the measurements and the calculations.

Physical Laboratory
of the Philips Incandescent Lamp Factories.

1) S. WeBER. Ann. d. Ph. (4) 54, (1917), p. 460.
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Physics. — “On the shape of small drops and gas-bubbles’. By
J. E. VerscarreLT. Supplement N°. 42¢ to the Communications
from the Physical Laboratory at Leiden. (Communicated by
Prof. H. KaMerLINgE ONNES).

(Communicated in the meeting of June 29, 1918).

§ 1. It is well known that the meridian-section of a liquid drop
or gas-bubble (which we shall suppose to be bodies of revolution)
cannot be represented by a finite equation by means of known
functions. The differential equation

Y
to the section
1 . 1 1 zy' Kb+
M RUR sa\vig) T )
- S g has as a first integral the equation
] 9™ _ A
A X @ sin p =} kha' ~{——27ru, . (@)
y
, where ¢ represents the angle which
Y A x the tangent forms with the z-axis

Fig 1. (fig. 1; OY is the axis of revolution)

x

and v =2« f zydx?), but the computation of u and consequently

—~
o

Y) In this equation % stands for the expression &’—L—‘:O_—FJE, o being the surface
tension, w;—u, the difference of the densities below and above the surface in its
top, ¢ the acceleration of gravity; % is therefore positive or negative according as
the liquid is below the top of the surface, as with a drop resling on a plane, or
above it, as with a hanging drop; y is the height of a point of the surface above

"

- 2
the tangent plane at the top. 7 is determined by kh = ik R, being the radius

]
of curvature at the top; Ry” will be reckoned as positive when the surface is

hollow upwards, negative in the opposite case.
3) y is evidently the volume of the body which is originated by rotation of the
surface 04.4°0 (fig. 1) about-the y-axis. Equation (2) may be written in the form

2nxe sin p = (u,—u,)9 (Az*h+v), . . N )
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the further integn’atidn of the differential equation can only be carried
ont by successive approximations or a development in series.

In the case that the drop or bubble deviates little from the spher-
ical shape, y is small compared to A'). In first approximation y
may thus be neglected by the side of A, i.e. we may puty =0;asa
second a}‘)proximation a circular meridian section is then obtained;
if the expression for y corresponding to this as a function of z is
substituted in w, a first deviation from the sphere is found as a
third approximation, etc. ?).

which- is also found directly, when, for instance by applying the so called “weight-
method”, the rise in a capillary tube is calculated. The contradiction found by
A. Fereuson (Phil. Mag., (6), 28, (1914) p. 128) between the result of the integration
of the differential equation and that of the application of the weight-method is
merely due to an error of computation in the approximation of equation (2), owing
to which Ferguson’s formula (7) is incorrect.

Equation (2) can also be written as follows

k
ssnp=4%+k*h+y)—=—nv. . . . . - (2)
- 2n
where © = 7 2% —u represents the volume arising hy the rotation of the surface
044"0. 2) gives: N

2racsin p = (,—u,) g2* (b + y) — (,—1,) gv, . - (3)

which expresses for instance, that the resultant of the forces acting along the
edge of a section of a hanging drop makes équilibrium with the hydrostatic pressure
on the section and the weight of the portion below it, in other words the surface
tension does not balance the weight of a hanging drop alone, a fact which may
also be derived from a simple consideration of the equilibrium (cf. on this point
Tu. Lomnstew, Ann. d. Phys., (4) 20 (1906) p. 238).

1y Hence R, is also small compared to & or to that is kR,? is a small

2
PR’
number.

%) Cf. for instance” A. WinkeLmann, Handb. der Physik, 2e Aufl.1(2), 1143—
1144, 1908.

Putting y = Ry—V Ry2—x2+2, where 2 is considered infinitely small as compared
!

y

to y, and supposing that 2'is also infinitely small compared to %/, sin p = Ve

+¥
may be developed in a series, which gives, if 2, represents the first approximation
of 2:

. R, R, 4 VR —a*
2, =Ltkbk——a——— L kR + } kR, log o ZRO 2,
]

V'R —a?
as is also found by IPrcuson (loc. cit.) although in a somewhat circuitous manner.
This expression, however, does not hold near x = Ry, as 2z is there no longer
infinitely small with respect to y’, but of the same order ol magnitude (viz. of
the order (kR,*—*; this fact has been overlooked by I'sreuson (loc. cit.).

- 364 -



359 o

§ 2. The introduction of polar codrdinates, choosing as origin the
centre of curvature at the top M (fig. 1), gives the advantage that

e 4
there is no discontinuity at ¢ — 7 in that case

x=psnd and y=R,—pcosd. , . . . (4
and the equation (1) becomes )
osind—qgloord | 07200007 2 L p  esd). . (5)
o sin 9 (@*+0") ~ (*+0")Vk R,
If we now put
o=R,(1—v) and r=v,+7r,+r,+.... . . . 4)
where ,, 7, etc. represent the successive approximnations to the
infinitely small quantity ¥, we can, as long as v and ¢’ ave infinitely
small, separate equation (9) into a series of other ones, the first of -
which being
" sin 941, cos P+ 2r sin P==kR* (1 — cos ) sind; . . ()

hence )
T /1 9
T, =} kR’ [(l—cos P+ 2 cos 9 log ( +2603 )], N ()]

an expression which remains valid from ¢ =1{) to ¥ =z throughout.

§ 3. The result of the third approximation is as follows
u=}nR*(1 — cos 9)* (1 +2 cos ¥) + kR, (1 — cos 3)* cos Y-

1 D]
4 kR, sin® 9 (1—2 cos I +2 cos* I) log (—j—;ﬁ——) . (N
and
v=47xR* (1 — cos 9) 2+ cos 9) — & kR (1 — cos 9)* (2 + cos 9) —
1 (¢
— 47k ® sint 9 log (-——+;os 1)) . 7)

§ 4. Between the angles 7 and ¢ the following relation holds: -

i s ', <
Q.5in ) —9' ros I

—=sind +1eosd +...;
VQ""‘QI’

1) In order to integrate these equations we have to bear in mind, thal

sin ff =

d
cos & (x" sin & + t' cos & + 2rsin ) =73 [sin & (xstn 9 7' cos 3)]
)

L

and -

) d
rsind + T cos ¥ = cos® {9-—( i )

diy \ cos Y
The integration does not offer any special difficullies, but the calculations are
long, that of 7, being already very laborious; for that reason we have confined
ourselves to =,.
It is easily seen, that Ryry =2 cos 5.
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putting therefore
p=84%. . . . . .. .. (8
we find in first approximation (for 4 < x)

| — 9 1 7
W=7, = L kR, sin ¢ [ITZZ = —2log (Jff’i-)] . (8)

Hence, as long as ¢ is not too near a, equation (2) in connection
with (7) gives

(L1 — cos ip)(1 42 cos 1p)

v=R,sinp— L} kRS sinp

1 3-cosp
1 —
— g KR, sing (TF%:%); (I—38cos p + 6 cos® ¢ + 8 cos® ) —
1 -
—%k’Roﬁsinwlog(lj-—zc—oi(—p-) @

§ 5. In fig. 2 OAB represents
the meridian section of the capillary
surface for £>0, OA’B’ gives the
section for k£ <C0; both have been
drawn for a positive R, (for R, nega-
tive the diagram must be turned
upside down about the z-axis); the
dotted curve between the two is the
circle with radius R, (corresponding
to £=0). In both cases x goes through
a maximum (in 4 and 4’ respectively),
but, whereas in the first case the
curvature keeps the same sign all the
way, so that y passes a maximum

X (in B), # a minimum ete. (§ 7), the
curve in the second case has a point
of inflection (in B’), beyond which

o

Fig. 2.

& becomes minimum ete.
T,
The maximum value of z is obtained by putting (p=2— in (9),
the result being:

24(@4) = B, — $ kR, + g5 BB} (6 log2—1), . . (10)

1) This degree of approximation (the 4th) is one higher than what is obtained
by simply using the relation (4).
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—LER(2log2 1)} . . (10)

o] ]

‘ 1 4
P 4(94) —.:.—i — Pya=

and .
yalyg)=R,—R,wa=R, —L+kR,*(2log2 + 1) . (10"

§ 6. From the equations (6) and (8’) it follows that in the neigh-
bourhood of & = =, putting 9 = 7 — ¢,

1

. .
T :——-%/cRo’(log—Z—— - 1) and T,zzgkRn"i‘? .. (1)

in order’ therefore that these, equations may still be valid in that
region, seeing that z’, has to be small, it is necessary, that & must
remain large with respect to £Z,*. This is still the casein B, where
y has its maximum, for (comp. 4, 6 and 11)

:
y=2Ro—-}Ros’+§kRo’(logZ—-—l),. . ..oarn

—

d
so that it follows from ;:—. 0 that
&

ep==VER} yp= 2R, [1 + + kR, log 3 kR,") — L kR*] . (12)
and, also to a third approximation,
zp=Rep=RV$kR* . - . . - . (12')

These coordinates are only real, when % is positive.
If % is negative, ¢ has a maximum in B’ (fig. 1) corresponding
dp awp

to a value of & which is determined by 0= d—‘/:1+¢_1_‘} (see eq.
[} {

8); this gives: ”
ep = VRERF7); hence yu = 28, [1 -+ 4 R, log (—§ kE,)] - (13)

op =R,V —3kR® and @p=n—2V _3kR*. . (13)

§ 7. Tt is possible to go a step further in the analysis of the
meridian section of the capillary surface. Close to ¥ = n the curve
has a sharp bend (fig. 3): BCD with a doable point E for &> 0,

d
1} Obviously this expression is also found by putting Zl:ﬁ‘l =0,

o . d*y 1 d% ,
) ep’ may also be found by putting O=d_;c—’ = R—E(?E_" (see eq. 11/).
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B’'C’'D’ with two points of inflexion B’ and D’ for %k < 0;
the dotted line (two circular arcs) represents
the transition between the two cases for
k=0.

In that region the equation to the surface
may be written in the form

ot g =klctn . )

where hg=~/A -+ y¢, yc being the ordinate
of C (or C", and % =y—y¢. In the region
under consideration, however, 7 is small
compared to R,, so that in second approxi-
mation 7 .may be neglected with respect
to h, and thqrefore with the same degree of accuracy to which hitherto
the deviation from the circular shape was calculated we may write:
Rit+-Ri2=klzc:constant R £ Y]
In third approximation BCD 1s thus a part of the curve which
was called nodoid by Prarmau, B’C’D’ a part of an onduloid.
The equations of these eurves are known '); but in our case they

Fig. 3.

2
may be materially simplified. Putting tho = ;2) the first integral of

(14) in the case of the nodoid (sin ¢ = O for .oz*:xg) will be

r& sin @ = ¥*—ax g . coL . .(19)
If &, and &, (=) are the maximum- and xmmmum-va,lues of =
corresponding to st =1 and sin p = —1 we have approximately

since xp is very small with respect to r, (see eq. 12)

5 2
“B_ZR} . . (16)
o 3

Further 1t follows from (15), as long as « is small with respect to », *)

=y = R, ?) x, of ¢ =

& 2_—. 2 1 T
a + l/w '02 . M l/mg —“-71'2,. . . (17)

* 0 =wa,log 5
[

T,

1) See for instance WINKELMANN, loc. cit.,, p 1150.
%) In first approximation 7y = Ry; in second approximation kh¢ ==k (k4 2R,) =
2 9
[? + kR, = (1 -~ kRy), so that vy = Ry (L—FkRy?).
0

§) Here 2, belongs to the nodoid and has thus not the same meaning as x4
in § 6.
4) Sinee in that case
dn zgt—a? ap!—at Ru,—a?
daz l/,.ﬂzl,v-z —(ep*— ‘,v!)l - l/’l',’ﬂa" —ag Ru l/w:_wyx
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This gives for @ = ap
nB=—+kR}log 3 kR*)—L+ER>. . . . . (18)
whence .
ye=ys—np=2R, + } kB log (4 kR — £ 4R, Y, . (16)
and similarly, if @p, yp and the codrdinates of D,
gp=ap=2R, l/g-_/cﬁf yp=y¢—nB=2R, -+ kR log (} kR,*) (19)

§ 8. In the case of the ondunloid, where sin ¢ goes ihrough a
“minimum in B’, we have
rowsmp=a4+ap*. . . . . . . (20)

The maximum- and minimum-valnes of &z (sin ¢ = 1) are now
approximately

. a;,:a:(;:‘R =—2kR} . . . (2]

Moreover in that case

2, =R

rVemel L T L @

+ ==, log —————%————~ + 0 zV at—a?
whence .
N = — LR log(— kR + L AR . . . . (23)

yo=yp—up = 2R, + 2 kR log (— LkR) -— L kR, . (21
ap =R,V —ZkR} , yp =2R, + kR log(— L+ kR,") — 2 kR,* (24)

§ 9. Tt follows from (7’) that the volume of a drop from the top
to the horizontal plane passing through B or B’ (9 =z —39), in
second approximation is given by

v=4aR(1—kRY . . . . . . . (25)

With the same degree of approximation this is also the volume of

a hanging drop up to the level of the mneck; indeed the volume
Y If x is large with respect to z, we have

2¢ @
:tfy]:a;,log’v———é—l?, .

2 . [

1

(177

so that the equation. to the branch CBE (fig. 8) is
¢ ‘,v’

&
4R* 2R,

Y=Y + N4 = 2Ro —%kRoa + %—/CROB log

in agreement with (11%) (smce e=-ﬁ).

0
From this the abscissa of the mode E(yg=y¢) is found to be

wpt == — 3 kR log kR ,*.
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between the planes passing through point of inflection and neck is
found to contribute a negligible amount to the total.
In connection with this it follows from eq. (2’) in fourth
approximation :
zp=V3kR}® (1—kR,"), en &', == £iR}*(1—$ IR, . , (19)
the upper sign corresponding to the upper index.

§ 10. Starting from the points D and D’ (fig. 3) the analysis may
be fnrther continued in a manner similar to the one used above.-
Indeed the meridian curve of the complete capillary surface consists
approximately of a series of nearly semi-circular arcs connected
each time by parts of an onduloid or nodoid *). The centres of these
arcs are sifuated at the heights B, 3 R, 5 R,, etc. successively ;
with each (nth) arc we therefore place the origin in the corresponding
(n™) centre and as in § 2 write: ’ .

wv=osnd , y=Q@n—-1l)R,—pcs? , o=R, (1—1). (26)

t is determined by :

" sin & + ' cos I + 2rsin ) = kR, 2n—1—cos ¥) sin 9,  (26)
whence it follows, introducing the condition that the arcs and interme-
diate pieces form a continuous curve:

; 4(n—1)
t=R+e—D—F + Hog2 4 gn(r—)— E—7—log (n—1)—

— & n(n—1)log (£ 1 kR, cos ¥ + g cos J log (1 + cos ) —

2 (n—
— (n3 1—)0081910_0(1—-0081’))]](:1%0’, e (27

3
For the connecting curves equations (17), (22) and «, =.z'c-._-iR£.

[]
are each time satisfied.

The successive arcs and their connecting curves can only be
‘realised in separate parts, for instance between two horizontal plates
or between two vertical coaxial cylinders. Not every surface, however,
obtained in that way is a part of the surface whose mieridian-section_
was analysed above by approximation. As an instance, if the surface
is formed between two cylinders which are moistened by the liquid,

o) _ .
@0 represents the ratio between the radii of the

the fraction
LA

cylinders and this fraction cannot in the analysis of § 10 assume
any arbitrary (small) value, as long as n represents a whole number.
Still, putting 2 (n—1) =« and admitting an arbitrary (positive or

Iy Cf. WINKELMANN, loc. cit., p. 1141, fig. 404.

- 370 -



365

negative) value for «, the equations (26) and (26’) remain valid and
r=FkRS [a + o+ beosd 4 L (§ — a)cos ) log (1 4 cos I) —

— 3G —a)cos I log(L —cosd)], . . . . . (28)

where a and b are integration-constants. E, is still undetermined, as

also A, which remains connected with £, through the relation

2
M:E; as regards the value of o, this may be chosen at will?).
[
With small values of ¢ the curve shows a minimum for y or a

point of inflexion?) according as (§—a)k >0; for a value of 9
which differs but little from = the curve has a maximum for 7, if
& —a)%k >0 or a point of inflexion, if 3 —a)k<C0.?

§ 12. Here again the meridian-section consists of a series of curves
which, however, now extends indefinitely upwards as well as down-
wards. For %~ >0 the higher curves in the
series show maxima and minima for y, the lower
ones points of inflexion, as represented diagram-
matically in fig. 4. For £Z>0 on the other
hand the upper curves have points of inflexion
and the lower ones maxima and minima ofy,
which case is obtained by turning fig. 4 upside
down. Putting + — a = f the successive minima
and maxima of z satisfy the relations

2n
Zpin. = = (B + ?) kRoa

1
":—} ER} . (29)

1 )
Tmay = B, — [7)' a—p +

2n
At the point where 3 —]—? changes its sign
Fig. 4. (smallest value of ) is the transition between

. 2
the two kinds of curves. If accidentally 5:-32, m being a whole

number, the smallest value of 2, becomes zero and the case reduces
to that of the meridian-sections discussed in § 10.

1y Supposing for instance the meniscus to be formed between two co-axial
eylmders which are moistened by the hquid, the radii of the cylinders being R
and 7, where v has to be small with respect to B « and R, ave determined by
the conditions xC=17 and x4 =R; « and b may still be chosen at will; one
might for instance take o« =0, while determining b by putling yp = 0.

2) In general therefore in this case lhe presence of a winimum or maximum
for y is not, as in the section 6 #qq, bound to %4> 0 or the existence of a point
of inflexion to k <O0. -

24
Proceedings Royal Acad. Amsterdam. Vol. XXI.
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Physics. — *‘On the measurement of surface tensions by means of
small drops o1 bubbles.”” By J. E. VERSCHAFFELT. Sdpplement
N°. 42d to the Communications from the Physical Laboratory
at Leiden. (Communicated by Prof. H. KaAMERLINGHE ONNES.)

(Communicated in the meeting of June 29, 1918).

§ 1. The usnal methods for the determination of surface tensions
by means of small drops or gas-bubbles, to which properly speaking
the method of the capillary rise also belongs, are hased on the
measurement of the difference of hydrostatic pressure between the
two media inside and outside the drop or bubble; indeed the sur-
face-tension is given by the formula

a:%‘(ul_“:)gkRov I (1)

where u,—yu, is the difference of the densities of the two contiguous
media, ¢ the acceleration of gravity, R, the radius of carvature at
the top of the meniscus and % the pressure-difference on the two
sides of the surface, measured as a column of the liquid in the
surrounding medium. If the drop (ov the bubble) is so small, that
it may be considered as spherical, 'we may take for R, half of the
diameter of the drop (or bubble), or the radius of the capillary
tube, in which the liquid ascends, al least if there is no angle of
contact; in order, however, that the approximation obtained in that
way may be sufficiently close '), the radins must be taken so small,
that as a rule the relative accuracy of the measurement of the radius
remains far behind that which can be reached in the measurement
of A, whereas naturally it is desirable to know K, and % with the
same relative accuracy. In order that this may be possible, it is necessary
to make the measurements on drops or bnbbles which are not too
small, in which case at the same time the necessity arises of a
correction on account of the deviation from sphericity. *)

1) The relative error is of the order kAR,*, where k= (—M‘—l;—i’)—s—, (cf. eq (2)).

% R, can also be measured directly by an optical method (cf. H. SiEpENTOFPF,
Diss. Gotlingen, 1897); it may also be determined by measut ements on photographs
(c[ for instance A. Ferausow, Phil. Mag., (6), 23, (1912) p.417. A high accuracy
- is, however, not obtained in that way. '
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r

$ 2. Potting 24 =1r in eq. (10) of the previous communication
(Suppl. N°. 42¢) it reduces to
Ry=r4+ 1k — 2k Blog2—2), . . . . (2
from which B, may be calculated, when r is given and £ is known
approximately. This value substituted 1n (1) gives
]1,.-:]—62;—%-1'—}—%kr3(2log2——1). B )]

or

o~ pedsN
.

P r?
0 =} (t,;—p,) ghr [1 +45— ¥ 7 (2 log 2—1)] . “)

formulae which are already known') and by mweans of which the
surface tension can be calculated to a third approximation from
the capillary vise 2 in a tube of radius », which is completely
moistened by the liquid. ?)

These equations, when proper account is taken of the signs of
the various quantities, are applicable in every case, where the width
of a drop or bubble can be measured as also the pressure necessary
to form it, As an instance, when the liquid does not moist the wall
(mercury) the liquid may be forced up by an excess of pressure
from a very wide into a narrow communicating tube, until it pro-
trudes from the narrow tube in the form of a drop; / then is the
height of the liquid swrface in the wide tube above the top of the
meuiscus on the top of the capillary. ®) Similarly when the capillary is
moislened by the liquid, the meniscus may be forced down by the
pressure of a gas, until a bubble is formed at the bottom of the
capillary. *)

1) See for instance A. WivkeLmann, Haudbuch der Physik, 2e Aufl., I, (2),

1144 and 1159, 1908.
) For the case;iwhen there is an-angle of contact ¢, the following relation is

found by putting z=7 and 1) =;~r—i in eq. (9) of the previous communication
(Suppl. N®% 42¢)
»
o =}, —@,) ghr seci I:l {3 —sec® i (I—sind)* (1 4 2sin ) +

L
2 ’ ! i
+ %’;ﬁ sec® t (1-—sin 1) (1 + sin i 4 2 sin® 1) + %—%’_ sec* ilog j_szﬂil ®)

3 In this case eq. (8) and (4) remain valid without any modification, as both
h and Ry, therefore also 7, change sign (see previous comm.). This simple method,
which is independent of the angle of contact and which allows the capillary surface
being refreshed by removing the drop, does not appear to have been ever applied
to mercury. :

4) Cf. A. Winkéwmany, Le, p 1162, See also further down in § 9. In this
manner, however, it is not the surface tension of the pure liquid in contact with
its vapour which is determined, but that of the binary system liquid gas.

24*
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§ 8. In dealing with a hanging drop, 11,—u, and } change sign (see
Suppl. N°. 42¢) and eq. (4) becomes

rr 9\
()-'_:%‘(l‘a_”l)g]”' [l'—%"]; __%‘E,(Z 109' 2"“])] .. e (4')

The practical application of this equation is not so simple, however,
as that of eq. (3), as a hanging drop formed at the end of a
capillary which communicates with a wide tube is not in stable
equilibrium *). But the equilibrium may be made stable by also
taking a narrow tube for the one with which the capillary
communicates, say by making the drop hang from a single capillary,
as in SuNTis’s method *); in that case, however, account must be
taken of the curvature of the meniscus in the narrow tube. If 4,
is the distance hetween the tops of the two menisci, and A, the
ascension of the liquid in the narrow tube (which can be obtained
from a separate measurement), it is evident, that in eq. (4') the
substitution :

h=h—h,.
has to be made.

§ 4. Let us return to the case of a drop, say a mercury drop,
forming on the top of a capillary under the influence of an excess
of pressure from the liquid in a very wide communicating fube
(section 2). When the mercury by raising the liquid in the wide
tube has reached the edge of the capillary, the meniscus protruding
above it begins to curve more and more as the liquid gets higher.
so that the difference in level / between (he two tubes, which
had remained constant so far, now increases. Soon the meniscus
attains the maximum-curvature and at the same time the difference
in level . reaches a maximum.

This maximum occurs at the moment that /2, has its smallest value *)
which happens when R, is all but equal to 7, the radius of the
capillary (for simplicity 2, is here taken as positive). Putting

1) An imperceptible fall of the level in the wide tube is sufficient to give an
appreciable increase to the vadius of the hanging drop, through which % becomes
larger, while the capillary counter-pressure diminishes; consequently the liquid
flows continuous. With a lying drop on the other hand 7 diminishes and within
definite limits the equilibrium is stable (see also §§ 4 and 7).

9 Senms, J. d. phys 6 (1887) p 571.

3) Seeing that between % and B, the relation ki = I—i holds (see previous comm.

0

in these proceedings).
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1 4
] :_—_2_+w, where 9 has the meaning given in § 2 of the previous

communication and o represents an infinitely small angle, equation
(9) of the same communication, in view of (see eq. 8 and 8’ l.c.)

p=1 +w:12£—l—%kR°’(2log2—{-1)+w,
takes the form: .

P = Ry—} R, [0+1 kR,* (2 log 2+1)]"—2 kR, + 5 B'R,* (6 log 2—1) . (6)

It follows, that the minimum of R, is reached for
w,=—4%kR"@Qlog24+1), . . . . . . (7
therefore for ¢ :g, that is: exactly when a4=—7. The surface
tension is thus given by the relation (4), when » now represents
the radius of the capillary and A the greatest difference in level of
the mercury in the wide tnbe above the capillary; conversely for
given 7 and % the greatest difference in level is given by equation (3).

§ 5. The mercury can still be raised to a higher levelin both tubes.
The radius of curvature £, at the top of the drop then again
. increases, so that /. becomes smaller. All the same the mercury
continues to rise in the wide tube, that is: the height H=A+ ¢
of the liquid in the wide tube above the top of the capillary (y
represents the Meight of the drop and is therefore heve taken with
the positive sign) still increases. But this height also soon attains a
maximum.

19 .
Putting again :—2—+w, we have (eq. 4 of previous comm.)

2
H:h-}—y:m—kﬁo—}—]ﬁow, .. .. (8)

from which, joined to the condition @ = const =17, it follows that
H is a maximum when
w, = § kR (1 —log 2), (R,)), = + & kr® — 5 k*° (12 log 2—17), (9)
so that
2
.Hm: k—r + %r -—l— '{1-2-165" y . T . . (]:O)

whence

r 3
6:‘5‘(!‘1"‘“.)9H1)17’(1~-3’-E—- 5 2) .. (11)
m m

§ 6. To test the use of the method sketched out in sections 4 and 5
a few trials were made with mervcury in contact with air. The wide
tube was so wide (= 2 cm in radius), that the meniscus could be
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considered as flat; the radins of the narrow tube at the top which
was sensibly flat was 1.090 min. Throngh a rubber tube the wide
tube was connected with an adjustable funnel filled with mercury;
by slowly raising the funnel the moments are easily marked at
which first 4 and then H attain a max1mum .

The mazimum-values of % and H were found to be to a bigh
degree dependent on the slowness with which the drop was being
formed. From these experiments therefore a definite value for the

surface ‘tension mercury-aiv did not follow. As an instance for a”

drop which had been exposed to the air for a very long time
hn=0.490 (at t=17°.3) was found, which by means of eq. (4)
w, —p, = 13.55 ¢ = 981) leads o

== 0,355 (1 +0,074--0,006) = 379,
whereas immediately after the formation of a new drop the observ-
ation gave 4= 0.592, whence ¢ = 454.

Similarly an experiment where the mercury ran over aboul1 min-
ute after the surface being renewed gave H, = 0.708 (at 18°.2 C.)
whenee (eq. 11)

6= 513 (1 —0,102—0,004) = 459, .
whereas for a drop which did not flow over till after half an hour
Hu = 0,659, c.e. 6 =423; after some hours these values had even
gone down to H, =0,619, 6= 393.%)

) The maximum of 2 can be very easily observed by using a micrometer with
moveable cross-wire, the fixed horizontal wire 1is set on the meniscus in the
wide tube, the moveable wire. [[, also horizontal, on the meniscus in the narrow
tube. The fupnel is firsl moved up until the mercury protrudes above the narrow
tube as an almosl hemi-spherical meniscus: by now raising it very slowly or by
adding mercury a drop at the time, so that 1 and II rise slowly, the distance
Il is seen to increase slowly and attain a greatest value. After that | and II
continue to rise, but the distance I—Il now diminishes At the same time the
drop above the narrow tube js seen to bulge out more and more, to exceed
distinetly the half-sphere and finally fairly suddenly to swell and flow over the
edge of the tube; at that moment the level | falls very rapld]y, so that H has
gone through a maximum,

2) This diminution of the surface tension of mercury which is exposed to the
air was first observed by Quineks (Pogg. Ann. 1 (1858) p. 105). Similarly Griinuaca
(Ann. d. Phys , (4) 28 (1909) p. 247 ; method of. capillary waves) found a much higher
value of o for fresh surfaces (¢ =4Y1,2 at about 18° than for surfaces which
had been exposed to the aiv for half an hour (& = 405,0). See also WINKELMANN,
loc. cit, p. 1168.

Volalile vapours in the air also appear lo lower the surface tension of mercury
very considerably; it was found in the experiments of § 6 that it was sulficient
to bring a piece of blolting paper soaked in benzene or alcohol mear a practically
hemispherical drop in order to make it flow over at once.
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The usefulness of the method is sufficiently demonsirated by these
experiments. Moreover they can easily be so arranged, that the
surface tension is delermined in vacuo, in which case probably a
gradual change of 6 with the time would not show itself ).

§ 7. Instead of forming the mercury drop on the top of a capillary
it is possible to male il form al the bottom. This can be done by
closing a wide tube at the bottom by a plate with a small circular
hole; mercury being poured in, a small hanging drop is formed at
the orifice, which gives way at a definite maximum height of the
mercury in the tube, after which the mercury runs out. From the
observed maximum height and the radius of the opening the surface
tension of the mercury may be derived.

If H represents the height of the liquid in the wide tube above
the opening, H = /'—y, A’ being the height of the mercury in the
wide tube above the bottom of the hanging drop and y again
representing the height of the drop. In this case £ is negative (see

2
Suppl. N°. 42¢), hence' /z:mz—— W and H=—(h+y). The

1 ]
condition for the maximum of H at constant x = then leads to

the same equations as in § 5, except that £ and -A bhave to receive
the negative sign.
It follows in the first place that o, (eq. 9) is negative; that

is: the drop begins to fall before » has reached the value g (see

§ 3), so that % in this case cannot reach its maximum value
(§ 4). In the second place according to eq. (11), H, being reckoned
as positive,
o=} (u—u,)g H,,,r(l -{-%E};-— %_IT;E) ... (1)
§ 8. By this method also a determination was made of ¢ for
mercury. For this purpose a tube of 1.5 ecm radius was closed at
the bottom by a plate, through a hole of which a short piece of
glass capillary (» = 0.522 mm) had been stuck. When mercury was
put into the tube a drop at a time, a drop was formed at the
lower end of the capillary which gave way before the hemisphere
had been reaghed.
Here again the .value of H, was very strongly dependent on the
time elapsing while the drop was being formed; the greatest value

) In a vacuum Fdrra (Wien. Sitz-Ber. |2a], 126 (1917) p. 529) found ¢ = 440
to 4456 at 18°C; in this no trace of a change of o with the time was ohserved.
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observed was H,, == 1.230 which gives:
=427 (1 4 0,028 — 0,003) — 438
When the tube was filled to a smaller height and then left to
itself, the drop could be seen to bulge out more and more and
finally give way in consequence of the diminution of o.

§ 9. When in a capillary tube, in which a liquid ascends, pressure
is exerted by means of a compressed gas, so that the meniscus is
forced down, until a gas bubble is formed at the bottom of the
capillary, the bubble is found to escape ata definite maximum value
of the difference between the gas-pressure and the hydrostatic pressure
al the bottom of the capillary. From this maximnum of the pressure-
difference the surface-tension of the liquid (in contact with the gas)
may be derived?).

The phenomenon is of entirely the same nature as the one described
in § 5 and the theory may be developed in the same wmanner?®). If

2 .
H represents the said difference of pressure, whereas £ = ];Eagaln
0

represents the capillary pressure at the lowest point of the meniscus
and y the bheight of the bubble, then, as in § 5, H="7% 4 y and,
as £ and R are also positive, the same equations are obtained in
this case as in section 5°%). .

In this case /4 also obtains a maximum-value, which might also
be used as the basis for a determination of the surface-teusion; in
that case eq. (4) would again apply. But the measurement of H is
simpler than that of %4 and therefore preferable from a practical
point of view. :

§ 10. Several observers have derived surface tensions from measure-

Yy The first to use this method was Smon (Ann. d. ch. et d. phys. (8), 32, 5,
1851), who assumed without sufficient proof, that the maximum pressure-difference
is determined by the capillary rise, which is only correct for very narrow tubes.
Smeon’s method was used by several other experimenters later on (see WINKELMANN,
le., p. 1162). ) '

%) See also: M. Canror. Ann. d. Phys. (3), 47 (1892) p. 418; R. Feusrer. Ann.
d. Phys. (4), 16 (1905) p. 61; A. Fereusoxr, Phil. Mag., 28, 1914 p. 133, and
E. ScuropveEr, Ann. d. Phys., (4), 46 (1915) p. 413.

%) In accordance with what was found by Scuropinger, (I ¢.). ltis not astonishing
that Canror, FreusteL and Fereuson find an incorrect expression for the second
correclion-term in these equations, seeing that — apart from errors of calenlation
by Cavror and Fereuson — the authors in their reductions assume a spherical
shape for the drop, although the second correction-term is actually determined by
the deviation from the spherical shape.
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ments on drops without pressure-measurements.') With small drops
the surface tension is then derived from the deviation from the
spherical shape; in that case principally equations (10) and (10") of
the previous communication (or (2) of the present paper) are to be

applied, which lead to the relations:
3

r By—r
06=+% R, (. —p,)g [1 —2 — G 10.92—2)11 .- (12)

r
(;:%(ul—p,)gr:—quQZ, R ¢ £

» being the largest radius of the drop {its half breadth) and y the
distance from the top to the plane of the section with radius ». -

Seeing that here the determination of ¢ depends on the exact
knowledge of the numerical value of terms which only served
as correction-terms in the method of the pressure-measnrement,
this method cannot but give much less accurate vesults than the
previous one. But its use seems indicated fov lignids which can only
be obtained in very small quantities.

§ 11. A third manner of determining surface-tensions by mean of
small drops consists in measuring’ the weight of small falling drops.
It follows from the equations (25) and (19’) of the previouscom-
munication, that the volume of a small consiricted hanging drop is.

- 2ar'c 7
y __(1——>, ¢ 1Y)
(lu'z'_llx).q JRO

7 being the radius of the circular neck. When the drop is made
to fall from a very thin rod — this would be the method, if the
liquid moistens ‘the wall — or from a very narrow tube — in’the
opposite case — *) 7’ is not equal to the rading 7 of the rod or
tube, but the difference is very small. Indeed the “drop does not
fall at the momenr, when r=17'; before it falls away the drop

1) See Winkewmann, loc. cit., p. 1160. See also J. E. Verscuarrerr and Gu. Nicaise,
Bull. Acad. de Belg., 1912, p. 192.

%) Properly speaking equation (14) only holds for a drop hanging in equilibrium
and not for a drop forming from a tube while flowing (cf. WINKELMANN loc. cit.
p. 1162). It appears from § 7. that a constricted drop cannot hang in eguilibrium
from the “opening of a tube, if the drop is in free conneclion with liquid in a
wide tube. A strongly constricled drop is only possible, if the connection with the
free surface in the wide tube is broken, for instance by the interposition of a tap;
by opening the tap very liitle the drop may be made to form very slowly, until
it falls: at any moment it can then be looked upon as in equilibrium and its
further deformation may be prevented by closing the tap. Similarly a strongly
constricted drop may form at the end of a long capillary, through which the
liquid flows very slowly (cf. also § 3).
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contracis a little more, the volume thereby increasing slightly, until
it reaches a maximum. For according to eq. (17) of the previous
communication, when 2=17 differs very little from =z, =7’, (he
volume contained between the circles of radii » and »’ is equal to
2r'*V %’ (r—7"), so thal the volume of the drop up lo the plaune

of suspension is equal to
2nr'o

V= L V2 (),
(@tz—y‘l)g
and this is a maximum, when
= (1= . . . . .. L L (1)

The maximum-volume will still be represented with sufficient
accuracy by eq. (14), if r” is replaced hy 2

When the maximum is reached, the smallest further supply of
lignid must necessarily make the drop break off. If G is (he weight
of the drop?), it follows from eq. (14) Wilh 7 instead of 7’ that

-——Gl‘ r\_ G 21?__ l/ 8216
f/——é;:;( +ﬁ;)—2 , ('7) '+ % ) (

This is therefore the formula which in the case of a very small
drop has {o replace the simpler expression used by QuiNcke.?).

) G = (ug—m) gv; G is therefore lhe apparent weight, not reduced to a
vacuum.

%) It is perhaps not superfluous to point out, that the expression (16) may be
deduced In the following simple manner. The molecular forces (surface tension)
along the circular neck of the drop make equilibrium with its weight and the
hydrostatic pressure on the plane of the neck; hence according to (8) of the

previous communicalion

2¢
2 =6+ —. ar’,
nra +R .

0

where the term — 772 (wy—wy) gy has heen neglected. This equation agrees with
the relation which is found in calculating the capillary rise by the so-called weight-
method (see previous comm); In a certain sense, however, it must be considered
as ils opposite: in both cases the surface tension balances a hydroslatic pressure
and a weight, but whereas in the case of the capillary rise the weight is introduced
as a correction, here on the other hand the same is true for the hydrostatic pressure.

Seeing that lor mercury & =380 about and for water =18, » must not be
greater than 0,07 to 0,11 mm. in order that the correction-term % be 0,1. In
order that this term may be still further reduced, as is necessary f'(‘;r the accuracy
of the method, in view of the further unknown terms which have been neglected,
much narrower capillaries would have to bhe used and this would diminish the
accuracy of the measurement of ». This shows that ihe method of the weighing
of falling drops is not a very suitable one for the determination of surface tensions.

%) Pogg. Anu., 134, (1868) p. 365, See also WinkmnMmaxN, loc. cit, p. 1147
and 1161, and TH. LomnsTEIN, Ann. d. Phys.,, 20, (1906) p. 238.
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Chemistry. “The Phenomenon Electrical Supertension”. By Prof.
A. Smirs. (Communicated by Prof. P. Zgeman).

(Communicated in the meeting of June 29, 1918).

1t has already been pointed out in a previous communication ')
that the metals which furnish the so-called unatiackable electrodes,
differ from the other metals in this {hat they are ideally inert, so that the
potential difference of such a metal electrode with respect to an
electrolyte is governed by the prevailing electron-concentration in
this electrolyte. Let us now suppose that a sinooth platinum-electrode
immersed in an aqueous solution of hydrochloric acid, is made
cathode, it is then easy to see what will happen.

The two equilibria that are to be considered here, are:

Pt2Pl 446
and H, 2 2H -+ 26

the former of which is entirely determined by the electron concen-
tration of the hydrogen equilibrium.

When we immerse a platinnm electrode in a solution of hydrochloric
acid, the platinam ion-concentration in the electrolyte will be
imperceptibly small. Yet we can speak of a platinum eqnilibrinm in
the electrolyte, which, as was already remarked, is entirely
determined by the electron-concentraticn of the hydrogen equilibrium.

In virtue of this it may be said that platinum is a hydrogen-
electrode from the very first, but so long as the hydrogen has not
yet appeared as second phase, the platinum will be a hydrogen-
electrode, corresponding with a hydrogen pressure smaller than the
pressure under which the electrolyte is.

When we make the plalinum cathode, there are electrons added
to it, and a consequence of this will be that hydrogen-ions from
the electrolyle are deposited on the metal surface, and are dissolved
in it, from which it appears that the hydrogen is of course not
immediately present as a new phase. .When the internal equilibrium

H, =220 + 26

sets in very rapidly on the metal surface, this internal equilibrium
would already have been established in the metal surface in spite

/

1) These Proc.

-

¢
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of the supply of electrons. But above a certain current density,
which evidently lies very low, this is no longer the case, and the
metal-surface will conlain more hydrogen ions and electrons than
corresponds with the internal equilibrium. In consequence of this

the potential difference, as appears from the formula

pr— BT, Bu(Hs) (Hs)
F (Hp)

will be more negative than when internal equilibrium had been
established. Let us now suppose that the current density is continually
increased, the potential difference becoming continually more negative,
then at a given moment super-saturation of hydrogen will set in
in the metal surface, and at a certain degree of super-saluration
hydrogen will be generated as second phase. When the current
density is kept constanf, the potential difference can now diminish
a little, bat on increase of the current density the polential difference
will now also increase further, because, even when hydrogen
generation takes place, this process can yet be accompanied with an
increase of the concentration of the hydrogen ions in the surface
of the electrode, and besides Dbecause the formation of the gas
bubbles through the diminution of ithe surface of contact metal-
electrolyte, causes the current density to increase very greatly. As
at the moment that the hydrogen begins {0 separate as second phase,
the metal surface contains more hydrogen ions and elecirons than
corresponds with the internal eqnilibrium, the potential difference
at his moment will be more strongly negative than corresponds with
the state of internal equilibrium, which is in accordance with the
- above mentioned formula. This internal equilibrium sets in when without
passage of a current, hydrogen of a pressure of 1 atmosphere is
condacted round the platinized platinum electrode. The difference
between this equilibrium potential of the hydrogen and the potential
difference, at which during the passage of the current, the hydrogen
begins lo separate as second phase on the unattackable electrode
for the first time, is called ‘“supertension”. It is clear that in the
light of the newer views this phenomenon is not distinguished from
the phenomenon of the cathodic polarization in any respect. The
supertension of hydrogen is, accordingly, nothing but a consequence
of the retardation in the establishment of the internal equilibrium
during 1its electrolytic separafion, and the superlension in case of
all the other gas-generations can be explained in exactly the same way.
It has been found that the amount of the supertension for the
same current density is still dependent on the nature of the metal
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electrode; nor is this strange in the light of these considerations,
for the different metal electrodes will exert a different catalytic
action on the establishment of the internal hydrogen equilibrium.
But not only the nature of the electrode, but also the condition in
which a certain electrode is, will be of influence on the supertension.
A polished platinum electrode or a platininized platinum electrode
do not give the same resuli; in the latter case the supertension is
practically zero, which can be explained by the fact that the much
larger surface of the catalyst causes a rapid establishment of the
internal equilibrinm, to which is added that the actual current
density is much smaller than is supposed, exactly in consequence
of this larger surface. Finally also the electrolyte can exertinfluence
on the setting in of the internal equilibrium, and thus we see that
the polarization phenomena at gas-generations can be surveyed and
accounted for with all other electrolytic polarization phenomena
from the same point of view.

Considerations in the light of the theory of phases. A so-called
' unattackable metal as hydrogen electrode.

In my preceding communication “On the Electromotive Behaviour
of Metals” *) I have already treated the nnattackable electrodes and
their efficiency as gas-electrodes. In this I have demonstrated that
the result of these considerations can be given in a A, a-fig. in a
lucid way.

That a platinum electrode, immersed in an acid solution, and
surrounded by hydrogen of one atmosphere indicates the hydrogen
potential in correspondence with this pressure, is elucidated by the
adjoined fig. 1, which holds e.g. for atmosphéric pressure and con-
stant total-ion-concentration.

Though the equilibriam-normal-potential of platinum is not known
to us in consequence of its great inertia, yet il may be said with
certainty that this potential of the equilibrium, if it could be mea-
sured, would be very sirongly positive with respect to the hydrogen.
The concentration of the elecirolyte ¢ would therefore practically
quite coincide with the axis for the hydrogen. With a view fo
lucidity 1 have however purposely not made the point ¢ coincide
with the H,-axis in this schematic drawing.

Let ns now imagine that a platinum electrode is immersed in

)1l e
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an electrolyte of the concentration @,, and that the electrode is sur-
rounded with hydrogen of a pressure of 1 atm., then our conclusion
from the preceding communication that namely the platinum equi-
librium in the liquid is governed by the electron concentration of
the hydvogen equilibrium in the electrolyte, or in other words that

Fig. 1.

i

the platinum elecirode becomes hydrogen electrode, has the follow-
ing meaning:

It appears from the A, z-fig. 1 that the potential difference of the
hydrogen with™respect to the electrolyte @, is indicated by point ¢,
lying on the metastable prolongation of ac.

Now it follows, however, from the considerations given here that
platinam will present the same potential difference as hydrogen’ in
the experiment mentioned here, and that the elecirolyie will, there-
fore, not only be electromotively in equilibrium with hydrogen, but
also with platinum. This means therefore that ¢' does not only lie
on the prolongation of ac¢, but at the same time on a line that has
taken the place of dc. The line e veferred to the electrolytes which
coexist electromotively with platinnm in infernal equilibrinm, whereas
we now bave to do with a curve-that indicales the elecirolyies that
can coexist with a state of platinum disturbed in a base direction;
hence this curve lies above bc, and is here indicated by b'c'.
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The potential difference, which we therefore measure at the pla-
tinum electrode in the case supposed here, is the potential difference
for the three-phase equilibrinm d'c'¢', in which «' represents the
hydrogen phase, ¢ the electrolyle, and ¢ the hydrogen-containing
platinnm phase. It is clear that in ithis binary figure it is in fact
impossible to indicate the composition of the platinum electrode as
the electrode contains atoms and ions of platinum and hydrogen
as well as electrons. The composition of the electrode is in consequence
of this indicated in platinum and hydrogen in total.

As was already said r lies practically on the hydrogen axis, and
as in the case thal an attackable electrode is used as hydrogen
electrode, the unattackable electrode is immersed in an elecirolyle
which is practically free from the ions of the electrode material,
the concentration z, lies likewise entirely on the hydrogen side, so
that like ¢ also the point ¢ will practically coincide with a, i.e.
the different unaitackable electrodes, applied as hydrogen electrode,
will practically present the same potential difference under the same
circumstances.

The Supertension Elucidated by Means of the Aa-Fig.

When we immerse a smooth platinum electrode in a large quantity
of an electrolyte of the concentration x,, and when we then make
it cathode, fig. 2 gives the successive states. Before the platinum
elecirode is made cathode, we have electromotive equilibrium between
the elecirolyte m and the disturbed hydrogen-containing platinum
phase n. As soon as the platinumi becomes cathode, platinum- and
hydrogen ions are deposilted on the metal surface, and as the
establishment of the equilibrium in the metal surface cannot keep
pace with the ion-separation, we get a platinum surface that is still
more greatly disturbed, in which there are more platinum and more
hydrogen ions and also more electrons present than corresponds with
the state of equilibrium. Hence a moment after the passage of (he
current the point n' indicates the potential difference and the com-
position of the disturbed, hydrogen-containing platinum electrode, so
that now m' and n’ represent the coexisting phases.

With increasing density of the current the electromotive two-
phase equilibrium moves continually upwards in our A-fignre, and
it might be thought that the hydrogen can be separated for the first
time as phase at the very moment that the line indicating the elec-
trolytes that can coexist with a platinnm, electrode ‘of definite
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distarbance, passes through the point ¢", or in other words at the
moment that the disturbance of the platinum electrode has increased
to such an extent that the potential difference is indicated by a
horizontal line passing through c".

A.—
b, g
,?":%* """"""""" <
e e __ 2l _a=0

Fig. 2.

This would, however, be the case when the hydrogen could have
assumed internal equilibrium in the metal surface, and when there
was, therefore, no supertension. As was already said the supertension
is just to be explained by this that also the establishment of the
internal equilibrinm of the hydrogen ecannot keep pace with the
ion-separation. Hence the hydrogen appears as second phase for the
first time not when the potential difference of the metal phase has

‘risen to ¢”, but (o a higher point, e.g. ¢ In correspondence with

the concentration of the electrolyte, the curves a'c’ and 4"c' intersect
in this point, which curves refer to the electrolytes which can
coexist with a distarbed Liydrogen phase, resp. platinum phase.

The hydrogen phase ', which therefore is generated, is a disturbed
hydrogen phase, as it contains more hydrogen-ions and electrons
than corresponds with the state of internal equilibrium.

The supertension can now dirvectly be read from the figure; it
is equal to the distance c'c".

Now 1t should be borne in mind that the point ¢ practically
coincides tith the hydrogen axis, and that when a platinum elec-

-
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trode is immersed in an aqueous solution of an acid, the concen-
tration z, practically coincides with the hydrogen point, and conse-
quently the point of intersection ¢' will likewise practically lie on
the hydrogen axis.

It is clear that the considerations given here are general, and
will, therefore, also apply to the supertension of other gases.

As was demonstrated there is no essential difference between the
phenomenon of supertension and that of polarization. The former
is only a little more complicated in so far that here also an unattac-
kable electrode has been inserted into the system.

When, - however, we consider the phenomenon of supertension at
non-unattackable electrodes, every difference with the ordinary
phenomenon of polarization has disappeared.

Amsterdam, General and Anorganic-Chemical Laboratory
June 18, 1918. of the University. -

25
Proceedings Royal Acad. Amsterdam. Vol XXI.
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Chemistry. — “On the Periodic Passivity of Iron, [I”. By Prof.
A. Smirs and C. A. Losry bpr Bguvn. (Communicaled by
Prof. P. ZrgMaN).

(Gommunicated in the meeting of June 29, 1918).
Periodic passivity tn experiments with sealea-in iron electrodes.

In a previous communication®) on this subject we have shown
how we have succeeded in calling forth the phenomenon of
periodic passivity on anodic polarisation of 1ron in a solution of
0,473 gr. mol FeSO, - 0,023 gr. mol FeCl, per litre. In these
experiments we made use of an iron electrode 0.3 cm. long with
an area of =+ 0.3cm? which was sealed into the short leg of a
U-shaped tube by means of shellac. The considerations that led us
to these investigations were the following. During the anodic solution
of iron in a ‘'solution of Fe SO, the internal equihibrium in the
metal surface above a certain density of current, can be disturbed
so greatly that passivity appears. When into the solution CI, Br., or
I-ions are introduced 1n a sufficient concentration, which need,
however, be only exceedingly small, activalion of the iron suddenly,
makes its appearance. It follows from this that for a definite density
of current, given by the velocity of solution of the iron, it must
be possible to find a halogen-ionconcentration, for which at a definite
moment the chance that the iron remains passive, is equally great
as the chance that it becomes active.

When at this moment the density of current is slightly diminished,
the transition passive-active is sure to take place.

The iron anode in the passive state will dissolve only exceedingly
little, the iron; which has now become active, will, however, go
very greatly into solution.

In consequence of this the contact of the halogen-ions with the
iron will diminish, and as thé iron is now almost entirely with-
drawn from the catalytic influence of the halogen-ions, it can again
pass into the passive stale.

Since, however, as has been said, the passive iron dissolves very
little, and the processes which now take place at the anode consist

1) These Proc.
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of the discharge of the SO",-ions with the subsequent O,-generation,
and further of a concentration increase of the halogen-ions, activation
will again make its appearance through this latter process at a
given moment efc. '

This surmise was perfectly confirmed, and using Dr. MorL’s
excellent galvanometer, we photographed some exceedingly regular
periodic curves, the maxima and minima of which differed 1.74
Volt in situation. These graphs were, however, still incOm?Iete in 60
far that the lines of time still failed.

In our further researches we made use of aphotogmphlc registra-
tion arrangement with time-signal-apparatus manufactured at this
laboratory, so that also the time-lines are visible on the new photos,
and accordingly a better idea of the regularity of the phenomenon
can be formed.

We intend to answer several other questions by means of this
arrangement, but before proceeding to do so we will first give a
photographic representation of the phenomenon of the periodic
passivity, under about the same circuinstances as before, but now
with registration of the time.

This photograph is given in Fig. 1. The potental difference again
ranges here from about —O0,3 Volt with respect to the 1 norm.
calomel electrode in the active state, to about + 1,4 Volt, in the
passive state, the current density retrogressing from 33 m.Amp. t
28 m.Amp. per c¢m® Since the time-lines, which are at a dlstance
of 3,3 seconds from each other, are now also drawn, the regularity
of the phenomenon can be much better observed than before. The
maxima he 6,15 seconds apart. Fig 1 shows further that the iron
was only a short time active, and comparatively long passive. The
electrode was sealed in as before, and 1,5 cm. long, and the
siphon of the auxiliary electrode was halfway of the height of the
electrode. The solution contained 0,72 gr. mol. FeSO, and %= 0,014
gr. mol. FeCl, per litre solution.

The content of FeCl, was, therefore, much smaller than before,
hence the periodicity appeared here already at a smaller current density.
Fig. 2 refers to an experiment with the same electrode, but taken
with a slightly smaller carrent density, viz. 30—25 m.Amp. As is
very apparent from this photograph, this has caused the periods to
become longer, and the time during which the ron was in active
slate (0 become abonl equally long as the fime in which the iron
was passive.

It is remarkable that when we endeavour to proceed in the

same direction, and try to make (he active state last still longer
25%

v
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by diminishing the current density still moére, this can only be main-
tained for a short time, and a state soon sefs in again as reproduced here.

Periodic passivity in experiments with tron electrodes
that were not sealed in.

The following experiment was made with an electrode that was
not sealed in, but in which an iron electrode was simply immer-
sed 1.5 cm. deep into the electrolyte, the siphon of the auxiliary
electrode being placed quite at the bottom against the iron electrode.
In this case there was always an activating influence, starting from
the iron at the height of the liquid level, but in preliminary experi-
ments we had already found that this activaling influence did not,
however, prevent the iron at the bottom of the electrode, which-
was 1,5 em. long, from exhibiting pretty regular periodic passivity.

Fig. 3 shows the result obtained in this experiment. The pheno-
menon is, indeed, not quite so regular as with the sealed-in elec-
trodes, but the difference is not great.

Periodic passivity at different heights under the liquid level.

We will now examine what is the behaviour of a non-sealed
electrode at different heights under the liquid level.

For this purpose experiments were made with an electrode which
was immersed much deeper, viz. more than 5 em. under the liquid
surface. When the auxiliary electrode was again placed quite at the
bottom, a prefty regular periodicity was obsevved, just as in case
of less deep immersion; this is shown by Fig. 4. When the auxiliary
electrode was placed 1.5 cm. above the lower end against the iron
electrode, the activating influence exerted from above, was already
very clearly noticeable. Thus Fig. 4a shows 'that though the pheno-
menon s still regular, the character of the curve has been greatly
modified. The periods are much shorter and the passive state lasts _
very ‘short, and Wwhat is very remarkable, now a longer duration of
the ‘activity than of the passivity can be maintained. !

In the following experiment we have placed the auxiliary elee-
trode halfway up the immersed part, hence = 2.5 cm. from the
bottom, and under these circumstances still greater modifications
were found, consisting in this that the iron did not always become
equally strongly active, and that regularly two less active states
were followed by a more aciive one, or that alternately a more
active and a less active state followed, as is clearly shown by Fig.
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5 and 5a. The next figure 6 refers to the phenomenon that occurs
when the auxiliary electrode is placed only 1 mm. under the liquid
level against the iron electrode, and from this we see how greatly
the activating inflnence issuing from the iron at the level of the
liquid surface, disturbs the periodicity ; the regularity now consists
only in this that the most active state recurs at pretty regular times.

As might be expected the strength of the polarising current was
perfectly regularly periodic.

Influence of the area of the surface on the periodic passivity.

In conclusion we have examined what is the influence of an
enlargement of the immersed surface. For this purpose we have
made an experiment with a spiral, of which 5 windings, with a
joint length of 60 cm. were immersed into the electrolyte. The
cathode was placed inside the windings, the auxiliary electrode being
placed against the second winding from above. While the strength
of the current was again regularly periodic, the potential difference
-exhibited very irregular oscillations, as Fig. 7 clearly shows. The
wregularity was such that even the most active state did not recur
regularly, and the whole curve, therefore, shows the periodicity
under the influence of great disturbances. Hence it could be clearly

_ perceived when observing the 1ron electrode, that this was never
passive resp active throughout the whole area at the same moment,
but that different parts were activated at different times.

This curve is a very fine demonstration of the fact observed by
us already before that a piece of iron can be passivated with the
more difficulty as the surface is greater.

Amsterdam, General and Anorg. Chemical
June 27, 1918. Laboratory of the University.
b
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Chemistry. — “On the System [ron-Oxygen”. By Prof. A. Smirs
and J. M. Buwvoer. (Communicated by Prof. S. HooerwErrr).

§ .-

a
i

(Communicated in the meeting of June 29, 1918).

¢
OFga

The equilibria to which the reactions between iron-oxides and
reducing gases as carbon oxide and hydrogen give rise, have
already repeatedly been a subject of a scientific research.

Thus of the gas phase of the three-phase equilibria FeO + Fe + G

and Fe,0, + FeO -+ G the ratio (g(%)—’)—) resp. (gj(’)) was siudied ?).

Three-phase systems of three components were studied, i e. systems
that were monovariant at constant pressure. In this there was, however,
no need to keep the pressure constant, because the above-mentioned
relations are independent of this. As result the researches with
CO as reducing gas yielded (wo equilibrium curves, which may
be called three-phase curves for the homogeneous equilibrium
in the gas phase which ‘coexists with two solid phases, namely one
for FeO -+ Fe 4- G, and another for Fe,O, 4~ FeO - G, of which
Scaerrer *) showed that they had to intersect in virtue of the heat-
effect of the conversions.

Researches with H, as substance of reduction did not only give
the situation of the three-phase line for Fe 4 FeO 4 G, but also
that for Fe 4 Fe,O, 4+ G. The lalter was made probable by Rrinpurs,
who also computed the situation of the three-phase line for Fe,O,
~+ FeQ -+ G in this system from (he corresponding line for the reduction
with CO by the aid of the water-gas equilibrium. When we trace
the three-phase curves for Fe,O, 4+ I'eO 4 G and for FeO 4 Fe 4~
G for the case G = CO + CO,, we get the following figure when
log K is drawn as function of T, in which figure-a third three-
phase line for Fe 4 Fe,O, -+ G must start from the point of inter-
section, which is here a quadruple point as Scrrrrrr has noticed.

) A survey of the literature of these researches has been given in Rempers’
paper on: the equilibria of iron-oxide with hydrogen and water vapour. Chem-
Weekblad 15, 180 (1Y18).

%) These Proc. Vol. XIX, p. 630.

I3
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Fig. 1.
On the mizture of the solid phases Fe,O, and Fe,0,.

Now the question presents itself whether there exists also a three-
phase line for Fe,O, + Fe 0, + G ).

SosmaN and Hosrerrer *) think that they have to derive from their
determinations about the tension of dissociation and the diffraction
of light of mixtures Fe,O, 4 Fe,O, that the oxides Fe,O, and Fe,0O,
in the solid state are miscible if not in all proportions, yet very
near the concentration F,0,. If there really existed a continuous
mixed crystal series here, there would not appear a three-phase
curve for Fe,O, 4 Fe, O, + G, and the figure discussed here wounld
be complete. )

It is, however, the question whether on the ground of Sosman
and HosTeTTER’s researches we may conclude to a continuous mixed
crystal series. When we draw up a p,r-section of the system
ozygen-iron  corresponding to the temperature 1100°, on the
assumption that Fe,0, and Fe,O, are only miscible to a limited
degree in the solid state, we arrive at the schematic representation
drawn in fig. 2.

In this p,a-section, in which it is assumed that the oxides present
a certain mixture in the solid state, the line d f represents the
mixed crystals that are rich in Fe,O,, and which coexist with the
vapours be, the line g/ referring to mixed crystals rich in Fe,O,,
which can coexist with the vapours e /.

A point on the line df, here p, corresponds with the concen-
tration Fe,0,,- and thus a point of the line g 4, viz. ¢, corresponds
with concentration Fe,O,.

It follows immediately from this what curve we must get, when

1) These Proc. 19, 175 (1916) Rempirs has supposed the existense of such an
equilibrium but the results of the experiments of SosMan and HoSTETTER, were
unacquanted at that time.

2) Journal Amer. chem Soc. 88, 837 (1916).
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vapour phase at the constant temperature of -e.g. 1100°. The total
concentration will then change in the direction from Fe,0, to Fe,0,,
and in this the pressure will also be subjected to a change.

First the pressure will gradually descend from p to f. During
this decrease of pressure two phases coexist, viz. mixed crystals rich
in Fe,O, and vapours consisting almost exclusively of oxygen. When
the pressure has fallen to that of the three-phase equilibrium e fg,
a mixed crystal phase g rich in F,0, will be deposited by the side of
the mixed crystal phase f rvich in Fe,O,, and a three-phase system
arises of which the phase rule demands that the pressure remains
constant in case of equilibrium. On continued withdrawal of a part
of the gas phase, during which the total concentration continually
moves to the right, the pressure therefore remains constant until the
last trace of the mixed. crystal phase rich in Fe,0, has entirely
disappeared. At this moment only the vapour and the mixed crystal
phase g rich in Fe,O, coexist, and on further withdrawal of the gas
phase the pressure will again descend regularly, in which the solid
phase moves downward along ¢k.

When we now draw the vapour tension as function of the total
"|  concentration, theory predicts that
P on partial mixing of the two oxides
\ . Fe,0, and Fe,0, in the solid state,

A a broken line as is schematically

represented in fig. 3, will be found,

the middle part of which runs

i horizontally.
TE.0, x Fy04 This is the theoretical curve,
Fig. 8. and now it is directly to be seen,
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in what the experimentally determined cuvve will differ from it.

In the first place it is self-evident that through all kinds of
disturbing influences of these small pressures, as e.g. the presence
of traces of adsorbed gases or contaminations, and the slow pro-
gress of the dissociation, there is a great chance that the middle
part will not be found to be horizontal, but more or less sloping;

i
P A E‘ 1290°
Ew
-
2
p
Ea
9
EEzos x FE'304 FE,0, Fiy04
Fig. 4. . Fig. b.

and in the second place the transition of the two sloping parts to
the horizontal part will not be found to be discontinuous, but always
continuous, especially when many observations are made in the
immediate neighbourhood of f and ¢. Instead of the above given
broken line the continuous curve of fig. 4 will, therefore, be found
in the most favourable case. 3

When with these curves we compare the lines found by Sosman
and HosterTer, which have been reproduced in fig. 5, we see that
the found curves closely resemble those which theory led us to
expect for only partial mixture of Fe,O, and Fe,O, in’ the solid state.

Evexvtlung depends on tlns whether the non- houzonml course of
the observed pressures couespond Wlth the btates oi ethbuum
this course of the isotherm would really plead’ &n%l favonr of the
existence of a continuous mixed erystal series. Sosme and HosTrTTER
see a confirmation of the view that the mixing of Ee O amd Fe,O,
is continuous in the fact that the indices of 1ef1act10n of the mix-
fures change far from proportionally with the quantity Fe,O, between
hemalite (¢ = 2,78) and magnetite (n = 2,42).

They give namely the following results.
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Concentration of the mixture | & for 700 pupu

Hematite 2.74
0.58 9/ FeO 2.74
5.60, ., 2,13
12,99, 2.72
16.11, 2.n
1719 , 2.1

Magnetite (31.03 9], FeO) n=2.42-

(S

It seems to us that they overlook in this thatin case of unmixing
it is by no means impossible that the phase rich m Fe,O, of the
equilibrium of unmixing would show a much stronger refraction in
consequence of its conlent of Fe,O, than the pure magnetite. This
possibility is by no means improbable, because 1t already follows
from the above deferminations that independently of the fact whether
or no unmixing is assumed, the refraction must diminish much
more - rapidly somewhere in the optically not investigated region
than on the Fe,0, side.

It should besides be considered ihat, as also SosMAN') remarked,
if we assume a continuous series of mixing between the hexagonal
bematite and the regular magnetite, this would be an inslance of
a continuous mixture between non-isomorphous substances, which
has not yet been experimentally observed in a single case.

Now it we assume that from the p,2-figure at 1100° and 1200°
we must actually conclude to a continuous mixed &')rstal-sex'ies
between Fe,O, and Fe,0,, the said difficulty can still be obviated
by the assumption that at this temperature the two oxides are iso-
morphous; as SosMan and Hostrrrer found that the homogeneous
mixed crystal phases are bi-refringent, magnetite would have to
possess a point of transition below 1100° above which point the
regular form is metastable. This not very probable change of crystal
class has, however, not been observed, and can besides not render
the continuous mixing plausible for temperatures below that of the
point of transition. .

However this may be, the existence of a continuous sevies of
mixing of Fe, O, 4 Fe, O, does not seem proved to us, and we

1) Journ. of the Washington Ac. of Science 7, 10 (1917).
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deem it, therefore, desirable to consider the possibility that in fig. 1
there should be added another three-phase curve, viz. that for
Fe,0, -+ Fe, O, 4 G lying under that for FeO -~ Fe,0, 4 G.

This situation gives rise to the question, whether this new three-
phase line can intersect another. If it inlersected the three-phase
line for Fe - Fe, O, + G, the mutual relation would be as given
in fig. 6.

Fig. 6.
The conclusion that the three-phase lines for Fe - FeO 4 G and
Fe, O, 4 FeO 4 G intersect, and that this point of intersection indicates,
therefore, the lowest temperature at which FeO can occur stable
by the side of the gas phase G, is entifely in accordance with the
sign of the conversion which must take place in this point on
"~ withdrawal of heat, viz.:
4 FeO — Fe + Fe, 0, +a cal.?)
When also the three-phase lines for Fe 4- Fe, O, + G and Fe, O, -
+ F,0, 4+ G intersected in the way indicated here, then the conversion :
) 3 Fe, O, > Fe 4+ 4 Fe, O,
would bave to take place in this point of intersection on withdrawal
of heat, but this is in contradiction with the heat-effect of this reaction.
It follows namely from the measurements that:

3Fe,0, = Fe - 4Fe,0,—Db cal.?)

The supposition expressed in fig. 6 should, therefore, be rejected.

Now there remain {(wo possibilities, namely these that the two
three-phase lines for Fe, O, 4+ FeQ -+ G and Fe, O, + Fe, O, + G
intersect at higher temperature, but that melting sets in, before this
intersection takes place. In this case we get a situation as’ has been
schematically given by fig. 7.

1) Comptes Rendus 120, 623 (1895).
%) loc. cit.
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Fig. 7.

Another possibilily is this that the just mentioned intersection
does take place 1n the stable region, and then the situation of the
lines is represented in fig. 8.7)

Fig. 8

It will be pretty easy to decide experimentally which of these
two figures represents what really takes place. We will draw the
attention on the fact that the transition point of iron is intensionally

not considered here.
The Blast-Furnace Process.

What precedes gives time a survey of the three-phase lines and

1) It is clear thal when FeyO; and Fe;O, become miscible above a definite
temperature in all proportions, the line for Fe;O, + Fe,05 + G ends abruptly.
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the two-phase regions in the system Fe—(CO0—CO, (resp Fe—H,—
H,0), and this has rendered il possible to elucidate the reduc