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Physics. — “On the Course of the Values of a and b for Hydrogen
at Diflerent Temperatures and Volumes?. 1II. By Dr. J. J. van
Laar. (Communicated by Prof. H. A. Lorexrz).

(Communicated in the meeting of Febr. 23, 1918).

Continuation”of § XVI.

The factor by which the double integrals (7) are multiplied, now
becomes, with n—= N:»: 3
2
Jrna® X MN =13 X % aNe X MN X % y%,
ie, as gaNs*=dm= (b, ., MN =«
a® 1 a® 1
FXC XaX g X =0 X5 X~—.
$ v $ v
With omission of 1:» we gef, therefore, for *the constant of
attraction a:
90 a

_ 2a* l:
a= wxs(a"’ —s%) b,{

a* at
Do*mq l—w—ﬂsm 6+(p(;‘?-1 B ,5-_"’—1)

when also for I'(#) and — F"{r) their values according to (8) and (8a)
are substituted. When to abbreviate we wrte Z* fors* - (a*—s®*), the
above becomes :

ot [ [ 648 e
a d d
1= o >< : : ':ff r X s ‘!"‘fﬁbid"]""(fz")
s(a*—s") J Vet Zatsin® O Bg(a—r7) .
‘N P 0 s

+ in which, therefore, o =4 X (b,),, X .
Let us first discuss the first integral referring to all the molecunles
that pass the molecule which is sapposed not to move, without
ecoming in collision with it. We may write for it:

90 a .
7 __ff dr>< sin 6d8
' _—0 ™ a® cos® B—(a* —*) (1—L2¢p) '
0 Tm

As was already remarked above, the above calculations only hold
for temperatures ahove a certain limiting temperature 77, defined

O a
f dr sin 6d0 n Jfbid ] ’
S a’ .
0 s
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by 8, =090°% sind, = 1. This is namely the lowest temperaiure at
which a value for 0, is still possible. From ({6) follows namely
s? s

2
sin® 0, = — (1 - o), sothat — (1 4 ) can never become greater than
a a

1, hence ¢ never greater than (a’—s*): s* =1:4"
When we represent this limiting value of ¢ —= M: Luu?® by ¢,

i 9 we get therefore

3
e . 1 1—n?
mﬁ% ¢0:F: — e e . N )]
p_,g: iy {5 n
bl . . .
;,Lﬁ when we put the ratio s:a =mn. Accordingly, as long as ¢ remains

< g, (I'>T,), the quantity 1—A%p also remains >0 in the above
" integral.

0, 1s=90° in the limiling "case ¢ = ¢,; then all the entering
molecules colhde, also those that strike at an angle § = 90°, which
just reach the rim of the sphere » =13, and will yield there a
minimum value for r for the last time.

But as soon as the temperature becomes still lower, and ¢
becomnes > ¢,, all the enitering molecules collide without previous
minimum, i.e. they all strike at angles < 90° with the normal. For
these values of ¢ we shall therefore have to execute a separate
integration later on, i. e. for all the values from ¢ > ¢, top = (T'=0).

Now the integration with respect to » yields:
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dr 1 2,322 3
f . _ (Bgtgl/}” a*(p*—cos”6) ’
9 l/p%-“—a" (p*— c0s*B) «a Vp”— cos* @ a® (p*—cos® 6)
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. s < . .
- when we put 1—Lp =p*. As sin’0, = — (A 4+ g), cos*d, is therefore
-_— a

v

o~

a®—s? a

] 2__ o2 2 al—sz?
= 1—% 1+ =2 a,s (1 S (p) = ——— p*. Hence the quan-
2

¥ RN
=

tity p* is also = c0s*6,, so that p’—cos’d always remains

at—s?

_positive. For cos*@ is at most = ¢0s*0, in 1.

At the limit =, the quantity under the rootsign, viz. p** —a?
(p*—cos'8) is always = 0, because then dr: dt =0 (compare (39)).
Hence we have after introduction of the limuts:

0 )
> sn @d6 cos 8 1 da &

9
1
I '—-_—'—J — B ————=— ——_:Bgtg———_,
' “; Vp'— cs' 6 ¢ V p*=cos*6 “0 Vp—a? Vipt—a?
X .

when we write — dcos@ for sin”d0, and z for cosd, so that cos0,

is, represented by x, Now dBgty = du:V p*—2?, so that we find:
1%
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J—lBﬂt %o —lB’t1
T Vg 2
0
H a, 2 B l 2 2 S’ 2 2 H
8 P=o (see above), hence p'—u, =% =k'x,’.
. 24
Mualtiplying by the factor o X (—2——5, we have therefore for the
s(a"—s
first part of a:
a® 1 1 Vi ’
= By tg— = Bg*t .. (10
& wxs(a”—s’) 79 wxn(l———n“) A - (10)

Hence we find for this a value which no longer contains ¢ (hence 77),
so that the part of the constant of atiraction which refers to the
passing molecules, appears to be wndependent of the temperature.
This seems somewhat strange, because near the limiting temperature,
given by ¢, 6, gels near 90°, so that then the limits of /, with
respect to & gel nearer and nearer to each other, and finally coincide
at 8, =90° (¢ = ¢,). It would therefore be expected that a, would
become smaller and smaller according as 7’ decreases, and that it
would disappear at the limiting temperature. However, this is not
the case according to (10). The explanation may be found by an
examination of the paths of the molecules, which shows that with
the diminution of the velocity w, they occupy an ever larger portion
of the path within the sphere of attraction ; to which the circumstance
is added that the frequency for the angle, which is proportional to
sin 0, renches its mawmum exactly in the neighbourhood of & = 90°.

When n is near 1, i.e. @ near s (very thin sphere of attraction),

3

n
—, s0 that then a, approaches w:n®=w. As

Bg*tg approaches

2 SZ
stn?0y is = Z—’ A+ p), cos?0, = &> =1 —= (1 + o), so that . will

2_ gt

a
lie between = 1—n*==0 at bigh temperatures (p =0), and

a
(0) at lower temperatures (p = ip,). 0, lies, therefore, in both cases
in the neighbourhood of 90° hence the limits of infegration of I,
will almost coincide, viz. # between = 90° and 90° at high temperatures,
resp. (90°) and 90° at lower temperatures.

In the case n=1 the limiting value ¢, = (1—n’) : n* will lie near
0, i.e. T, near o, so. that the available range of temperature is
exceedingly small.

If, however, n is near 0, i.e. « very much larger than s {very
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large sphere of attraction), then Bg*lg approaches')!/, n*—an, hence

1 1
a, approaches o X — X 1 n* = w. Now z,° lies between 1—n*= =1
n

at high temperatures and (0) at low temperatures, so that at high
temperatures ¢ will lie between == 0° and 90°,, and at low
temperatures between (90°) and 90° And the limiting value of ¢,
is near oo, i.e. 7, near 0, so that the available range of temperature
is very-large in this case. That a, now becomes infinite, is not
astonishing, for o obtain a jinite value, F(r) should decrease much
more rapidly with » than is the case on our assumption (8) — viz.
in inverse ratio to #*. This assumption, however, only holds for not
too large values of a:s.

§ XVIL. Calculation of (a,),.

Now we must carry out the second integration in (7¢). This
applies, therefore, to all the molecules that cau come in collision,
as ¢ now rvemains smaller than {le limiting angle 0,. It should be
carried out in fwo stages, viz. from 2 (= cos ) =p to * ==, and
from #=1(0d=0) to a=p. For in the general integral with
respect to r (see § XVI), viz.

f Vi p'—a? (p—cos 6)

p* —cos* @ =p'—a*® will be positive in the first case, negative on
the other hand in the second case. Accordingly the first stage gives
rise to a Bgly, the second to a log. The first stage, integrated with
respect to r, yields:

1 N 2,9 P j,z
prt—a’ (p*—a*)\¢
Byt l/ =
aVp— (9 4 @ (p—a") )

because p? (1 -— j?) is=wa," (see § X¥I). Hence we have:

p

(1) = 1 [ du f B . ‘/.'vT—mo’]
— B L g9 ————|.
! Vp‘ Y I/—-—*—- Vp’—.’v’
Zo
V1t 1
1) Byty " s namely = Bgtg; = Bg cos n = L7 —n, hence Byg =
=t al—nn,
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) ; » 1
The first integral yields % (Bg tg v ) =1 [—7 — Byl ]
Vo — k

da
as d Bgtg is again = =
l/ps_mn
But the second integral cannot so easily be integrated. As then
) & du cy s
d Bgtg is = , the said integral becomes:

2

& —a? Vp"' —a?

V- —
f——"Bqtgdegtq= J Vo= o BqtgdeBatyJ,
& Vp

29
when we put (z'—a):(p* —.u)_—.g/ , which causes 2* to become
Py’ +2:1+y"), and +*—=a,’ to become y*(p'—uz,*):(1-4+y?.
With Bgtgy:tp the last integral passes into: N

Yam

f f sin lp _
Vtg 1"+( o : [/sm lp—}— €os IP
Ypw s
—k _ﬂ WP d,

JVITE

3

as V'p*—a,*:p in consequence of p* = ; %", hence p'—ua,’ =
a —$8
2

. § .
e ¥,?, can be replaced by = and x,*:p* by (v*—s*):a?, while

further

2
3 al

. al—s* —s* st a®—¢? st -
sin® P + o cos’ P = ——+ pr st — pr 1+ s sin? P

a

and s*:(a* —s*) = &*. The last transcendental, quasi-elliptical integral
can now easily (see appendix) be developed into a series, and then
be approximated. Previously we may observe that x,, hence ¢ (and
therefore also 7"), no longer occur in it, so that the result — like
that of the first part of ([,), — will not be dependent on
the temperature, as little as this was the case with [ (see § XVI).
It is fucther easy (o see that the said integral approaches

Yam
k sin

Vi sin? P

I

wdp = (97,

+ X 4+ a* in the limiting case n =1
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(a =), hence £ = oo; and in the opposite limiting case n==: (a: 5= o),
Yy

hence %£=0, approaches £ f sin P X p d :k(— P cos P -+

0
—{—fco.np (ltp> = i (—y cos ¢ + S?:?l‘lp), which yields the value %

between 0 and '/,7.

Hence the integral in question lies between'/;n* and k=s:V 0’ —s* =
=s:a=mn (as in the latter case s is infinitely small with respect
to a), so that we can represent it by

en X '/ n?,
in which & will lie between 1 (when n=1) and 8: a* =0,811
(when 7n=0). Accordingly the factor & is little variable. It appears
from the expansion into series (see Appendix A), that & becomes
= 0,845 for n =10,6 (i. e. s=20,6a).

We now have:

1 1
(Iz)lz_ %ng—qutg_ —‘5n><%“= ’
2a : k

so that taking the factor o X (2a:s(a*—s") into account, the fol-
lowing equation is found:

@), =0 X

n

. V1—n? .

Ifnisnear1 (a=s), this approaches w X [17*(1-n)-(1-n*)]=

1—»n

1) = 10,234 w. The limits of integration p and z, are

=au X a’

2 2

2
determined by «,* =1 —8—2 (l4¢)= ¢ = 1 —n'= =0 at bigh
. a

a7

temperatuves (¢ — 0), resp. (U) at lower temperatures (¢ =¢,), and
2
3

2, = (1), resp. (0); so that & lies between (0°) and = 90°

p
a
at high temperatures, and (90°) and (90°) at lower temperatures.
And if n s near 0 (a great with respect to s), then (a,), approaches to

11

1
o X — X [Ga*—2n)--@GF*—an)] = o X (#—2) = 1,14 w. Then we
n

have as limits of integration =1 for a, (p = 0), resp. (0) at p = g,
and (1), resp. (0) for p; so that 8 lies belween (0°)and = 0° at high
temperatures, and (90°) and (90°) at low {emperatures.

When (a,), is added to a,, we find for the part of the constant
of altraction a that is independent of the temperature (coming from
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the passing molecules and from the (not central) colliding molecules):

1—en

a, = a, +(a,)1=w><;(‘1—_:;;)—]4—ﬂz v e (12)

According to the above this part comprises the almost totality of
the angles of incidence, from 90° to near to 0°, at 4ig/ temperatores ; and
only a wery.small part, from 90° to near to 90° at lorv temperatures; i. e.
in the limiting cases n — 1 and n - 0. But also in intermediate cases
this continues to hold, because at high temperatures p* always lies in

a” a”—S8”

S X = 1, and at low temperatures
a*—s? a’

the neigbourhood of

a2

x 0=0.

always in the neighbourhood of ——
a”—s$§

Hence the vregion left for the part of a that is dependent on the
temperature, is the greater as the temperature becomes smaller.

l—=n
n(l—n®)

b J—

Now the quantity a_ in (12) lies between w X ta

1
ta'=ow X §a* forn=1,and © X — X }a* =0 for

1
= >< n(l—}—n) e n

n=~0.
§ XVIII. Calculation of (a,),.

We finally come to the calculation of the part that is dependent
on the temperature, and corresponds with the wmore central collisions
of the second stage of I, We now have for the integration ith
respect to r (cf § XVII):

a
.

‘f d
7V p*® 4 a(cos® G—p?) ,

5
in which cos* 0 ~— p* remains positive between the limits & = 0° and
8 = By cos p. The integral yields:

1 ( Vp*ri+a?(e'—p*)—a l/w’-——p“)
log
al/a;’ _p’ r

a

s

1 — a
== log (& — Va'—p*) — log— (V& —u,? — V> —p l
“l/m’—p"’\: g ( r*) 98 P

when cos¢is put again = w, and cos 7, = x,, 2,* being =

=p (1__‘;_2) (Cf. § XVI). Hence we have:

[y



1 1
() ll: da log a— at—p? f l/.q;“—a;o’—l/a;z—p’]
T Vi —p Vo' —p? Sa p '
P
We have written — dx for sin 0dt9:—-d cos 0. The minus sign
has—again been removed by reversing the limits of integration.
Besides — for the sake of homogeneity — a factor p has still been

introduced under both log. For s/, p we may also write Vp"——.v02~
The first integral can again be easily. integraled. d log is namely

d that we find for it:
= ———, so that we find for i
Vs
a:—Va:’—p’)l' ' 1—V1—p*
gl ————— | =— 4l ———=—13 Do
2 g( p 1 - .q p g 1 + |/1_
LV 1—p? may be

for which with a view to log* also — § log*

written.
The second presents again the same difficulties as the correspond-
ing Bgtg in § XVII. This becomes namely, d log now being =
& dz

V.'v’—q: 3 V’v’—p’ .

__[VL i Ionglog__[V I [/—Xdlog,

seeing that

l/’l, —&, —V'L ——]J & _-p
log I/p = = log [/(1——-— Q ( + l/% o )

while from (2*—p?®): (@°—=a,*) = y* follows a® = (p'—y’x,") : (1—y")
. 1—y

and “"——-.'o’.__—’ ”——.'0’ s (1—2). N 1 /——::———B 1 7 y

nd a*—a (p*—a,") : (l—y*). Now ogl/ Ty qtg hyp y

so that we find with Bgtghy =1:
1

Vo —a,’ P
ol f Pdp = kf—————cos i — P dip,
VT £k cos’h
]l — — tg’h P g 6o: e
at—g° a’—g?
because —— —|——— cos*h ¥ can be substituted for cos*sp — X
a’

X st hp, with sin*h p = cos*h p—1; ands (a’—s")is =k (see § X VII).

For ,*:p* we wmay namely wrile (a*—s*): a*, and (p*—a,?): p’
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1—p?

is = s*:a% The limits for & are 1 and p, hence [/

, 2

_w 2

and 0 for y, i.e. for fghy. Thus T—
p—a,

= 1:y/(1—tg*hw), or ty 0,: k and 1; p*—a,’ bemg = f*x,?, and a,*

Ve VI

l/p’——.'vu’ o

and 1 for cos hp=—=

being cos® 0,. Evidently the limuts for ¢ are log

tg 0 tg?
= log 9}6 "—I—‘/g]Cn °—1)and0,

as

Vo oy —Va—p  Veo—ai4 Vg
Bytghp = - log i sl =log v e 2
. l/]og—;b‘oﬂ sz_woz

In this #g0,: kis > 1, because now p <1.

Thus we obtain an integral of quite the same form as that of
§ XVII; with only this difference, that now hyperbolical cosinus is
put instead of the former sinus. When again we expand into &
series (see Appendix B), it appears that both at Aigh temperatures
(p = 0) and at low temperature (p = ¢, = 1:4*%) all the terms with
higher powers of log with respect to the first term disappear, so
that with close approximation we may write:

VLo + VA4 )y
V1—Fk ¢

— V1 + @log?

1

. .
in which ¢ is determined by the relation i:; sin* 8, =1 4+ ¢ (cf.
equation (6) of the previous paper), in consequence of which ¢y* 0, : &
becomes = (1 + ¢): (1—4"¢). (n has agam been written for
sra=~k: VJ_——H,’)

. o L VIp
When we now add the found inlegral to the first, viz. § log* ————

2

then (p* being = —~a— @,? == (L4-4%2,?, and »,* being = 1 — sin*0,
a?—s?

1+%

1[;5 , 14k Vp

=1— (L +), so that p* becomes = 1—%* ) we get:

V - V(IR
—|« n |/1—|—(p log* 1t _l__f___i_ )‘P:\,
l/ —k V31— ¢

so that taking into account the factor w X (2 a*: s(a®—s*), we get
the following form:

([:)z :T‘)_‘Z

-10 -
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T Vit V(A+E)p
— v 2 —
(@), = o X n(l—n)"’lfl L b log Vi=i ¢
1+% [/(p:l
— log* ———— . . (18
og ViF g 13)
Viteo+ l/(1—|—-]c2)(p ! \
As  log —— =
VI1I—i @
(1+7)p

[

14 SE—
144 1447
—} log Lf:l/( :L P 4 b () +ete.
1._[//£1ﬂ22 4

14
L4k vV 14k v
log —M8m8 — — L log—-—————:]c [/(/) -+ 1 ( )2 -+ etc.,
VT rg 1=k i

(a,), will evidently at high temperature (¢ near Q) approach to
CLI
1+¢ '

1
(az)a =w X -W(T'-Ta) [JZ l/]. +(p

i.e. with 4* =n*: (1—n? to

. 1 n @ n’
@), = X n (L—n?) [1—n’ VI——]——fp T 1 (,0:|,

@) =oXx
n

(ll—n’)xl-T—n(p (p=0 , . . . . (139
when ¢ is simply written for ¢: V1 4 . This becomes thevefore
properly =0 for 7'= . Then the limits of the original integral
(1,);, viz. p and 1, are equal, viz. = 1, which causes the limits ot
the angle of incidence ¢ to lie between (0°) and 0° (see also the
end of § XVII).

For low temperatures (p near ¢, = 1: %% we shall have:

1 |:l . ( 1 2 ) log? 2 :I
0 — o | — 09" ——— |
n(1—n?) J m VIi—E g V1&g
because then nV1f¢ is =1, and V{IF+E)p=VIito=1:n.

(aﬂ)! = ><

12 1 2
And as log| ——= ) = log — — i ] i
nd as log (n V) 09 ~ + log vz we may finally write with
i 1.
omission of Jog®>— in comparison with the infinitely large terms:
n

(p=1p, = 1:%) . (13)

1 1
@), =0 X — X loq; X log

2
nd—m) Vi-F g

-11 -
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This gets near to logarithmically infinite. Now the limits p and 1

arve evidently =0 and 1, so that ¢ lies between (90° and 0°, hence

comprises the whole region. .
When n =1 (@ =-3s), (a,), does not become = in [3 For
as ¢ can never become greater than 1:4*=(1—n*):n? (a,), remains

evidently smaller than o X 1e. <wX 3. Then (n=1—d)

1
n*(1+n)
log (L: n*) becomes 2 (1—mn) in (13%), so that (a,), will approach

w X log

Vi—kg

If on the other hand n =0 (a large with respect to s), then (a,),
approaches w X @ in (139¢), whereas this quantity will approach
" infinite X (log-infinite)® in (13%), i.e. will greatly increase, when the

temperature becomes lower.

§ XIX. Calculation of a.

When we finally add the part of a that is independent of the
temperatare, viz. a, = a, -} (a,), according to (12), to the part that
is dependent on the temperature according to (137), then we get at
high lemperature, taking o =} X (§,), X @ into account (compare
§ XVD): N

— w 1 )L n —
a_n(l-——n’) (—enjgor +1-{—n(p -

1 n
= B (L) (by), @ [(1~E")% a" + T (P:lv

or also
n

(p = 0) a:aw[l -}—’(1_872) TRy (p] =a, (1 +v¢), (14a)
in which therefore
&, = -/—5:”—(1——;82)-([),,) a, and y= . .
2n (1—n?) ® (1—en) (1 +n) /, n?
We remind the reader of the fact that the coefficient ¢ (see § X VII)
bas the value 1 for n =1, the value 8:x2* =0,811 for n=0, and
the value 0,845 for n=0,6. Further ¢ = J/V, in which M is the
maximum value of the function of force f(r) at contact of the
molecules, and NV the total number of molecules in the volume wv.
At low lemperatures (p = ¢, =1:%*) we get according to (13%):

logl/,,n 2 ]
-4 a=a_|l lo ... . (14b
(@ = ) w[ +1/‘n,(1_5n) ng_k,rp (14%)

-12 -
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That for ¢ =, the value of a becomes logarithmically infinite,
and does not get mnear exponentially infinite, as is the case on
agsumption of Bormzmanw’s temperature-distribution factor (for

Sfla)y=(e /RT—l):“/RT becomes of the order e® for 7'=0), is

already to be esteemed an advantage. But the above found logarithmic-
ally infinite will lead to an ordinavy finite mavimum, when we
consider that only the very definite velocity w,, which causes ¢ to
be = M:}pu=1:%, leads to this log ®. When we iake
MaxweLr’s Jaw of the distribution of welocities into account, the
adjacent velocities will not lead to log o, and this will accordingly
pass into a finite maximum. We shall come back to this later on.

We will, lowever, point out alveady here that ihe logarithmic
infinity for ¢ = ¢, is not bound o our special assumption (8) concerning
F(r). We shall see that this log-infinite value of a for ¢ =, is
found on amy supposition concerning X(r).

But the numerical values of the quanlities a_, and y in (147)e.g.
will of course be dependent on the said supposition. We possess a
kind of control for the case ¢ = 0,n = 1. According to (144) a_ then
becomes =1/, n* X (,),¢, because (1—en) then becomes — 1—n,
hence (1—-en):n(l—n*)=1:n (1 4+ n)="1/,. But according to the
ordinary (statical) theory, the attractive virial (see § 1X) must be

a

dP, .
=13/, rva‘zﬁ"’ —dr. When a=s, 7*=2s" can be brought before
”

the integral sign, and we have /& Nns* (1’,): =1/, Nns* (0— (—M)=
=,w Ns* X MN :v@sn=V:v). Hence we tind with /N = « for
a the value (b,) X @, so that the factor by which we have to muldiply,
would have to be =1, and not =/, ;2" = 0,617, as we have found.
In my opinion this conclusion can only be drawn from if, that
even in the limiting case 7'== o (p = 0) the factor of distribution
at the molecule surface (the sphere of attraction is infinitely thin
on the assumption @ =s) is not =1, as we assumed above in the
application of the statical -method, but slightly less in consequence
of the influence of the passing wolecules, which does not disappear
even for n =1, which is the cause that the full maximum value
M of the funclion of force is not reached. And the difference will
depend on the nature of the function of force used.

For n = 0,6 the facior of (b)), will get the value

2,467 % 0,483 1,192
1,2 0,64 0,768

= 1,55, which comes to this, that the attraction
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might be thought concentrated at a distance s1¥71,55 =1,16 s from
the centre of the considered molecule (the sphere of attraction
extends between s and 1,67 s for n = 0,6).

We saw alveady that ¢ rvepresents the quantity M :'/, pu,® In
this w, represents the mean relative velocity with which the mole-
cules penetrate the spliere of attraction. But this velocity is augmented
by a certain amount within the sphere of attraction, so that w, will
not be in direct relation with the temperature. For very large volumes
we may, however, entirely neglect this slight modification in the
velocity in comparison with the much larger part of the path passed
over with the velocity w,. Only for small volumes this is no longer
allowed, and in consequence of this new complications will make
their appearance.

We may now write:

M _ MN a Y
= wut YuNug 2% °,RT RT'
because the mean square of the relative velocity is twice that of
the squave of velocity U, iteelf, and */, B7’ may be written for
1, uw N Up. Acecording to all that was developed above,

_ L LAY
a=a, 1'%/1ﬁ+¥2 RT +" e e (15(1)

may therefore be wrvitten for a, according to (147) — at least for
not too low temperatures, and when also higher powers of ¢ are
taken into consideration; whereas for low temperatures (p near
¢, =1:%* an expression of the form

a=a_[1—2log Y l/l—-i N 1))
°° 7 s RT

will better answer the purpose, according to (14%).Inthisx =4* X /,e=

2

n

- X '/, @ in which it should be borne in mind that the log

1—n
is now negative, so that the minus sign before A becomes positive
again.

We have already pointed out before ihat the supposition of an
e:cceedz'ngly thin sphere of attraction, as is sometimes assumed, must
be entively excluded for several reasons'). To this comes the circum-
stance that for n = 1 the limiting temperature 7, in which a will become
logarithmically infinite (or at least maximum), is given by ¢, = 1 : 1? =
= (1--n*):n*, which for n =1 would give the value 0 for ¢,, i.c.
T—=w. And as it has been ‘experimentally found that the said

1) Cf. our first paper. .

-14 -



15

maximum lies at very low temperatures (a continues namely to
increase, for H, for instance, up to at least '/, 7%), the assumption
n - 1 must be quite rejected.

As the valne 0,08 (about) is found for '/,¢ with H,, the value

0,36
of RT, ="/, «: ¢, would become 06l X 0,08 = 0,045 wiihn=0,6

(.e. s=?%,a or a=1%,s), i.e. T, about 12°3 absolute. This is
very well possible, as we have seen that for H, the value of a is
still increasing up to 16° abs. (from a_ =370 X 10-6 to a;p =
= 740 X 10—6 about). What is very remarkable, is the fact that the
limiting temperature seems to he so close to the zriple point of H,.
viz. 14° abs.).

Fontamwent, Janunary 1918. (To be continued).
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