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. Physics. — “On the Course of the Values of a and b for Hydrogen
at  Different Temperatures and “Volumes”. 1V. (Continued).
By Dr. J. J. vax Liaar. (Communicaied by Prof. H. A. LoreNTz).

(Communicated in the meeting of March 23, 1918).
§ XX, The value of a below the limiting temperature.

In this case the integrations need no longer take place in different
slages, since a minimum distance 7,, which is dependent on 6, need
no longer be reckoned with, so that first the integration with respect
to 8 can be carvied oul, and then with respect to . All the entering
molecules, from 0 =0 to 0 = 90°, will now come in collision; for
{he limiting temperature 7, the molecules that strike under an
angle € =90° will just pass the mm of the molecule that is
supposed not to move. We have, (herefore, now (o integrate
(see § XVI):

a l/n
0 >< ff dr X sin 6 d6
a="/, 7)o ¢ 2 o2
1 (a*—s*) Via cos* 8 + (a*—2*) (k? ’/’_1)

in which &% is now always > 1, and in the limiting case p =, =1:4* ,
assumes the value L. When we pul (@*—2*) (#*p—1) = ¢*, we get

therefore:
X () >< fdaf d (a cos 6)
a="1, P ~
/ s) ‘/j Fatcos* 8

in which we may wrile for the second mlegml:

at+1¢*-a’
q

log (a cos 6 + /¢ -+a cos® gif/ﬁ = log

so that we have slill {o integrate:

2 (dr et
a:l/nX(b,l)w(tx‘;@(-—l——_:s?)f—z;log(g_l_l/l —*—%) . (\6)

If in the first place ¢ is near ¢, then ¢ approaches 0, and the
integral approaches (o .
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fd'z fdo L 2 ] l/atp_:'
— log —=— — — lo .
g Vk“' p—1 T

because ¢is =V i gp—1 X V'a*—*. Hence we have for the integral:

a

a Ve— d

—— log— — |log
V]s, (/2 s 1 s a

8

i

log

»
»

We have for the last integral with r:a =g, s:a=mn:

1 dx a* 1
log (1—=2%).— %( —}— + —}— ) o5 ®° (1—e'n?),
& n
n

in which s’ =1 for n=1, zmd 6:2*=0,608 for n=0. For

n

1 oot n® af
—-+ + + . —ﬂ,fmd + +3 + - “'"2(1 l—z+§+--)
is = ;— a? for n=1, and =n*forn=0. (Forn =0,6 ¢ = 0,674).

Hence we get finally:

1 1 | 9
T) a=_——— L [~—:ft2 1—&'n?) 4+ lo —lo —————J 17
(@S¢ om (I )( ) ( )+ log - 9”2(/)_1 7

When we compare this with (14%), where we found for values
of ¢ in the neighbourhood of ¢, (but < ¢, while ¢ remains

> ¢, in (16):
1 1
(P9 a= o (1 )( Deo a[ 7 (1—en) 4- log® —~+Z0g———log

7o)
Viegl
we observe with regard to the member that is independent of T a
discontinuity appearingatp = ¢,. [We have added, for a comparison, to

1 .
the first (finite) term the term log® —, which was cancelled in §18in
n

form. (130) by the side of the infinitely large logarithmic term].

1
- from the factor before the
- N

For n =1 we find (with the factor

1—n?

1 1
sign of integration)in the first casel—z— n? =1 a*, in the second case

1—n?
1 . 1 —n

4

1
:g 7.

1
And for n=0 we ﬁndl—?—‘n’, resp.

1 1 1 .
T x* 4 log"';:z a* + . This difference can be partly accounted

for by the sudden disappearance at ¢ = ¢, of the terms which refer
2
Proceedings Royal Acad. Amsterdam, Vol. XXI.



18

to the passing molecules, and which, therefore, do not occur any
more in (17). But in any case the difference is of no im}-)ortan‘ce,
as these terms, which are independent of ¢, remain finite with respect
to the term that depends on o, and logarithmically approaches infinity.
(In the case n=—=0, where — for infinitely large spheres of attraction —
the entire quantity a would become infinite, and accordingly our
derivation is no longer valid, the fact that Zog“}—l becomes infinite,
is of no importance at all).

We will still point out that for ¢ = ¢, a does not only become
logarithmically infinite with the form of f() assumed by us, but
with any arbitrary assumption about this. Compare for this Appendix C.

We suppose in the second place in (16) ¢ near oo (i.e. 7 near 0).

For the integral in (16) we may then write, as ¢ becomes very
large:
a [

fdrl ( 41 ) fdrxa a f dr
— log i —_ X —= .
T T 9 VEEp—1JrVa—r

s 8

i.e.

1 (l a-— Va’—r‘“)“ 1
0 =
V]c’q)—— g r s VI p—1

log 1 — log——-—

8

( a—Va—s

1 a+t Va—s
log .
Vigp—1 s
When the factor before the sign of integration is taken into
acconnt we get therefore: g

P - 1 1 14+ V1—nt
b, ] . (18
(T, 0) a= n (1—n?) X( 1o X Vigp—1 g n (18)

This approaches O therefore, when ¢ approaches o (7 approaches 0).
We may write for £*¢—1, after substitution of the value for ¢,
2 1 2 1 -
the expression ——; T . e 1/33’1‘ —1= 1—:;" —J/el;’ when 7" js near O.
Hence after the mawximum for a at ¢ = ¢, the atiraction steadily
decreases, and disappears at 0° abs. This result was to be foreseen.
In the original integral of the virial of attraction the radical quantity
in the denominator becomes namely — oo at 0° abs., when ¢ becomes
= oo. This radical quantity expresses the relative increase of velocity
in the sphere of attraction, and as this increase remains finite with
respect to u, =0, the relative increase will become infinitely great.
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And this relative increase of velocity entirely determines the densi
in the sphere of attraction, which is in inverse ratio to it.

We observe once more here, that the earlier Bonrzmann theos
would give an exponentially infinite value for a at 0° abs., where:
in 1eality it is = 0.

1+V1—p
n

1
For n=1 (a==s) the limiting value of e will be = log

l/l—n With l/

1:m, so that then a will approach (b,) , a X

i

— in Vidp—1 (see above) this become

/RT

A2

For n =0 (a great with respect to s) the absolute zero coincide
with the hmiting temperature, given by ¢, =1:4*=(1—n?:n

1 1
For then ¢,—w (7,=0). In (18) Lim — log becomes further — —log Gl
. n n n
. 1. 2 1
so that then a will approach (b,),, & X ~ log ;)( , whic

Vo
RT

again becomes =— 0 for 7'=0, so long as n is not absolutely = (
which of coarse would be practically impossible.

Summarising we can therefore state, in agreement with the abovi
developed exact theory concerning the quantity a for very larg
volume, that a, from a limiting value at 7'= oo, steadily increase
to a mazmimum wvalue at T = T,, after which it decreases again
till a has become = O at the absolute zero. The mentioned limitin
temperature 7', is then determined by R7T, =1/, @:p,, in whicl
¢, =1A—n*:n*. (n==s:4a, in which s represents the diameter o
a molecule, and @ the radius of the sphere of atfraction). For H
T, is about= 47}, the ratio of the values of a,, a, and a,.bein
1:1%,:2.

In the next paper we shall briefly discuss the influence of MAXWELL’s
distribution of velocity, and then treat the course of the quantity
b from T'=w to T=0, likewise al large volume. Then the values
of a and b for small volumes will be considered, so as to make a
complete theoretical insight possible concerning the whole course of
a and b along the boundarvy line, both along the vapour branch
and along the liquid branch.

Fontanivent, January 1918. ~ (To be continued).
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APPENDIX.

Uom

A. The integral % f
VIE¥E sin in P

sin P

wdy. (addition to § XVII).

—

When we expand this into a series through repeated partial
integration, we get:
W’ P dP  idyp ¢ 4P

sin P
— ' ydyp=|P.pdp=— P— — T,
V147 sin® lpq V= = 6dlp+24dlp2 120d’1p“+

in which (through w) all the terms at the lower limit O disappear.
And for the upper limit all the odd differential quotients of P will
disappear, because in this cosy occurs as factor. Indeed, when we

. dw .
ut 144* sin P = w, so that — becomes = 2 £* sin vy cos 1, we have:
p Y v !

aP smu cos P — It sntyp 1
—_—— 15 (2lc sin W cos P) + ok = cos Y i + — o
2 w'le b

av
= cos tp( —w —) cos
o',

da*P , 08 y stn P 3&* cos® P 1
—d_E‘; =— (’]c2 stn P cosP) — T stn P ( it o) =
. (3 (14+%%) 2 )
=—sPp| —F— ——— |,
wh w2

because £* cos®p = A'—ksin® ¢ = A*—(w—1) = (1+4*)—w. We have

further:

aP ) 15 (14+%7) 6 e 3(1 —}—k’) 2
d—lp—‘; = —sn (7/2 — m) (—&* stnap cost;)—cosnp( o oh
D 15 (14+4) 6 3(A+4) 2
= — cos P l:( ( T )_ />(1— )+< ok T/;):I
1 k 2 6 4
— o 51+ )_12(1+7c)+ +2).
w2 s s
And also:

d‘,P__ 105 (1% 60(14+%% -+ 30 12 2
ap—‘ = —cosY ( o7 — o + 6‘7«) (—4&? sin W eosp) +

15 (142 12 (144 46 4
+8M( (L4F) 13048+ +m)

w’fs
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/105 (14%?) 60 (1+4) + 30 12
=y | (2D REHIER L D) — ot
w2 w'i2 w2z )

54+ 12(14-# 6 4
NI R )]

w'h w’ls w?la

'l 'l w’l ’h

) [105(1+/c'~)"60(1+/c2)=+x20(1’+k2) 60(144") +24 8}
=smnYP + .

Ete. Etc. As has been said, all the odd differential quotients dis-
appear for ¢ =1/,7, and as o becomes =1+ £ for p="1/,7,

we keep:
&P\ 1 1
e
di P 15 12 6 4 9 8 . 1—8 &*
(W)vf of: o ok ok (QLEE - (LEEE (L+E)h

For the sake of brevity we have only taken the part with sin ¢
into account in the last calculation of the two differential quotients:
that with . 1 0. I ¢ *P v ¢ sin P

at with cosy is namely = 0. L. e. of — only the part ———,

Y J e J p o'/,

4

and of e only the part with sinp in the first of the three lines

belonging to this. The other parts have every time been necessary
for the determination of the next higher differential quotient. Proceeding,
we should have found:

ap 225 360 136 1-—-88%*-136%*

ap = \@Rh R { +k“-)%) N (SN

The coefficients of the highest powers of 1 4 £* are in all these
results resp. = 17, (1 X 3)*, (1 X 3 X 5)*, etc. The sum of the
coefficients is always = 1. (9 —8=1; 225 — 360 + 136 =1).
Hence we get now, taking into consideration that k: V' (1 4 A% =
R n, and (P)yx =1:V14%%

Val—s* Val—s* a

4

S a

Yy . ) . . .
k __izﬁw___q) dp = n[( /1) — 1 - (/s7)
VI4E sin® 2 1-+&* 24
0

1— 8k (/)  1—88K*136% (*/,x)°

+(1+k”)’ 720 (I+#)° 40820

in which we may also write 1 —n? for 1: (1 4 #*) = (a*—s*): a’.
The above series is convergent, as is easily seen from the structnre
of the factors (1 —84%:(1 4 A*'h =9:(1 + &) =8 (1 4 &), etc.

+ etc.:|,
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For large values of k(a =3, i.e. » =1) it converges very greatly,
and rapidly approaches the first term, i.e. n X '/ @’

For small values of % (near 0, i.e. a large with re_si)ect tos,n=0)
the series becomes:

n 13 (3)nt— & (1. + 75 (/)n* — etc.] =n (1 — cos & n): n.

For the two limiting cases n =1 and n =0 we, theletme find
back the same values as we had already found by direct integration
in the text of § 17.

When n~=0,6, we get 1—84* = 1—45=—35, 1884 4
-+ 1364 = 1—49,5 + 43,0 == —5,5, 1: (1 + £*) = 0,64, so that
with '/, #* = 2, 4674, the integral being put = en X */, 7 (cf. the text
of § 17), we find from
1 (/07 1—8k (/,n)* 1—88i* 4186k (/,x)°

e=1—10 % 12 T({iky 860 (L& 20160 T ot
for &« the value
1—0,1316—0,02425 4+ 0,00107 ...=0,8452 ... = 0,845.
B. The integral ]'If SR wdp (addition to § XVIII),
VI+E coshp

by %
In entirely the same way as for the above treated integral we
find through repeated partial integration:

t9°6,
1 g0
' cos kP g — — tgb, log & {‘1-‘/_7_3
V147 cos® hp sech, 2 sec® 6, 6
g k

3145 2\ log*
AL ( sec* 4, —‘sec“t90> 24

tg*d, 15(1+%)  12(1+%)+6 4 Y\ logt
—k [/ i ! ( sec’f,  sec, +sec“t9 )E(—) 1 efe :[

a,
in which log represents Zog( 96 °+ I/t(] )

In this it has been taken into account that d cosh ¢ = sink ¢ and
d sitnh @ = cosh ¢, and that further — £* cos*/ ¥ can again be replaced
by 1—w (when namely 1 -+ £*cos’h ¢ is put = w) and — £* sin*h ¢
by — £* cos’h ¢ + &' = (L + £*) — w. Now the terms with odd powers
of 9 do not disappear, because at the lower limit the factor sink 1,
which occurs for these powers, does not disappear (as for the above
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19°0,
9 —1,

tl eated integral cos ¥ at the upper limtt), but becomes = I/

because coshp then is =190, : k. At the upper limit evexything
disappears, because then ¥ = 0. (Besides, the terms with odd powers
of w still contain the factor sinky, which now likewise becomes
=0, because coshp becomes —1 at the upper limit. (Cf. further
the text of § 18)). We may, therefore, write:

Zoq rO3(L-+-EY) 2 log*
]cf [%n 8, | —+ ((I—}—tqlﬂn)“ I —i—tg?ﬁo) -+ etc.
l/tgw -7 log? (15(1+k’) 12(1 4846
N 1+1g°6, 3“&9’9 5 T (L+1°0)"  (1+tg°0,) *

4 log*
T 1—|—tg’00) 120 (]

Let us now introduce the quantity ¢, determined by equation (6)
of the last paper but one, viz.

—_— 87:1 0 — 1 + 0 — 1 + (
1] ]
32 ' l/zyfuo2 p

in which, therefore, ¢ depends on the femperature (determined, by

becanse £* (1-}-¢):

Yuw®). For 1 4 tg*0, we may write 1+L£’

: (1—~£4%p) may be substituted for #g*0, _—_Z-; A4} (] ——% ¥ —|—(p))

U

with azb == k*. For tg*0,—4i* we find A*(1 44 : (1—A%p), so that
we get:
k log (L—#p) (1 —3% )log ‘
k| = — V1igq — + - etc
f [l/ 142 7% 1+ i
ke z 1k (plog ((1—7{:"’(;)2 (9—15/c'(f) .
144 6 FEwDY
_ (L=Fq) (8—12k¢)\ og
1+5 )Tz_o +ete. ”
in which
‘/ 3
log:log( oL tq(/ _1) |/]+(p+ (l—l-lc)(p
Vl—k’rp

Let us now examine, what are the limiting values to which the
found integral approaches at high {emperatures, and at low tempe-
ratures (p near ¢, =1 - 4.

At hyh temperatures (p = 0) log draws near to log1l =0, so
that all the terms with high powers of log are cancelled by the



/ Icf_—_ — 12 VT 4 ¢ log? Vl—}—-(p-}—V(l—i—]c’)rp

R
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side of the first term, and besides the whole part with £} ¢ disap-
pears. That in this case only the first term with [og® remains, follows
also from this that ig 0, = &* (1) : (1—4i%p) approaches % for
¢ =0, so that in case of equality of the limits of the original integral
the factor & coshy:V 15k cos’hw =k :V'14-4* does not change
between them (with respect to the log that becomes O at both the
limits), and can accordingly be brought outside the integral sign.
At low temperatures (but higher than the limiting temperature

T,, determined by ¢, =1:%* the whole second part of /of will

again disappear in consequence of the factor 1—£%*p, which approaches

0, whereas of the first partagain only the first term with log* remains.

In this case coshyw=1g0,: k= at the lower limit, and the

factor of wdy in the integral can again be placed outside the integral

- sign at this limit, which now prevails since the log becomes infinite
there. At the other limit the log is namely —O0.

With close approximation we may, therefore, write (n has been

written for £:V1+1' =s:a):

G
with neglect of all the terms with higher powers of log. Only at
intermediary temperatures the omitted part can have any influence
— but the difference brought about by this might possibly be made
to disappear entirely on a somewhat modified assumption concerning
S (@) between a and s (see § XVI).

C. The quantity a for ¢ = ¢, = 1:%*. (addition to § XX).
The original integral was (cf § 16):

alfgw

_ (£ e )drXsin 048
a=1} X (by), ¢ X s(a —&* )ff |

|/1—~sm0+fpf(7)

We may also write for the 1ntegml

r?*(— f'(»)) dr d (acos0) 170 , (a a’)_
=— | (—f'(»))drlog{ — 14 —
ff‘/,) (/)f(")—(a — ") +-a’cos’0 GJ ( f( )) 09 ¢ + V + gn ,

when Mo f)—@—r?) =¢* is put. When f(r) is generally
i

_—:i;, so that this duly becomes =1 for»=s, then — f'(») =
.

al dqg = ad *—?)., H 1
— —_— e — ), 1 R
e and ¢ pr; (@*—*). Hence we now have

-10 -
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a

ta? st—1 dr a al
— (b l — _|_ l/l +. — |
2= (e X a*—s? fv"—l Og(q q’)

s

in which the quantity ¢ for the lower limit passes into ¢s* — (a*— s%),

. a*—s* 1—p?
which becomes — 0 for ¢ = —=——=— as before. The
s? n? &

value of a will, thevefore, again approach to logarithmically infinite
for o =1¢,==1:4*. This is, accordingly, entirely independent of the
exponent ¢ in the assumed law of force f(r)..r—%
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