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Physics. -- "On tlte COIwse oj tlte Vrtlues of a and b JO?' Hyeb'ogen 

at ])~/lel'ent 'l'empemtU1'es mul ~Vohtmes". IV., (Continued). 
By DI'. J. J. VAN LAAH. (Communiealed by Prof. H. A. LORENTZ). 

(Communicated in the meeting of March ~3, 1918). 

~ XX. The value of a below tbe limiting temperature. 

In this càse the integ)'ations need 110 10llger take plaee in different 
stages, sinee a minimum distallee l'm, which is elepenelent on e, need 
no longel' be I'eckoned with, so that th'st the integ\'ation with l'espect 
to fJ ('an be ea,l'l'ied ouL, allel lhen with respect 101'. All the enterilIg 
molecnles, from 0 = 0 to 0 = 90°, wiIi 110W come ill collision ; fol' 
the limiting tempel'ü.ture 'To the molecnles that strike nJlcler an 
angle fJ = 90° will jnst pass the )'1111 of the moleenle that is' 
supposed not to mo\'e. 'Ve have, themfo1'e, now Lo integl'ate 
(see § XVI): 

a I/~" 

2a
4 IJ cl?, X sin fJ de 

a = 1/2 X (b")rJJ cc X 2 ' 
S (a 2_s ) ?' Va" cos' e + (a"-?'") (Ic· I/, -1) 

o 

in \V hielt /C21f' is now always > 1, and in the limiting case (p = CPo = t : Á;' , 

assumes the valne 1. When we pnt (a2_1,2) (l~2(p~j) = q\ we get 
the1'e1'ol'e: 

ct 0 

2a
3 fel?'} d (a cos fJ) 

a = 1/2 X (bq)rJJcc X s ((I~ _S2) -; ~/ I/+a" cos~ e' 
. ~" 

in which we ma,y write fol' Ille second integl'l11: 

-----0 a+Vgl+a" 
log (a cos (j + V ql-l- a· cos· fJ)I/_ = log , 

• 2" q 

so that we IW,\'8 still to integrate: 

. (16) 

lf in tlle fil'st pla.ee (P is l1eal' ({Jo. tlton q approaches 0, ancl Ihe 

integl'al appl'oaclles 10 



- 3 -

17 

Ja d1' 2a Ja d,' [ 2 v' a' -1"J 
- log - = - log --=--= - log , 
r q l' Vp p-l a 

... 
beCaU5e q is = VX;'cp-l X Vi"t 2-1". Henee we have fol' the integral: 

a 

2 a f Va2-r' d1' 
log --=--= log - - log . - . 

Vlc' p-l s a l' 

We have for the last integral with 1': a = x, oS: a = n: 

in whieh tJ' = 1 for n =1, and 6:.IT' = 0,608 fol' n , 0. FOl' 

1 1 1 1 n2 n4 
n° (n' n4 

) 

1 +"4 +"9 + .. = 6 n 2
, and 1 + 4" + 9 + .. = n' 1 f--"4 + 9 + .. 

1 
is =-Jl' for n=l, and =n'forn=O. (Forn=0,61;'=O,674). 

4. 

Hence we get finally: 

1 [1' , 1 2 ] (cp > Po) a = ----(b,,}"" a - Jl"' (I-I; n') + log -log .(17) 
2~ (l-n') 12 11' VP(p-1 

When we compare this with (14b), where we found fol' vallles 
of (P in the neighbourhood of (Po (but < (Po. while (p l'emains 
> CPo in (16)): 

1 [1 1 1 2 J (cp < Po) a = ----. (bq)""a - n;2 (l-€n) + log' -+log-log , 
2n (1-n-) _ 4 n n' Vl-k2p 

we observe with regm'd \0 the membel' that is independent of T, a 
diseontinuity appea1"Ïngat (P = (PO' [We have added, for a eomparison, to 

1
1. 

the first (finite) tel'lll the term og2 -, wInch was caneelled in § 18 in 
n 

form. (13b) by the side of the infiuitely large logal'ithmic term]. 
1 

FOl' n = 1 we find (with the factor -- from the faetol' befOl'e the 
1- n' 

1 l-n' 1 
sign ofintegration) in thc fir!::lt case- n 2 

--= - n;', in the second case 
12 l-n' 12 

1 
And for n = () we fiud - .7l', resp. 

12 

This cliffel'ence cau be pal'lly accounted , 

fOl' by the sudden disappeal'ance at cp = (ro of the terIns whieh refel' 
2 

Proceedings Royal Acad. Amsterdam, Vol. XXI. 
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to the passing molecules, and which, thel'efore, do not O~CUl' any 
more in (17). But in any case the difference is of no importan,ce, 
as these terms, whieh are independent of rp, l'emain finite with respect 
to the term that depends OII rp, and logarithmically approaches infinity. 
lIn the case n= 0, where -- for infinitely large sphet'es of attmction -
the entire qllantity a wOllld become inlinite, and arcol'dingly our 

1 
del'ivation is no longel' vahd, the fact that log' - becomes iJlfinite, 

n 
is of no importance at all). 

We wil! btill point out that for rp = rpo a does not only become 
logarithmically infinite with the fOl'm of J(1') assumed by ns, but 
with an)' arbitl'ary assnmption about this. Compal'e for this Appendix C. 

We suppose in the second place in (16) rp near 00 (i.e. T near 0). 

For the integml in (16) we may then wrÏte, as q becomes very 
large: 

a 

Jd
1' (a a") Jd

1' a a 1 dr -log -+1+12" = -x-= --=, 
r q q r q VPrp-I l' Va"-r' 

s 

i.e. 

1 ( a- Va'-1'2)a 1 ( a- Va 2-s' -= log = ---- log 1 - log = 
VPp-I r s VPrp-I S 

1 a + Va'-s' 
=----log 

.VPrp-1 s 

When the factor before the sign of integration is taken into { 
acconnt we get therefore: 

1 1 1 + VI-no 
a = (1 2) X (bq)ooa X V-== log . (18) 

n -n lc2rp-1 n (
rp __ 00) 
1'--0 ---

This approaches ° therefoJ'e, when lP approaches 00 (1' approaches 0). 
We may Wl'ite for k2 lP-1, aftel' substitution of the value for cp, 

n2 1/ a n2 1/ a -
tile expression I-n0 ;'1' - 1 = l-n2 R

3

T' when l' is near O. 

Hence aftel' the ma,vimum for a at lP = (Po the attr'action steadily 
decreases, and disapperl1's at 0° abs, This result was to be foreseen. 
In the original integral of the virial of attraction the radieal quantity 
in the denominatol' becomes namely = 00 at 0° abs., when Cf' becomes 
= 00. This radical quantity expl'esses the relative increase of velocity 
in the sphere of attraction, and as this increase remains finite with 
respect to U o = 0, the ?'elative inCl'ease wiII become infinitely gl'eat. 
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And th is relative incl'ease of velocity entire!y de{el'mines the densi 
in the sp here of attl'action, whieh is in inverse ratio to it. 

We obsel've once more here, that the earlier BOr,TZlIfANN theol 
would give an e.'Cponentiatly il~finite value t'or a at 0° abs., wherei 
in leality it is = 0. 

l..' 1 ( ) h l' .. 1 f 1 '11 I 1 + V1-n
2 

J:' or n= (1,=8 t e lmlhng va ue 0 -- Wl be = oq ---_ 
-- 1_n2 • n 

1 V n2
' ' = I / • With -- in Vk~cp-1 (see above) this becomE 

v-1-n2 1-n2 

1 : n, so that then a wil! approach (bq) <Xl a X' // RT. 
V l/~ex 

For n = ° (a great with respect to 8) the absolute zero eoincidE 

with the hmiting tempemtme, given by CPo = 1: k2 = (1-n2
): n 

For th en CPo=OO \ To=O). In (18) Lim ~ log becomes further = ~log ~ 
n n n 
1 2 1 

so that then a wiII approach (bg) <Xl a X -log-X ,whic 
- n n V 2 lis ex 

n ---1 
RT 

again becomes = ° fol' T = 0, so long as n is not absolutely = ( 
which of conrse wonld be practically impossible. 

Summarising we ean therefol'e state, in agreement with the abovi 
del'eloped exact theory concerning the qllantity a for very larf! 
volume, that a, from a Iimiting value at T = 00, steadily increase 
to a maximum value at T = T o, aftel' which it deereases ag'ain 
till a has become = ° at the ab,solute zero. The mentioned limitin! 
temperatm'e To is then determined by R 1: = lis a: 'Po' in whicl 
(fa = (1-n 2

) : n2
• (H = 8 : a, in whieh 8 represents the diameter 0 

a molecule, and a the radius of the sphere of ath·aetion). For H 
'Po is abou t = t T,~, the ratio of the val ues of aoo ' ah and ao ~ bein~ 

1: 11/8 : 2. 
In the next paper we shall brietly discl1sS the intlllence of MAXWELL'~ 

distl'ibution of velocity , and then treat tbe course, of the quantit), 
b fl'om T = 00 to T = 0, likewjse aL large volume. Then the valuef 
of a and b for 8rnall volumes wilt be considered, so as to make 8 

complete theoretical insight possible concernjng th~ 'l.1J!lOle course oi 
a anel b along the boundal'Y line, both along the vapoul' bl'anf'h 
ano along the liquid branch., 

Fontanivent, ,Tanual'y 1918. (To be continued). 

2* 
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APPEN DIX. 

1/2" 

1 sin,~ 
A. The integral k ~(ltp. (addition to ~ XVII). 

V1+P sin~ o 

When we expand this into a series through repeated partial 
integl'ation, we get: 

fï sin ti' J '1,2 tI,u dP ,/,4 d2 t" 'l/l' dB P 
:-7-==::::0=::=:== t/'d t" = P. tI,dtf, =- P --- + -----+ .. , 
V1+lc· 2 sin2 1" 2 6 dtl' 24dt/'2 120dt/,u 

in whieh (tbrough 'I') all 1he tel'ms at the lowel' limit 0 disappear. 
And fol' the nppel' limit all the adel differential quotients of P will 
disappear, because in this cos ti' oceUl"S as factor. Indeed, when we 

. dw . 
put 1+k2 sm 'ti' = w, so tbat - becomes = 2 k2 sm ." cos 1/', we have: 

dtf' 

dP sint/' cos 1/' (_lC2 sin 2 tI' 1) - = - ~ -'/- (2lc 2 sin 1/' co" 1/') + -/- = cos tI' ~I _ + -I/ = ät/' w' ~ wl 
2 W 2 W 2 

d2 P cos 1/' sin l~ (3P cos2 tf' 1) -. = - 1- -- (~Jc2 ~in 1/' ,cos~) - -,-= - sin lP ---+ -/ = 
dtf'2 W'/2 W /2 w 5!, W S 2 

. (3 (1 +Jc2) 2 ) = - szn lP '/ --I ' w· 2 W S 
2 

because k2 cos'tJ, = k2-k2sin2 1/' = k2-(w-l) = (1+k2)-w. We have 
ftather: 

And also: 

d·P = -costJ, (105 (1+Jc2) 
d~. W

9
/ 2 
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. l'-( 105 (l+P) 
=szn tfJ 0/ w 2 

Etc. Etc. As haó been said, all the odd diffel'ential quotients dis­
appeal' for tfJ = 1/s:r, and as w becomes = 1 + k2 fol' t~ = 1/,«;, 
we keep: 

FOl' the sake of bl'evity we have onl,}' taken the part with sin t/J 
into account in the last calclllation of the two differential quotien ts : 

d2P sin ti' 
that with cos tfJ is narnely = O. I. e. of - onl \' the part -- -s/ ' 

dl/'" ol w , 

and of d
4

P only the part with sin tI' in the first of the three lines 
dtfJ4 

belonging to this. The other parts have evel'Y time been necessal'y 
for the determination of lhe next higher diffel'ential quotient. Proceeding, 
we should have found: 

The coefficients of the highest powel's of 1 + k~ are in all these 
results resp. = 1~, (1 X 3)~, (1 X 3 X 5)\ etc. The sum of the 
coefficients is always = 1. 19 - 8 = 1 j 225 - 360 + 136 = 1). 
Hence we get now, taking into consideration tbat k: V (1 + k2

) = 
s a .~ V--

= --==: -===-= n, and (P)l/,rr = 1: 1+k2: 
V a2-s~ Va 2-s' a 

in which we mayalso write 1 -n' fol' 1 : (1 + lc~) = (a2 
__ s2

): a'. 
The above series is conveJ'gent, as is easily seen fl'om the structnre 
of the factors (1 -81.~): (1 + k')6/2 = 9: (1 + k~)6/2 = 8 (1 + k')6/~, ete. 
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For large values of k (a = s, i. e. n = 1) it convel'ges ,'ery greatly, 

an,d rapidly approaches the first term, i. e. n X 1 /str2. 

For smalt values of k (near 0, i. e. a large with respect to s, 12 = 0) 

the series becomes: 

n l~ ü)n2 - 2\ C /~~)4 +' 7 h e/~)7f6 - etc,] = n (1 - cos ~ ~)=~. 
For the two limiting cases 11, = 1 and n = ° we, theret'ore, nnd 

~ back the same vallles as we had already found by direct integl'ation 
in the text ,of § 17. 

When nF 0,6, we get 1-8k' = 1-4,5 = - 3,5, 1-88A,~ + 
+ 136h,4 = 1-49,5 + 43,0 = -5,5, 1: (1 + k2

) = 0,64, so that 
with 1/4~' = 2,4674, the integral being put = En X l/S tr (cf. the text 

of § 17), we find from 

1 e/,a)~ 1-SP (I/2tr)4 1-S8P+136k4 C/2:r)6 
IJ = 1- 1+k~ ~ + (1 +k2)2 360- (1+k2)3 20160 + etc, 

fol' t: the value 
1-0,1316-0,02425 + 0,00107 , .. = 0,8452 ... = 0,845. 

1 

. t 1 1 cosh t~ t dd' . The In egra '-V ----.-- ~(i tf' (a Itron to ~ XVIII). 
1+k2 cos2h~ 

B. 

tgeo k 

In entirely the same way as fol' the above Ireated integral we 
find through l'epeated partial integration: 

V tg2fJ 

fi
l cos lt ~ [ tgfJ 0 log2 k ~..'!.. - 1 log3 

k ~d.p=- --- -+ 
VI +p cos 2 7t~ secfJo 2 sec3 8 0 6 

"io k 

12(1 +k2) + 6 4) log~ ] 
ófJ + ~fJ 120 + etc. I sec 0 sec 0 

1 1 (tqfJ~ Vtq2{)O ) 
in which og represents og k+ ~ -1 . 

In this it has been taken into acrt)l1nt that d cosh ~ = sinlz ~ and 
cl sinh tf' = cosh tf', and that further - k' cos2h ." can again be replaced 
by 1-w (when namely 1 + k2 cos2h tfJ is put = w) and - k2 sin2 /z ~ 
by - k2 cos'h l~ + k2 = (1 + k2

) - w. Now the terms with odd powers 
of t', do not disappeal', becallse at the lowel' limit the factor sinlz tf': 
which OCClll'S fol' these powers, does not disappear (as for (he above 
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- . Vtg20 
treated integral cos tI' at the upper limIt), but becomes = ~-J, 

because cosh 'tI' then is = tgOo : k. At Lhe upper limit everything 
disappeal's, because then lP = O. (Besldes, the tel'ms with odd powel's 
of 'tI' still contain the factor sin/t ti', which now likewi5e becomes 
= 0, became cos/t 'tp becomes = 1 at the upper limit. - (Cf. further 
the text of ~ 't8». We may, the1'ef01'e, wl'ite: 

J [. \lo.g~·( 3(t+P) 2 )lot 1 
k = - ,nn80 /"2"-+ (l+tg28

0
)2 1+tg28

0 
4 + etcï -

V tg280-P \ 1 log3 (15(1+P) 12(1 +P)+6 
- 1+tg28, /1+tg28 0 6 + (lttg'()O)3- (l+tg~Oo)' + 

+ 1+:gz8J~;~ + ete·tl 
Let us now intl'oduce the quantity (P, detel'mined by eqnation (6) 

of tbe last paper but one, viz. 
al ~1 
- sin' 0 0 = 1 + -- = 1 + (P, 
S2 l/z(lu o' 

in which, thel'efore, rp depends on the tempel'atul'e (determined by 
l-k'(p 

1/,f1'l60
2). For 1 + tg200 \ve may wl'ite 1+L;-' becanse k2 (l+cp): 

: (1-k'(p) may be substituted fol' tg2(}O = S2 (1+(p): (:1 _ s~ (:l +cp)) 
aZ a' 

s' 
\,'irh --- = k 2

• For tg280-L2 we find k'(l +L')cp: (l-k'(p), so tbat 
aZ-s' 

we get: 

J [ k v--l log2 (1-k'(p)(l-3k2
qJ)log4 I 

k =- --- 1+(p -+ -+etc.-
V1+P 2 1+k2 24 

\ 1-lc2 (plol (1-P<f)2 (9-15k2v) 
~ k Vcp 11+k' 6 + (1+k')2 -

(1-kZrp) (S-12k2(!')) lol IJ 
- 1 + k2 120 + ete. \ 

in which 

l l (
t90o VtlOo -) l Vf+cp + V(l+k')cp 

og = og - + -- - 1 = og • 
, k le 2 

• V1-k'(p 

Let us now exa.mine, wbat are the limiting values to whieh the 
found integral appI'oaches at higb temperatmes, and at low tempe­
l'atlll'es (rp neal' CPo = 1 . k'). 

At luglt temperatnl'es (cp = 0) log draws near to lO,q 1 = 0, 80 

that all tlle tel'ms with high powers of log are cancelled by the 
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side of the first term, and besides the whole part with kVep disap­
peal's. That in this case only the fh'st term with lorll'emains, follows 
also from this that tg 00 = k~ (l+(p) : (l-klep) approaches k for 
cp = 0, so toat in {'ase of eqllality of tlle limits of the ol'iginal integral 

the factor k cos lH~' : V 1+k2 cos2h tf' = k ;...V 1+k2 does not change 
bet ween them (with respect to the log that becomes ° at hoth the 
limits), and can accordingly be lwought Olltside the integral sign. 

At low tempemtures (but higher than the limiting tempel'ature 

To, determined by (Po = 1 : k2
) the whole second part of kJ wil! 

again dlsappear iu conseqllence of the factor l-k'IF, which approaches 
0, whel'eas of the fit'st part ag'ain only the first term with log~ remains. 
In this case cos h lP = tg (jo : k = 00 at the lowel' limit, and the 
factor of 1/,d1/' in the integl'al can again be placed outside the integml 
sign at tbis limit, which now prevails since the lo,'7 becomes infinite 
there. At the other limit the log is namely = 0. 

With close approximation we may, thel'efore, write (n has been 

written for k: Vl+k~ = S: a): 

J V
-- VI+cp+V(1+k2)(p 

k = - ! nI-+- Cf log' , 
VI-Pep 

with neglect of all the terms with higher powers of log. Only at 
intermediary temperatllres tbe omitted part cau have any inflllence 
- but the difference brought about by this might possiblj be made 
10 diCJappear entirely on a somewhat modified assumption concerning 
1(1') between a and s (see § XVI) . 

C. The quantlty a for (p = (ro = 1 : k2
• (addition to § XX). 

The original integl'al was (cf § 16): 
a 1/21t 

) 
2a4 iJ 1'(-!'(1'»d,'Xsin()d8 

a = ! X (bg 00 a X 0 • 

s(a2 -s-) V a2 

s 0 I--sin (j + cpy(,,) 
,,2 

We mayalso write for the integml: 
a 0 

=-, 
"t 

When 1 (1') is genel'ally 

so that th is duly becomes = 1 fOl' l' = s, then -- 1'(1') = 
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a 

ta3 
st-l J d1' (a V a~) a = (bg) a X -log - + 1+ - , 

IX) a'-s~ rt-1 q q~ 

in which the quantity q for the lowel' limit passes into p8~ - (a 2
_ 8~), 

- a2 _s' 1-n~ 1 ' 
which becomes = 0 fOl' P = --= --= - as before. The 

S8 n~ k' 

val ue of a will, thel'efore, again approach to logal'ithmically in/inite 
for (p=(Po=1 :/.;2. This is, accordingly, entirely independent of the 
exponent t in the assumed law of force 1(1') .'. 1,-t. 


