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Physics. — “The variability with time of the distributions of Emulsion-
particles”. By Prof. L. S. OrnsteiN. (Communicated by Prof.
H. A. Logrentz). ‘

(Communicaled in the meeting of March 31, 1917).

SmorucHowskl discussed this problem in different papers and
gave a complete survey of his work in three lectures ad Gottingen. )
He deduced a formula for the average change of the number of
particles in an element, which at the moment zero contains n particles.

This formula is: )
Ly=@—n)P, . . . . . . . @1

where P is the probability that a particle which lies in the element
at the time zero. may lhave come outside in the moment ¢; whilst
v is the number of particles which at a homogeneous distribution
over the whole volume would come to lie in the element in con-
sideration. .

Also for the average squdfe With & given number of particles
n at the time zero SMOLUCHOWSKI gives a formula; viz.

Ln=[n—v)+n] PP+ @4+v)P,. . . . (2
from which follows — if the average also is determined according
to n —

A* =2y P.

These relations are deduced by SmorucHOWski with the help of
calculations of probability, which ‘“nach Ausfithrung recht kom-
plizierter Summationen (yield) merkwiirdigerweise das einfache
Resultat”.

It goes without saying, that it must be possible to attain such
a simple result also by a less complicated method. That this is indeed
the case I want to demonstrate in this paper. At the same time it
will -be possible to give some extension to the result.

1. Let us think the space divided into a great number of
equal elements, which we shall mark by the indices 1 . . » . . &.
Let there be at a given moment ¢=0 n, . . n, . . ng parlicles in

) Cf. Phys. Zeitschr, 1916, p. 557 and also Phys. Zeilschrift X VI 1915, p. 323.
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these elements. After a time ¢ has passed these numbers have become

changed. Let py; then represent the chance that a particle which

at the time ¢=0 is in the element 1, is found at the time ¢ in

the element %, and let p,; represent the probability of the reversed

transition. Then, if there is no predilection for any direction in the

movement of the parlicles, it goes without saying that P = pa.
=k

Further = p,; = P if the sum is taken according to all values 2

=1
except % = 2, for the sum represents the probability that the particle
has come after the time ¢ in one of the £—1 other elements, i.e.
outside the element x.

If an element 2 contains n, particles the number of particles
having passed from 2 to x in a given case will be A,,. I shall now
calculate first the average values of 4;,, A%, and A, A,,. The
number of cases where A,, has the value s and thusn,—s particles
have remained in the element, amounts to:

—?L!,jpus L—p) M= . . .. . . 3
,-—8!8!

n
as is easily seen; to determine the three average-values (his expres-
sion must be multiplied by s resp. s* and summed from zero to n,.
Then after quite an elementary caleulation of these finite sums, we
find

D) =pi =) +Fpons o o . o . . (5)
and

A,=p,m . . « . . . . . @

To determine the average of a double prodact we need only replace
(8) * by wp and s by ¢ (where ¢ represent the number of emitted
particles in a definite case).

If the result obtained in this way is multiplied by (3) and summed
with respect to » from O to n; and with respect to ¢ from Oto n‘;,
we find

b, A///:}?//_P‘uy ARy 0 » v o 0 ., (6)

With the help of the relations (4), (5) and (6) SmonucHOWSKI’S
formulas can now immediately be deduced. The change ,4,, i.e.
the total change of the number of particles in the element x may
be represented by

nA/:Al/+A2/--.+Ak/——(A71+...A,k). . e (7)

Now we can write &, for 4,1 ... 0., ie. the total number of
particles that leaves the element in the time i.
Then we must delermine the average of (7) with constant n,,
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while all possible values must be given to the number n, ...n, in
the other elements. If now we first take the n,...n, constant and
determine the average, we find

WD, =pun + -0 Py —n P
If then we proceed to determine the average accordington,...n,
and keep in mind that 7, =...=n, = », we find
WD =0 (P e PR — M P= (v —n)P.
In order to find ,A,* we proceed in quite an analogous way, we
bring (7) into the square. Then we find
A= A4 .. 4"+ A2
+2A1, Doy + ...
— 24, (8, A . D). T
If now we apply (5) and (6) and determine the average with
given n,...n; and n,, we find

N (n1* — ) p® + px1 + ... + P, —n) 4 a0, P
+ 2 ny ne p1, pac + ..
—2n -P(P1, n -+ Pk, ng) .
Here the average must be determined keeping constant n, with respect
ton, etc. And we must bear in mind that n* =n,*=...n =v'+»?),
that further n, = » and n,n, = »*. Consequently we find

WBA= 0 +0)(r’+ . )
+ 29 (prepac + ... )
—7P (th’ +. . )
—2nv P+ P(n® —n) 4 nP.
The three first terms together yield P*»*. The result becomes thus
;:_Z—;,, ={(n—v) PP—n* P} 4 (n + v) P,
from which by determining the average according to n the relation

AP =9p P
arises.

2. The extension of the given formulae may be obtained to the
case that the deviation of density in the various elements of volume
are not independent, where however concerning the emission of the
particles we must still presuppose independence of the events.

In order to introduce the correlation of the densities I make use
of the function g, which was defined by Dr. Zermixe and myself. ?)

1) We have n1=u+§,nl_2= B2y S32 =84y

Ny = (v - 37) (v + &) = v2 v (31 + 35) + 37 3 = 1~
%) Chance deviations in density in the critical point of a simple matter. These
Proc. XVII, 1914, p. 582.
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If d, is the deviation in density in a point =0, y =0, z=0,
then we get for the deviation of density ¢ in a pont 2, ¥, z:
d=g(@y,2)0,dv . . . . . . . )
where dv is the element of volume.
Further
30 =gy 9d dv=g(@yze . . . . (9
where ¢ is the number of particles per unit of volume.

~

We now have
Dy =np1, + ... .0 ppy —n P,

Now 7, =v» - d, dv,, if then we introdace (8) and consider

— Ny

v
p,, as function of wysz bearing in mind that d, = , we find

v

n_A—/ == (‘D~1l) { —P +f.q)’ .p)’ dv}
The influence of the second part may become considerable with
a strong correlation

Also in determining ,A?, the correlation can be (aken into con-
sideration. Then 1n the first place we get the old terms, but moreover

(9) yields still new terms in n,’, n, and 72, 7, n.. These terms are:
2v(v—n) fp;, Gz AV
== poav
—2 nP(v—n)fp;,g),dv

+ 2 vfp,, Pux Gop B0y, d vy,

If then A*®, is determined, only the last term remains and a part
of the term before last, so that we get

E:Q”(P—f— Prr Ppr Qov dv‘udvl

‘l‘fp« Qi d ‘D)-

These considerations may also be applied, as least approximately,
to the changes, which accidental derivations in density undergo in
result of diffusion. Qur formulae show then that close to a critical
point the deviations in density as a result of their correlation, are
not only stronger on the average, but also more strongly changeable.

Utrecht, March 1917. Institute for Theoretical Physics.



