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Physics. — “On the vrotational oscillations of a cylinder in an
infinite incompressible liquid”. By D. Costir. (Communicated
by Prof. J. P. KueNen).

(Communicated in the meeting of May 25, 1918)

The method to be followed in the discussion of the problem will
be in the main the same as that used by Prof. VERsCHAFFELT in
the analogous case of the sphere'). We consider the rotational
swings about its axis of an infinitely long cylinder which executes
a forced vibration. Our object will be to ascertain the motion in
the liquid which will establish itself after an infinite time (in practice
after a relatively short time’)) in order to compute the frictional
moment of forces exerted on the cylinder by the liquid. For the
sake of simplicity the-calculations will be referred to a height of 1 em.

The motion of the eylinder may be represented by a — a cos pt
where « is the angle of rotation. An obvious assumption to be
made is that the liquid will be set in motion in coaxial cylindrical
shells each of which will execute its oscillations as a whole. On
this assumption it is not difficult to establish the differential equation
for the motion of the liquid.

Let ¢ be the density of the liquid.

u the viscosity of the liquid.
o the angular velocity of a cylindrical shell.
r the radius of the shell.
The frictional force per unit surface of one of the shells will

a -
then be ]f’:ma—w and the frictional couple on a cylindrical surface

"
X ) dw
of radius 7:2ax ° pu —.
»

Taking a shell of thickness dr its equation of motion will be
0

or

artdro—=
dt
which reduces to
00w o + 3 dw
w ot ot p Or
1) Comp. Proceedings 18 p. 840. Sept. 1915. Comm. Leidén 148b.
%) Comp. Comm. 148b. pag. 22 footnote.
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It is important to note that eqnation (1) may also he deduced
from the general equation of hydrodynamics without its being
necessary to neglect the second power of the velocities, as is the-
case in many problems of that kind. For an infinitely long time
of vibration i. e. for uniform rotation (1) simplifies to -

dw0 3 dw-

0:-‘}?—{-;2;. . . . . . . (2)

c . . .
The solution of (2).is w é.-i+ ¢,, ¢, and ¢, being integration-
[ .

constants. If the solid cylinder (radius R) rotates with uniform speed

n

=4

L in an infinite liquid, the result will be w = , giving for the

7,3

frictional couple as is well known the expression
—dap R, . . .. ... (@)
In order to arrive at a possible solution of (1) we have to make
our assumption regarding the motion of the liquid a little more
definite by assuming that the angular displacement of each shell is
represented by

a,=f(r) cos (pt—ap()). . . . . . . (3

We may also consider (3) as the real part of the complex function
uev?, where u is a function of » the module of which gives the
amplitnde of the oscillation and the argument the phase-shift ¢(»).

0
Remembering that o = ;:- equation (1) may be reduced to

d*n 3 du 0 pu

dr " dr [

=0. . . . ... (4

Equation (4) is closely related to the differential equation of the
cylindrical functions. Indeed by the substitution y=—zv Brssiy’s

1

dy ~1d 1
{+~ﬁ+(1_—)y=0, changes o

dz zdz 2?

d’v+3dv+ 0
—_— e =0,
dz®  z dz

equation of the 15t order

It follows that the general solution of equation (4) is

u:%—{AJ,(cr)-{—BN,(C")},- N &)

—ip
where ¢= [/ l"p’ A and B being complex integration-constants.
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J, is the cylindrical function of the 1st kind and 1% order, XV, that
of the 2 kind and 1t order').
As regards ¢ an agreement must be come to. We shall choose the

(19

root with the negative imaginary partie.c=/ke *, where k=|c| =

%
X .
As a first boundary-condition we bave Lwmre,=07%. As this

r=a

relation must hold for all values of ¢, it follows that hm ru = 0.

1=

The cylindrical functions with complex argnment all become infinite
at intinity with the exception of the so-called functions of the 3'd kind
or Hawkrr’s functions A, and H,3. Of these A, disappears at
infiuity in the positive imaginary half-plane and on the contrary
becomes infinite in the negative half, whereas the opposite is true
for H,®. By our choice of ¢ in the negative imaginary half we are
led to the function H,®. For the integration-constants in equation
(5) this gives the relation B = —i4°%), so that (5) becomes

A
u="=H®@e) . . . . . . . . (6
r

For the determination of A we have to use the 2" boundary-
condition ap=—acospt, B Dbeing the radins of the cylinder. We
therefore assume that there is no slipping along the wall.

aR

Hence A = ———,

H,(O(R)

80 that

alR  HE(er) .
et
) H®@CR) r ’

The symbol R is intended to indicate, that the real part has to be
taken of the function which stands after it.

If we had chosen for ¢ the root with the positive imaginary part,
we should have had to utilize the function H M. It is quite easy to
verify that this would not have made any essential change in
the solution (7).

« =R

..(7)'

1) Comp. Jamnkr u. Empe. Funktionentafeln pp. 90 and 93.
Nrersen. Cylinderfunktionen. Instead of NV Nimrsen uses the symbol Y.

%) Prof. VcrscmarreLr puts Lim o = 0, which in my opinion is not quite correct,
1=

as the linear velocity has to disappear at an infinite distance. Comm. 1430 p. 22.
%) Between J, N, and H a linear relation holds. Comp. J. uE. p. 95.
13*
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For large values of z (real, positive) H,(®(2V —3) approaches

asymptotically to
z [ ® 4
— e V2 8/,

[}

l/g nz _
therefore for (¢ R) sufficiently large:
_k
- - ( (— 2242 ) (8)
a =~ — —— cos —_— —_——p .
B2 (B Viaroe T 278

where ¢ = argument H, (¢ R).
From (8) it appears that damped waves are propagated from the
cylinder to infinity, the velocity of propagation being

__p P t/2_|/21w
v == —_—
Elys k 9

and the wave-length

9 o0x 12 s
A= T = 'rv: 1‘»/——::2.7r -l—l

P k op
The frictional moment on the wall of the vibrating cylinder is

(8)

0 0 : Oar
2nyR”[—w—] where o = First we determine I:—{L] from (7)
or R ot or R

da, a HC (cR) .
— fanaend — —— plpt 2 atpt . . . R 9
[ar:'[g R[ R ert -+ ac .2 (cR) o :| ®)

For the reduction of the 2d part on the right hand side of (9)
we make use of the well-known recursion-formula of the cylindrical
functions:

dH {2 (2)

1
= HPz— - A0 ()

By its application (9) obtains the form

Oc, 2a H 2 (e R)
—_ — —_— — pipt — 7
e /T e e Tma ) @

giving for the frictional couple

do] d H, (cR)
— s | 2T — 2 _ B a0 N7 ot
K=2auR [ar L.{._ 4auR* w+R 7 l:2n(.¢ Riac B0 (R e}’:' (11)

For an infinite time of swing, i.e. p =0, but with a rotational

velocity differing from 0, |c|= I/% becomes 0. In that case the
y N

~



197

second term -on the right of (11) disappears on two grounds:
H® (cR
(1) becausec = o (2)C£i£zoiﬁz—%ﬁ;=0; only the first term then

remains, which agrees with (2’).

Moreover -
H,2 (cR) D
2am —_— T — 7.
cR=w H,? (cR) .
It appears from the accompanying graphs?®) of the module and
t of Z2CE) o this limiting value is practically reached at
argument of ————— is limiting value is practically reached a
|eR|=Fk.R=10 |
27 /2 Co. 12)
lo| = k= ”z‘/ (cf. 8] (

The condition |¢ R|>10 means, that the radius of the cylinder
must be about equal to or larger than the wave-length. If R is
small compared with A the second part of the frictional couple is
negligible. For |cR|210 the 2"d term on the right-hand side of
10) becomes

T in
— aci evt=—ake (pH‘I) (since c =k 6_1—)
Hence equation (11) now becomes:
d
K=—4auR o — 2aukR’EZ—t(acos (pt—{—f)) . (18)
where
w=- (a cos pt).

The frictional couple thus divides into two parts, one which does
not contain the density of the liquid and another, in which it
occurs and which therefore refers to the emission of waves. In the
{ransition to the limit of uniform rotation the first part only remains.

In the discussion of the 24 part of the frictional moment the

quantity £ = I/@ is an important factor. If we take a time of
u©

oscillation of 2 seconds, so that p =1, we have k= l/ “i

This gives the following values for £.

~ ) Comp. J. u. E. L c.
%) Tables for Hy(1) and Hy(%) will be found J. u. E. p. 139, 140.
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0 z k= [/ =1
. ¢
Wate; 16° 1 0.011 9.5
Atm. air Q° 0.0013 0.000171 28
Air 0.01 atm. Y) . 0.28
Air 0.001 atm. 1) 0.09
Hydrogen 1 atm. 0° | 0.0000898 | 0.000085 1

From this table it appears that, except for dilute gases, R has to
be relatively small in order that the 2nd part may be neglected with
respect to the first. For instance for atmospheric air with 2= 0.5 c.m.
H,2 (cR)
AR == 1.4 and ABeR)
of the frictional couple is still 56 °/; of that of the first (see
equation (11)), every thing "calculated for a time of oscillation of
2 m seconds. . .

There is a further special limiting case of equation (13), which is of
some interest. Let \R become infinite, and let @ at the same time
disappear, in such a manner that Ra converges to a finite limit 6.
We thus approach the one-dimensional problem of the oscillation of
an unlimited flat plate in its own plane in an infinitely extended
liquid. The frictional force per unit of surface is found from (13) to be

Fe—p b2 (be t”) 14
.__———ugt(cosp—i—-i-) e (14

a formula which is well-known from hydrodynamics?®). A term
analogousto —4 mu R* w does not occur in the one-dimensional problern,
the reason evidently being that with & uniform translation of “the
plate a condition of equilibrium does not arise, until the whole liquid
away fto infinity proceeds with the velocity of the plate.

Finally it is of importance to ascertain for what frequency the
amplitude of the forced vibration becomes a maximnm, in other
words to what frequency the system cylinder-liquid resounds, if the
cylinder is urged back  to the position of equilibrium by a quasi-
elastic force.

= 0.80, so that the amplitude of the 29 term

1) At these pressures y has not become much smaller. Comp. Kunor u. War. '

BURG. Pogg. Ann. 1875 Band GLV.
%) Comp. Lans. Hydrodynamics, 314 edition 1905, p. 559.
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The differential equation for the forced oscillation in complex
notation is as follows:
o 2
dg?
Here in our case L is a complex quantity L=L+41iL" where
L=4nrpu R4 V2a pk R
L"'=y2axukR?®
If we only concern ourselves with the particular solution of (15)
which gives the forced oscillation, we can also write (15) in the
form :

{
+Lf+JM=EW.. C L. (1B)

N & d .
(g+_) a+L’_a+JP[a:Eelﬂt. ... (1)
p /) dge dt

We see therefore that in consequence of the motion of the liguid
an apparent increase of the mowment of inertia arises.
Putting
LH

64} —=86
p -
the particular solution of (16) becomes:
E .
i g— el (pt—7)

I/(M_alpz)z + Ltgpz

in which the phase-angle ¢ is determined by the constants of the
differential equation.

Resonance occurs for M/ — 6'p* =0
or

6p*+L'p—M=0 . . . . . . 17
Now L" is proportional to L and k= @, so that we may
u

conveniently write L"= Npt, N being a constant.

(17) is now replaced by '

Op* + Npth —U=0. . . . . . . (18

This equation which is bi-quadratic in V/p determines the frequencies -
to which the system resounds. On closer examination there appears
to be but one resonance-frequency. Naturally we are only concerned
with~the real roots p of equation (18). There are found to be two
of such, one for which V'p is positive, and another for which V'p
is negative. Now it follows from our calculation that we have
assumed Vp, which occurs in £ to be essentially positive. For if we
substitute a negative value for V'p in our equations, we obtain a
systemm of waves which moves from infinity towards the cylinder.
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But the amplitude of this system is intinite at infinity, so that our
first boundary-condition would not he satisfied.

We may also choose our boundary-conditions differently. We may
for instance imagine the liquid limited on the outside by a second
cylinder co-axial with the first and at rest. It is then advisable to
write the general solution of equation (4) in the following form

u:l{CHI(z)(cr)+DH1(2)(07')} N ¢ 1))
r

At a sufficient distance from the axis of the cylinders two systems
of waves then arise, one of which is propagated outwards and the
other inwards. At the surface of the exterior cylinder we obtain
reflection with reversal of phase, so that the liquid there is at rest.
For the determination of the integration-constants C and D we
obtain comparatively complicated relations which may be omitted
here as they do not yield anything of further interest.

The problem of the free oscillation does not now give any further
special difficulties.

We must now seek a solution of equation (1) of the form

ar = firye—Fteos (B't — o (),
which for r = R becomes ar = ae—¥?cos £"t. Again we may write
a=ue", where n—=— 1 4 "

The same method of solution may now be followed. Instead ot
(7) we obtain: '

__aR  H*(c7)
“=H®ER) r

ent

ve e e e (20)

n
where ¢ = [/— —(), if for ¢' the root with the negative imaginary
u

part is chosen. Hence

dey]  2a ' H,@ (¢R) " 91
dr R— —}—3'6 +acm§)—(me. . . . . ( )

H,2 (IR)
Lim ———— =
VRl = @ (G'R)

da, 2a n—g
— == ——at — g — ent, e e e (22)
dr |p R u

if for l/fg, we take the root with the positive real term.
w

—1

Therefore :

The frictional moment now becomes:

-10 -
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da 2 no] -
2y R ,:5];:——2::“13' ,:E-}—I/%—)]aﬂ

The differential equation for the free vibration is:

da de
- — = e e . .. (23
Kdt’+Ldt + Ma=0_ (23)
giving for the natural frequencies of the system the equation
K +Ln+M=0. . . . . . . (24)

The quantity L here contains V7.
If we put L=P 4 Q V'n, where.

P =4 uR* and Q:2nyRR’l/£,
u

(24) assumes the form :
K +(P+Qyn)ynt+M=0 . . . . . (25
Equation (25) is bi-quadratic in 2=V"n. On further examination
it 1s found to have 2 complex roots z in the right hand portion of
the complex plane and 2 in the left portion, only the former of
which we can use (comp. equation (22)); hence the system has but

one natural frequency. Further 2> = n is found to contain a negative -

real term, as indeed could not be expected otherwise.

-11 -



