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Physics. - "On the ?'otational oscillations of a cylinde?' in an 
infinite incomp1'essible liquid". By D. COSTER. (Communicated 
by Prof. J. P. KUENEN). 

(Communicated in the meeting of May 25, 1918) 

The method Lo be followed in the discllssion of the problem wiII 
be in tbe maill the same fiS that used by Prof. VERSOHAFFELT in 
the analogous case of the sphere I). We consider the rotational 
swings about Hs axis of an infinitely long cylinder w hich executes 
a fOl'ced vibmtion. Om object wilt be to ascel'tain tlle motion in 
the liquid whicl! vviII establisb itself aftel' an infinite time (in practice 
aftel' a relatively short time 2») in ordel' to compute the frictiomtl 
moment of forces exerted on the cylinder by the Iiquid. For the 
sake of simpliciLy the- calculations will be referred to a height of 1 cm. 

The motion of tlle cylinder may be represented by a = a cos pt 
where a is the angle of rotation. An obvious assumption to be 
made is tbat tlle liquid wiII be set in motion in coaxial cylindl'ical 
shells each of which will execute its oscillations as a wboie. On 
this assllmption it is not difticnIt to establish the diffel'ential equation 
for the motion of rhe liquid. 

Let Q be the density of the liquid. 
(l the viscosity of the liquid. 
w the angulu,l' velocity of a eylindrical shell. 
l' the radius of the she11. 

The fl'ictional force pel' unit sUl'face of one of the sbells will 
àw 

tIJen be ]i' = )'(l- nnd the frictional coupJe on a cylindriral sm-face 
à?, 

dw 
of radius 1': 2.1t 1'~ fL -à . 

?' 

Taldng a shell of thickness ch' its equation of motion wil! be 

which l'educes to 

2.71 ?'~ cl?, 0 àw = ~ 12 7: t'~(l àw I (h', 
.., dt à?, U1' \ 

Q dw à'w 3 dw 
--=-+-­
tL ot 01" l' Or 

1) Oomp. Proceedings 18 p. 840. Sept. 1915. Oomm. Leidèn 148b. 
') Comp. Oomm. 14bb. pag. 22 footnote, 

Pl'oceedings RoyaJ Acad. Amsterdam. Vol. XXI. 

. . (1) 

13 
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It is important to note that eql1ation (1) mal' also he dedueed 
from the general eqnation of hydl'odynamics without its being 
l1ecessal'y to neglect tbe second power of the velocities, as is the­
case in many pl'oulems of that kind. For an infinitely long time 
of vibl'ation i. e. for uniform rotation (1) simplities to 

d'w 3 dw--0=-+-- .. 
dr' r dr 

(2) 

The so]ution of (2) \ is w ) ~ + C" Cl and c, being integration-
r, • 

constants. If the .solid cylinder (radius B) rotates with uniform speed 
R~$2 

$2 in an infinite liquid, tbe result vvill be {O = --, giving for Ihe 
1" 

frictional couple as is wel! knovvn the expression 

. (2') 

In order fO arrive at a possible solution of (1) we have to make 
oUl' assumption l'egal'ding the motion of the liquid a little more 
detlnite by assuming tlJat the angular displacement of eaeh shell is 
represented by 

ar =/(1') C08 (pt -- rp (1'). (3) 

We mayalso considel' (3) as tlle real part of the complex function 
uel/'t, where u is ti. fUl1ction of?' tlle module of which gives the 
amplitude of the oscillation and the al'gument the phase·shift rA?'). 

àa 
Remembering that w = at equation (1) ma)' ue rednced to 

d'lI 3 du iQ pu -+----=0. 
d1" r dr (.l 

. (4) 

Eqnation (4) is dosely relnted to the differential eql1ation of the 
CJ' lindrical fUJ1ctions. Indeed by the su bslitution y = zv B1!,SSEI.'S 

d'y . 1 dy ( 1) 
equation of the 1 st order - + -- + 1 - - !I = 0, changes io 

dz~ z dz z' 

d'v 3 dv -+--+11=0. 
dz: z dz 

1t follovvs that the general solution of eql1ation (4) is 

u = ~ I A J 1 (cr) + B NI (cr) l, . (5) 
r 

V -iQP 
where c = --, A and B being complex integration-con&tants. 

(I 
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J
1 

is the cylindrical fUJlction of the l st ldnd and l st order, .N1 that 
of the 2nd kind and l&t order 1). 

AR regards c an ap;reement must be come to. We shall choose the 

root with the negative imaginary part i.e. c=!.;e-"4, where k= lel = 

=IV~:I· 
As a first boundal'y-condition we have Lim 1'Ur = 0 ~). As this 

relation "must hold for all values of t, it follows that lzm 1'U = O. 
t=CO 

The cylindrical funetions with complex argnment all beeome infinite 
at intinity with the exeeption of the so-eaHed funetions of the 3u1 kind 
or HANKEJ:S functions H'p) and I-l/2). Of these ~p) disappears at 
infinity in the positive imaginal'Y half-plane and on the contral'y 
becomes inlinite in the l1egative half, whereas the opposite is t1'ne 
fol' HP). By our choiee of c in the negati\re imaginary half we are 
led 10 the funetion R 1(2). For the integl'atioll-constant~ in equation 
(5) this gi ves the relatioJl 13 = - iA 3), so that (5) becomes 

(6) 

Fol' the detel'mination of A we have to use the 2nd boundary­
cOlldition llR = a cos pt, R being tlle radius of the cylindel'. We 
thel'efoJ'e a'lsume th at tbel'e is 110 slipping along the wall. 

aR 
Hence A - ----

- 1J /2)(cR)' 

so that 

R 
aR 9

1
(2) (cr) . 

a - --- elpt 
I - 9

1
(iJ) (cR),' ' (7) 

The symbol R is intended to inàicate, that the real part has to be 
taken of the funetion which stands aftel' it. 

lf we had chosell tor c the l'Oot with the positlve imaginary part, 
we shonld haye had to utilize the function Hl (1). It is quite easy to 
vel'ify that this would not have made any essential change in 
the solution (I). 

1) Comp. JAHNln: u, E~IDE. Funktionentafeln pp. 90 and 93, 
NIIi:LsnN. Cylinderfunklionen. Instead of N NIELSEN uses the symbol Y. 

') Prof, VnRSCHAFrELT puts Lim (X/ = 0, which in my opinion is not quite correct, 

as lhe linear velocity has 10 disappear at an infinite distance, Comm. 14Sb p, 22. 

S) Between J, N, and H a linear relation holds. Comp. J. u E. p. 95, 
13* 
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For large valnes of .x (I'eal, pOflitive) H l (2)(,V V -i) appl'Oaches 
asymptotically to 

e- :2 - i(v''11_ - ns) 
---e 2 ; 

V.lmc 
~ -

thel'efore for (k Rl sufficiently large: 

kI 

aR e V2 ~( he Jr ) 
a, ~ - cos pt - - + - - (P I H,(2 (cR) I V!- Jr k r 11/2 V2 8 

. (8) 

where (f = argument H1(2)(C Tl), 
Fl'om (8) it appeal's that damped waves al'e pl'opagated from the 

cJ Iinder to infinity, t he velocity of pl'opagation being 

and the wave-length 

À = vT= 2 :tv = 2.iT V2 - 2.7l' I //2~. . . . . (8') 
p k ~ QP 

The fi'ictional momen t on the wall of the vibl'ating cy linde!' is 

2.1l (.lRf~: JR where w = ~~. Fi!'st ·we determine [a~::]R from (7) 

[aa,] = R [_ ~ e'/,( + ac H 1(2)' (cR) eipt] . . . . (9) 
a" R _ R IJl (2) (cR) 

For the l'ednction of the 2nd part on the l'ight hand side of (9) 
we make use of the well-knowlI l'ecul'sion-formnla of the cy Iindrical 
functions: 

By its application (9) obtains the form 

. . (10) 

giving for the frictional couple 

K = 2 .1l (.l RI [~wJ = ~ 4JrtLR' w+ R :!. [211(t Ra oe Ifo(2) (cR) elPt] (11) 
ur R dt Ii

1
(2) (cR) 

For an infinite time of swing, i. e. p = 0, but with a rotational 

velocity differing from 0, I c I = V ~ becomes O. In (hat ('ase the 
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second term ,on the right of (11) disappeal's on two gl'ounds: 
H (2) (cR) 

(1) becausec = 0 (2) Lim oe = 0; only the first term then 
cR=o Hl 2 (cR) 

remains, which ag rees with (2'). 
Moreover 

. H o(2) (cB) . 1) , 
[,tm ---- = - t. 

cR=rn H I (2) (cR) 

It appears from the accompanying graphs 2) of the module and 

f B/!.)(cR) th t th' J' 't' l' . 11 h d al'gument 0 H
1

(21(cR) a IS Iml lng va ue 1" practIca y reac e at 

IcRI=k.R=10 I 
2.n V2 \ I c I = k = ). (cf. 81

) 

. (12) 

The condition IeR I i 10 means, th at the radius of the cylinder 
must be about equal to or lal'ger thnn the wave-length. Ir R is 
small compared with À the second part of the frictional couple is 
negligible. For IeR I > 10 the 2nu term on the "ight-hand side of 
(10) becomes 

- a ei elpt = - a k e' (pl+~) (Sinee c = k e-<l'11) 

Rence equation (11) now becomes: 

K = - 4 'rt-1. Ri W - 2 Jl (J kR 3 ~ (a cos (pt + ;) ) (13) 

where 
d 

w =- (a cos pt). 
dt 

The fl'ictional cOllple thus di\'ides into two parts, one which does 
not conrain tbe density of the liqllid and another, in wbieh it 
occurs and whieh therefore 1'efe1'& to the emission of waves. In the 
transition 10 the limit of unifol'tIl rotation the first part on1y remains. 

In the discussion of the 2nd part of the friction al moment the 

quantity k = V P(JQ is an important factor. If we take a time of 

oscillation of 2:r seconds, so thai p = 1, we have k = V: . 
Thls gives the following values for k. 

1) Comp. J. u. E. 1. c. 
~) Tables for HoCl) and Ho(2) wil! be found J. u. E. p. 139, 140. 
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k , V~(P=l) . 
.,. 

Water 16° 0,011 9.5 

Atm, air 0° 0.0013 0,000171 2.8 

Air 0.01 atm. I) 0.28 
-

Air 0.001 atm. I) 0,09 

Hydrogen 1 atm. 0° 0.0000898 0.000085 

From this table it appears th at, exeept for dilute gases, R has to 
be relath'ely small in order that' Ihe 2nd pad may be neglected with 
respect to the fit·st. For instanee for atmospherie air ~vjth R = 0.5 e.m. 

I
H (2\ (cR) I 

kil = 1.4 and BO(~R = 0.80, so th at the amplitude of the 2nd term 
1 2, (c ) 

of the fl'ictional eouple is still 56 % of that of the first (see 
eqnation (11)), every thing "caleulated for a time of oscillation of 
2 n; seconds. 

There is a fut'thel' special limiting case of equation (13), which is of 
some interest. Let H become infinite, and let a at the same time 
disappeal', in sneh a\ manner that Ra converges to a finite limit b. 
We thus approach the one-dimensional pl'oblem of _ tile oseillation of 
an unlimited flat plate in its own pl~ne in an infinitely extended 
liqllid. Tlle fdetional force per unit of sUl'faee is found fl'om (13) to be 

F = - f' k~ (b cös (pt + i)) (14) 

a fOl'mula which is well-imown from hyc.lrodJ1namies Z). A term 
analogolls 10 -4:Tr(1. R~ w does not oeClll' in the one-climensional pl'oblem, 
the reason eviden tIJ' being j hat with a uniform translation of -the 
plate a eondition of eqlliliurillm does not arise, llntil the whole liqliid 
ftvl'ay to infinity proceeds with tlle velocity of tlte' plate. 

Finally it is of impol'tanee to aseertain for what fl'equen~y the 
amplitlld~ of the fOl'ced "ibmtion beeomes a maximnm, in other 
words to what freqllency the system cylilldel'-liquid resonnds, i(the 
<'ylinder is urged back. to tlle position of equilibrium by a quasi­
elastic force. 

1) At these pressures (.L has not become m"uch smaller. Comp, KUND1' u. WAR. 
BURG. Pogg. Ann. 1875 Band CLV. 

S) Oomp. LAMB. Hydt'odynamics, BId edition 1\:l05, p. 559, 
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The ditferential eqllation for the fOl'ced oscillation in complex 
notation is as follows: 

d'a da () - + L- + Ma = EeilJt • • (15) 
dt' dt 

Here in our case L is a complex qllaDtit,y L = L'+ iL", where 

L' = (4.11' (.1 R' + V2 Jr: (.t k R 3
) 

Lil = V2 .11' (.1 kR 3. 

lf we only concern OUl'selves with the pariicl1Iar sollltion o~ (15) 
which gi,-es the forced oscilJation, we can also writ,e (15) in the 
form: 

() +- - + L' - + Ma = Eei}Jt. . (
Lil) d'a da 

P dt' dt 
. (16) 

We see therefore that in conseqllence of tlle mot.ion of the liqnid 
an apparent inCl'ease of tile moment of inerlia al'ises, 

Putting 
Lil 

()+ -=()' 
p , 

the pal'ticlllar solution of (16) becomes: 

E 
a = ei(pl-l'l 

V(M-()'p')~ + L'2 p' 

in which the phase-angle (p is detel'l1lined by tile constanis of the 
diffel'ential eqllation. 
, Resonance OCClIl'S fOl' .111 - ()' p2 = 0 
or 

{)p' + L" P -M = 0 (17) 

V PQ 
Now Lil is propol'tional to 1,; and Ic = -, so that we may 

t' 
conveniently write Lil = Nzi-!, N being a constant, 

(17) is IlOW replaced by 

() pS + Nplk - jf = o. , (18) 

This equation whieh is bi-quadl'u,tic in Vp determines the fl'eqnencies 
to ~hich the system resounds. On closer examination thel'e appeal's 
to be but one resonance-t'l'equency. Natul'ally we are only concerned 
with' the real roots p of equation (18), There al'e found to be two 
of such, one tor whieh Vp is positive, and another fol' which Vp 
is negative. Now it follows from Oll!' calculation that we have 
assuID!'ld Vp, w~ich occlIrs in Ic to be essentia!ly positive, Fol' if we 
substitute a n~gative value fOt' Vp in our e(jlla(jons, we obtain a 
syslem of waves which moves from infinity towal'ds t.he cylinder, 
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But the amplitude of this system is intinite at infinity, 80 that OUl' 
first boundat'y-condition would not he satisfied, 

We mayalso choose Olll' bOllndary-conditions diffel'ently. We may 
for instance imagine the liquid limited on the outside by a second 
cylinder co-axial with tbe first and at rest. It is then advisable to 
write the general solution of equation \.4) in the following form 

1 
u = -I C H l (2) (01') + D H l (2) (m') I.. .. (19) 

r 

At a sufticient distance from the axis of the cylinders two systems 
of waves th en arise, one of which is pl'opagated outwaeds and the 
other inwards. At the sUl'face of the exterior cylinder we obtain 
reflection with reversal of phase, so that the liquid th ere is at rest. 
For the determination of the integmtion-constants C and D we 
obtain comparatively complicated relations which may be omitted 
here as they do not yield anythirig of further interest. 

The pl'oblem of the free o&cillation does not now give any further 
special difficulties. 

We must rww seek a solution of equation (1) of the form 

al' = 1<1') fl-lc't cos (k"t - rp (1')), 

w hicb for l' = Tl beCOlnes aR = a e - k't cos k"t. Agaill we may wl'ite 
cc = U ent, where n = - k' + ik". 

The same method of solution may now be followed. hlstead or 
(7) we obtain: 

aR Hl' (o'r) 
a,. = ---- ent,..... (20) 

H
l
(2) (c'R) l' 

where c' = V - 1:(/, if for c' the root with the negative imaginary 

part is chosen. Rence 

. . (21) 

Thel'efore: 

[~::]R - ~ ent - a V1: e
nl

, (22) 

if for V n;:, we take" the root with the positive real term. 

The fl'ictiollal momellt 1I0W becomes: 
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2n~R' [::JR - 2 n~R' [~+ V:QJ~R 
The differential equation for the free vibl'ation is: 

d'a da 
K-+L-+.Ma=O (23) 

dt l dt 

giving fol' the natm'al frequencies of the system the equation 

K n l + L n + M = o. . . . . . . (24) 

The quantity L here contains Vno 
Ir we put L = P + Q V?ï, where. 

P = 4:r ~RI and Q = 2.1l ~RR3 V~ , 
ti 

(24) assumes the form : 

K u' + (P + Q J/n) n + M = 0 . . . . . (25) 

EquatlOn (25) is bi-q uadratic in .i = t/ n. On furthm' examination 
it IS found to have 2 complex roots z in the right hand pOl'tion of 
the complex plane and 2 in the 1eft portion, on1y the former of 
whi('h we ('an use (comp. equation (22)); hence the system has but 
one natural fl'equency. Further .z' = n is found to contain a negative' 
real term, as lI1deed could not be expected otherwise. 


