Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.M.Jaeger \& Thomas, W., Investigations on PASTEUR's Principle concerning the Relation between Molecular and Crystallonomical Dissemetry: VII, in: KNAW, Proceedings, 21 I, 1919, Amsterdam, 1919, pp. 225-230

Chemistry. - "Investigations on Pasteur's Principle concernmg the Relation between Molecular and Crystallonomical Dissymmetry: VII. On optically active Salts of the Iri-ethylenediamine-Chromi-series." By Prof. F. M. Jaeger and Wililam Thomas.
(Communicated in the meeting of June 29, 1918).
§ 1. Some time ago it was already found ${ }^{1}$) by one of us, that racemic tri-ethylenediamine-chromichloricle: $\left\{\mathrm{Cr}(\text { Enne })_{3}\right\} \mathrm{Cl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$, was completely isomorphous with the corresponding cobalti- and rhodiumcompounds. We prepared this salt according to a method indicated by Preiffer ${ }^{2}$), from the tripyridyl-chroni-chloride : $\left\{\mathrm{Cr}(\mathrm{Pyr})_{8}\right\}_{\}} \mathrm{Cl}_{3}$ by heating this product with ethylenediamine, and subsequent purification. Then it was separated into its optical antipodes by means of socizim-α-camphor-nitronate ${ }^{3}$), and these were obtained in this way as the pure iodides.

In this fission 6 grams of the racemic salt were dissolved in 20 ccm water, and a solution of 6 grams of pure sodium-e-camphornitronate in 15 ccm water sublequently added. A pale yellowish precipitate of d-triethylenediamine-chromi-d-camphornitronate is formed; it is sucked off and to the mother liquid 2 more grams of sodium- α-camphornitronate are then added, and the solution allowed to stand for a few hours, when some more of the precipitate is separated.

After filtration the mother liquid was used for preparing the corresponding laevogyratory component. The precipitate, thoroughly washed with alcohol and ether, was ground in a mortar with an excess of finely pulverised sodium-iodide, some water added, and the dark jellow liquid sucked off from the precipitate, which was well washed with alcohol and ether, dissolved in a small quantity of water, and again precipitated by an excess of sodium-iodide.
The mother liquid formerly mentioned, containing the camphornitronate of the laevogyrate salt, was precipitated by addition of 5 grams sodium-iodide. The precipitate formed appeared, after being thoroughly washed, to be the racemic iodide. The remaining

[^0]mother liquid, however, was now treated in an analogous way with 8 grams of sodium-iodide; the precipitate appeared to be this time the laevogyrate triethylenediamine-chromi-iodide. It is difficult to obtain these iodides in well measurable crystals, and they are moreover ordinarily very small.
\& 2. The rotation-dispersion of these salts was determined in the usual way, already frequently indicated. As the orange coloured liquids already manifested a very appreciable absorption of the transmilted light in layers of 20 c.m. thickness, the measurements for the limiting wavelengths had to be made with very dilute solutions. These measurements agreed very well with those made in the case of more concentrated solutions, so that for all solutions we have given the mean values of the molecular rotations obtained. In the case of the dextrogyratory component solutions were used, containing 1,0133 grams (A), $0,5070 \cdot$ grams (B), 0,2535 grams ((C), and 0,0325 grams (D) of the anhydrons salt respectively in 100 grams

in Degrees:

 Fig.1.Molecular.Motation Dispersion of the Optically active Fiethylenediumine-Chromi-Sodides.

Rotation-dispersion of the Optically-active Tri-Ethylenediamine-Chromi-Iodides.		
Wave-length in A. U. :	Observed Rotation:	Molecular Rotation: (positive and negative)
- 4260	0.30	$28263{ }^{\circ}$
4320	029 id.	27321
4420	0.27; $0.35 \quad(D, K)$	25385
4480	0.26; 0.34 id.	24552
4570	0.25; 0.33 id.	23619
4640	0.23; 0.31 id.	22053
4720	0.22; 0.29 id.	20858
4790	0.20; 0.28; 0.27 (D, I, K)	18652
4860	0.18; 0.26; 0.24 id.	17610
4920	0.16;0.23; 0.21 id.	15128
5020	0.14; 0.40; $0.21 \quad(D, H, I)$	13267
5100	$0.97 ; 0.36 ; 0.18 \quad\left(C_{1} H_{1} I\right)$	11714
5180	0.88;0.32;0.16 id.	10579
5260	1.60; 0.79; $1.07 \quad(B, C, G)$	9647
5340	1.43;0.71;0.95 id.	8578
5430	1.27;0.64; 0.84 id	7634
5520	1.12;0.57; 1.46; $072(B, C, F, G)$	6692
5610	0.96; 0.48; 1.22; 0.62 id.	5741
5700	$1.63 ; 0.81 ; 0.41 ; 2.18(A, B, C, E ; F, G)$	4891
5800	1.33; 0.67; 0.33; 1.85 id.	4093
5910	1.15; 0.56; $028 ; 1.55$ id.	3422
6020		2912
6140		2621
6260	0.77; 0.38; 0.19; 1.04 id.	2328
6380	0.70; 0.35; 0.18; 0.94 id. 4	2133
6520		1951
6660	0.61; 0.30; 0.15; 0.82 id. [区 区	1820

of the liquid; in the case of the laevogyrate antipode the six different. solutions employed contained 1,3512 grams (E), half or a quarter of this (F, G) in 100 grams of the liquid, and 0,0927 grams (H), 0,0464 grams (I), and 0,0232 grams (K) respectively of the anhydrous salt in 100 grams of the liquid.

The dispersion-curve for the molecular rotation, shewn by measurements is plotted in the diagram (fig. 1). It bas much analogy with that of the corresponding cobalti-salts, but only a slight analogy with that of the triethylenediamine-rhodium-compounds.
Probably the magnitude of the rotation for corresponding'wavelengths in the case of these analogonsly built complex ions greatly depends on the magnitude of the atomic volume of the central metallic atom, in such a way that the rotation appearrs higher, if the alomic volume of the metal is smaller. As for instance:

| Complex Salt: | Molecular Rotation Observed: | Atomic Volume
 of The
 METAL |
| :---: | :---: | :---: | :---: |
| $\left\{\mathrm{Co}(\text { Eine })_{3}\right\} \mathrm{I}_{3}+\mathrm{H}, \mathrm{O}$. | $M_{5800}=7230^{\circ} ; M_{5100}=21580^{\circ} ; M_{6600}=2114^{\circ}$ | 6.76 |
| $\left\{\mathrm{Cr}(\text { (Eine })_{3}\right\} \mathrm{I}_{3}+\mathrm{H}_{2} \mathrm{O}$. | $M_{5800}=4093^{\circ} ; M_{5100}=11714^{\circ} ; M_{6600}=1880^{\circ}$ | 7.72 |
| $\left.\{\text { Rho (Eine) }\}_{3}\right\} 1_{3}+\mathrm{H}_{2} \mathrm{O}$. | $M_{5800}=3125^{\circ} ; M_{5100}=3965 ; M_{6600}=2243^{\circ}$ | 8.50. |

The values for $\lambda=6600 \mathrm{~A}$. U., are mentioned at the same time for the purpose of demonstrating that this antiparallelism of rotations and atomic volume is surely not true for all wave-lengths: for rays of great wave-length, as e.g. in the visible red part of the spectrum, - the rotation of the Rho-salt surpasses even that of both the ocher salts; only in the domain of appreciable dispersion, is the said regularity met with.

As regards the absorption, we were able to state the following. In a layer of the solution of $20 \mathrm{c} . \mathrm{m}$., a liquid containing.

1,1212\% of the salt, allows the passage of all red and yellow rays up to those of 5380 A.U.
$0,5606 \%$ " " " " " " " " " " "5220A.U. $0,2800^{\prime \prime} n \quad n \quad$ n $\quad n \quad ; 5030$ A.U.
 $0,0701 \%$ " " " " " " " " " " " " "3940A.U.
\$ 3. Numerous attempls were made to win these chromi-salts in well measurable crystals, and to investigate the validity of Pastron's law also in this case. But a heavy impediment in reaching this aim was created not only by the facility with which those salts decompose in solution, especially under the influence of the light, - but also
by the great solubility of these salts, inducing us always to work with only small volumes of concentrated solutions, from which good crystals are ordinarily deposited with difficulty. For the same reason the transformation of the iodide into the chloride or bromide could not be of any use, so that these for our purpose so very important salts, could not be made use of in this case.

$$
\begin{gathered}
\text { Racemic Triethylenediamine-Chromi-Iodide. } \\
\left\{C r(\text { Eine })_{3}\right\} I_{8}+1 H_{2} O
\end{gathered}
$$

On slow crystallisation this compound presents itself in the form of very small, orange, apparently octahedral crystals. Crystallisation must occur in the dark, because this salt, in the same way as all the triaethylenediamine-chromi-salts, becomes violet under the influence of the light. Also increase of temperature must be avoided, because the solutions change from an orange colour to a dark reddish violet by the transformation into salts of the violet aquo-type. The crystals measured were not larger than a pinhead, and often they were disfigured and ${ }^{-}$distorted in rather a strange way. Some of them showed under the microscope the appearance of fig. $2 a$, without

Fig. 2. Racennic Triethylenediamine-Chromi-Iodide. $\left(+\mathrm{H}_{2} \mathrm{O}\right)$. it being possible however to determine the Midarian indices of their facets with complete certainty; the crystals pictured in fig. $2 b$ and $2 c$ manifested however some measurable forms.

$$
\begin{aligned}
& \text { Rhombic-bipyramidal. } \\
& a: b: c=0,8632: 1: 0,8652 \text {. }
\end{aligned}
$$

The crystals are pseudo-tetragonal, and perfectly isomorphous with the corresponding crystals of the cobalti- ${ }^{1}$), and of the rhodium- ${ }^{2}$) compound, just as we were able to prove this before in the case of the trigonal chloride of this series ${ }^{2}$). The colour of the crystals was orange or red; by partial loss of water of crystallisation, they sometimes get locally yellow and opaque.

[^1]The forms observed are: $0=\{111\}$, great and very lustrons; $c=\{001\}$, small, but well developed and yielding good reflections; $m=\{110\}$, broad, but commonly with curved and rudimentary facets, and thus practically not well measurable. Probably also a form $q=\{021\}$ occurs, and in the case of the crystals of fig. $2 a$ doubtless. $a=\{100\}$, as a broad pinacoidal face, and $r=\{h o k\}$.

Angular values:	Observed:	Calculated :
$c: 0=(001):(111)=$	${ }^{*} 52^{\circ} 56^{\prime}$	-
$0: 0=(111):(1 \overline{1} 1)=$	6249	-
$0: 0=(111):(11 \overline{1})=$	7410	$74^{\circ} 8^{\prime}$
$0: 0=(111):(\overline{1} 1)=$	7 ± 27	7419

No distinct cleavability was found.
There cannot be the least doubt about the complete isomorphism with the corresponding Co- and Rho-salt:

$$
\begin{aligned}
& \text { Cr-salt } a: b: c=0,8632: 1: 0,8652 . \\
& \text { Co-salt. . . . } a \cdot b: c=0,8700: 1: 0,8699 . \\
& \text { Rho-salt. . . } a: b: c=0,8541: 1: 0,8632 .
\end{aligned}
$$

Up till now we have had no opportunity to prove this isomorphism also in the case of the optical antipodes, because no suitable crystals could be obtained. There can be however no doubt, that the said relation also exists in this case.

Laboratory for Plysicical and Inorganic Chemistry of the University.
Groningen, June 1918.

[^0]: ${ }^{1}$) F. M. Jaeger, Proceed. R. Acad., Amsterdam. 20. 247. (1917).
 ${ }^{2}$) P. Pfeiffer, Zeits. f. anorg. Chemie, 24. 282, 286. (1900).
 ${ }^{3}$) A. Werner, Ber. d deutsch Chem. Ges. 45. 865. (1912).
 Proceedings Royal Acad. Amsterdam Vol. XXI.

[^1]: ${ }^{1}$) F. M. Jaegrr, Proceed. R. Acad. Amsterdam, 18. 62 (1915).
 ${ }^{2}$) F. M. JagǴer, Proceed. R. Acad. Amsterdam, 20. 250 . (1917)
 ${ }^{\text {1 }}$) F. M. Jalgerr, Proceed. R. Acad. Amsterdam, ibid. 247. (1917).

