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Mathematics. — “On the direct analyses of the linear quantities
belonging to the rotational group in three and four fundamental
variables”. By Prof. J. A. Scuoursy. (Communicated by Prof.
CARDINAAL).

(Communicated in the meeting of September 29, 1917}
Quantities and direct analyses.

By a (geometric or algebraic) quantity existing with a definite
transformation-group we mean, according to F. Krmx, any complex
of numbers (characteristic numbers of the quantily), that is transformed
into tself*) by the transformations of that group. Qnantities only have
any signification and only exist with definite transformation-groups
and may be “disturbed” as such with other groups, whose trans-
formalions do not transform the characieristic numbers into themselves.
They are completely determined by their mode of orientation, i.e.
the mode of transformation of their characteristic numbers. The
variables of the group are called fundamental variables and are the
characteristic numbers of a fundamental element. 1f the group is
the linear homogeneous one in n variables, the simplest quantities
are those, whose characleristic numbers are tiransforined as the
determinants in a matrix of p fundamental elemenis independent of
each other, p=1,..., n. With a homogeneous interpretation of the
fundamental variables they correspond to the linear R, _,-complexes
in R,_;, provided with a number-factor. All the gquantities, whose
characteristic numbers are transtormed in-that way under the trans-
formations of the rotational group, we call linear quantities.

By a direct analysis we mean a system of an addition and some
muliiplications by . means of which we can express the relations
among quanlities of a definite kind left invariant under the frans-
formations of a definite group. Every quantity is in the analysis a
higher complex number. Till recently suchlike analyses were brought
about by choosing for multiplications some characteristically distri-
butive combiuations conspicuous in geometry or mechanics, and
uniting them into a system as well as might be. Owing to the great
namber of existing combinations of this kind arbitrariness could not
fail to arise, and this led to the formulation of many systems, the
adherents of which have been involved in a violent polemic for
these twenty five years.

1) e. g P RLEIN, Elementarmathematik vom hiheren Standpunkte aus. Leipzig
(09) II p. 59.
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Application of KuwiN's Principle of Classification.

The author of this paper observed in 1914?) that it follows from
the application of KumiN's principle of classification to analyses
belonging to definite quantities, that (o a given group of transfor-
mations and given quantities belongs a completely determined
system, which may simply be computed. This was practically done
for n =23, the rotational group, and quantities up to the second
order inclusive. In a more exhaustive investigation contemplating four
different sub-groups of the linear homogeneous group the same was
executed for arbitrary values of n» and for quantities of an arbitrary
degree®). We shall briefly state some results of this investigation
bearing on linear quantities, in particular for n =23 and n =4,
founded on the:

rotational group (a,* + ...+ a,® invariant, det. = -+ 1)
and availing ourselves of the:

orthogonal group (@, + ... 4 a,® invariant, det. —= = 1)
specral-affin. group (in. hom. with det. 4+ 1,
equivoluminar group (lin. hom. with det. =% 1)

linear homogeneous group
for further classification of the quantities existing with the rotational group.

General symmetrical and alternating multiplication.

Three mnlt—iplic.ations of fundamental elements exist with all the
sub-groups of the linear homogeneous group and for all the values
of n, viz. the general, the symmetrical and the alternating one.

The gencral product of p fundamental elements has n/ characte-
ristic numbers, being the products of the characteristic numbers of
the factors. Their mode of transformation is entirely determined by

this definition. We express the product in this manner:

o .
ajoazo....o@p=at....a&. - . . . . (1)

o]
By isomers of a,....a, we mean all the general products that

can be formed by permutation of the factors from a, L a, An
even respectively odd isomer is concomifant with an even resp. odd
permutation. The symmetrical product of a,....a, is the sum total
of all the isomers divided by their number p/:

~ 1 o

a1va2\-/....va,,=a1....a,,=[7§.‘ail....ag,, S 3]

The alternating product is the sum of all the even isomers dimi-

Ly Grundlagen der Vektor- und Affinoranalysis, Leipzig (14).
%) Ueber die Zahlensysteme der rotationalen Gruppe. Nieuw Archief voor Wiskunde
1919.



329

nished by the sum of all odd ones divided by p/ and may be

expressed as Cayleyan determinant:
ar. . ..

. \_N

a1 —~az~—~ .. .. »-\.a,,=a1 . A_ a,,=1%
- iil. P a,') l
The alternating product of p fundamental elemenis is a linear
quantity for p <n. For p >n il is zero. A symmetrical product is
never a linear quantity.
The Associative Systems R,
Classifying up to the lin. homog. group inclusive, the system
belonging to the linear quantities is Z?fl, which is an associative system,
entirely determined by the rules:

)

(to be
developed

according
to rows),

g4 e =—¢€4 e =¢€;j ) eiqe;=—¢j¢e:=¢;
e - e =k ; ei+ei=kK

- ) b - } 2
€i€;....€ =¢&j..1 €iej....e =¢e%j..l
e12.n=1 €120 =1

- 4
er=xre’s....eh ], e1qe1=¢141e1=% e1=nrez....e0
[P=1+P=P+1=x-1 ij...,[=1...,¢

n(n—1)
z=(—1) ¢
e,...., e, are the covariant fundamental wunits, i.e. units of a
fundamental element, and €’,,...., €, are the contravariant funda-

mental units belonging to characteristic numbers, (ransforming
themselves contragrediently rvelative to the fundamental variables.
When classifying up to' the equiv. group inel., the system R, is
constituted, being obtained from the preceding one by the identification
I=r
and ‘being entirely determined by the rules:
€ 4 €= —gj- & = e )

e - ei=k 2 T P N RPN (/)

* )
ee; . ... € =¢€j..1
12 . .. .a=1

B=]-I=o—t
Quantities, whose units, apart from an eventual factor I, do not
contain two equal fnndamental units as factors, exist unlike the

1) In a more exhaustive investigalion “Die divekte Analysis zur neueren Relativi-
titstheorie”, Verhand der Kon. Akad. v. Wet. Sectie [ Deel XII N'. 6 we consider
eiej——eiej

= 9;’3’

also not linear quantities and we write ; e = eijand e; -+ 65 =

etc. For more convenience we write here o;+ ¢ = e;;.
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others with the lin. homog. group too, and are called projective
quantities. Then they are of the subd-degree (Dutch : ondertrap, German :
Unterstufe) p, when the number of the factors of the units is p,
p=1,....2n, and we write them ,a. The others are called
orthogonal quantities. All linear quantities may be composed of
projective ones and powers of k.

When classifying up to the special affin. group inclusive, for n
odd the system &, is obtained from the preceding one by the

identification :
=% . . . . ... (5
The sub-degree p, pZn coincides with the sub-degree (n~}-p) and forms
the degree (trap, Stufe) p. For n even no system is feasible here, because
e =—einl, . e e (6)
hence identification of 1 with an ordinary number is impossible.
When classifying up to the orth. group inclusive, K arises out
of R;, by the identification
k== . . . . . ... ....0
The system makes no difference between projective and non-
projective quantities. The sub-degres p, p<n coincides with the
sub-degree (2n—p) and forms the by-degree (neventrap, Nebenstufe) p.
When classifying up to the rotational group inclusive, for n odd,
R}, arises out of R; by the identification
I=k=x . . . . . . .. ... (8
Neither does this system make any difference between projective and
non-projective quantities. The sub-degrees p, (n—p), (n -~ p) and (2n—p)
coincide and constitute the principal degree (hoofdtrap, Hauptstufe) p;

n—1 n
pEn, w’ = Tfor n odd and 7’ = 5 for n even. In all these

systems the associative product of dissimilar fundamental units is?

equal to the alternating one.
The sysiems R, are the products of original systems and principal
rows ') according to the general formulae:

n—1

(9)

Y Cf. Grundl. pages 11-—18.

3
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for n odd and . ER
R n = 022
n S )
R, =, 052 )

for n even, where (); denotes an original system of the order 7 and
H; a principal row of the order 7. But for some divergence in -} and —

(1)

signs the systems'Rg are identical with CLIFFORD’s n-way algebras?).

If none of the units is privileged the choice of the numbers
occurring in the identifications is altogether determined by the
dualities existing in the different groups. There are four altogether,
and we shall call them:

a- p—1a a-f
a- nf1d a-v
a-2m—1a a—-d
a-a fr— &

From the mode of transformation we conclude for the ex1stence
of these dualities as subjoined:

Duality: ] -y l a—-d u—¢&
Group: n even nodd n even n odd n even n odd
linear _ _ _ +
homog. - - -
equivo- + — + — + =+
. for n=2 for n=2 —a-d
lumin. | jdentity identily
special- ) N .
i i = - —¢-f3 | =a~
affin + + identity | identity -3 { 8
+ - + :
orthogon. | —g—y —=a-f identity | identity | identity
rotation | identity | identity | identity | identity | identity | identity | identity

-+ = existing, — = not existing. 2
1) Curronp's systems have been worked out by J. Jouy, Proc. Roy. Ir. Acad.
5 (98) 78—123, A manual of quaternions (05) 3083—3809. He gives geometrical
apphcatlons after the manner of the quaternion-theory withoul decomposition of the
product. A. M'Avray has elaborated this matter as well, Proc. Roy. Soc Edinb.
28 (07) 503—585. These papers do not aim at a foundatlon on the theory of
invariants or a closer investigation of the fundamental groups.
?) The squares of the dualities not founded on contragredience have been indicated
by blacker demarcation. These dualities only exist when % is even.
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The associative Systems Rz and Ry
If we call the unities of the sub-degrees (n—1), (n+1), and 2n—1)
corresponding to e.:e’, e, and e, and the contragrediént unities e,
the rules of calculation for n =3 are:

e = — el i
e = —e'1l
e123 =1
e'123=1 a-g: — -
RL — e’ = €23 a-y: -
—ez3l’ = e’ a-d: -
Ir = It =41 g-g —
enn =k ey =k w—— 1
. e1e’y = e'1-el =—1 cycl, 1,2, 3%.
e1 = |—e3 I= —e I= —¢hs |
€23 = e = €3 = —e1 1
e123 = |[~—e13l= —er3 I= 123 =] - a-f:— (1
Rg|—e1 I= ey = e = €23 “r:—
—ews I= |—¢1 I= —es I= e Z:: ;j_ J
eroal= | —e'193 = —e1s = 1031 =P=—k3=+1cycl. 1,2,?
enn =k ey =—k¥| en =k €1 =—k?
—kes=|e = €23’ = —k el
A kPer =) e = el = k2’23 “'ﬂ’f
& e199= e1es’= =I=ké=— 1,“‘}’11/‘?/;,“— (12)
e11=k e11’ =—k2 a-d=a—B. )
o—&=q—[?
cycl. 1,2, 3.
e123 I=|—es = =—k=41
) —e3’l= ey = —e I= —ez3l a-f:—
R N - e L
e123= — e123l= =] tity.
e =—1] sy =-1 a—¢g: identity.
cycl. 1,2, 3,

1) “Cyel 1,2,3,...;n" means that the numbers 1,...,n may be substituted
by any even permutation of these numbers.
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€1 =eg3 a-3 identity
Ry | era=—1 a-y " (14)
enn =-—1 a-d ” ,
= J-¢& "

cycl. 1,2, 3.

With a non-homogeneous rectangular interpretation of the funda-
mental variables e, is a polar vector, o', an axial bivector, e, an
axial vector, €', a polar bivector?), I a projective, and k an ortho-
gonal “pseudoscalar’’, ke, a polar, and k’e,, an axial versor (qua-
ternion with tensor L) without scalar part. R3 includes and discri-
minates all these quantities, B3 identifies polar’ quantities with axial

ones and I with an ordinary number, Rz 1dentifies a]l the polar
quantities and all the axial ones as well, and k with a common
number, wheveas in Rj only the difference between vectors and
ordinary numbers exists.

The rules of calculation for n =4 are:

g = - e’23¢ 1 ’

ez = —e's |

e = — e’z | B

8234 = e'r I

1234 = e'1234 e

R! el = e'234 G-y

—enl’ = e'34 a=-0:—
—enul’ = e'12 a-&:+

e’ = e'1 * =+ 1

Ir = I =41 cycl. 1,2, 3, 4.

en =k =k

e1-e’1 = e’14e1 =-+1

Y In space these quantities have the symmetry-properties of a line-part with
direction, a plane-part with rotative direction, a line-part with rotative direction
and a plane-part with - and — side, all conceived as parallel removable with
respect to themselves. For » odd it holds good that polar quantities change their
sign, when the -~ direction of all axes is inverted, and that axial ones do not
change their signs.

22
Proceedings Royal Acad. Amsterdam. Vol. XXI.



334

[* —— —
g1 = |—iey = |—ier I= e'a3y | )
erz2 = |— €3 I= el2 = |- e3s I
ess = |— ez I= ess = |—en I
g3y = |—ie1 = |-—ie.s [= e1 | a-B: + ) (compli-
' 1234 = e'1234 = 61234 = €'1934 =1 a~v:4-) cated)
CR{ et 1= | —iehas I= | —ien = €234 ' a~d:+ (15)
I — I - a-&g=0a~4d P
—¢€l2 1= €3 = — ¢12 I= €14
_ _ cycl. 1,2, 3, 4.
—e3y I= g2 = |—e3 I= e'12
eoss I= | —ieoss = | —iesss = ¢4
e1234l= e’1o34l= e1e34l= ¢'1284] =PR=ki=+1
e1n =Kk e =k8 enn =k e1n =k3
e12s1 I = e1o3l= =I¢=+1
e23sl=|e1 = —iey = —ier 1 ( "
. — — ., (compli-
—e3 I=]ee = el = — e3¢ | a-f:+ cated)
— — a-y =a— 16
Ry | —er2 I=lexs = ess = — ez I v 8 (16)
— ol a—d: identity
€1 = | €234 = —1Iée1 = —1 €934 a-€" lde‘ntity
e1234 = - 1234 = =l cycl 1,2, 3,4.
e1n =+41 ein =+1

The dualities ¢ -3 are complicated ones in this case, i. e. dualising
leads say for «-g from e; to €';, from €'; to —e;, from — e; to — ey
and from — €'; again to e;. This complicated duality always exists
for n even'), as long as one of the units is not privileged. If one
of the units. is privileged, or, to put it otherwise, if we derive the
system belonging to the group, leaving invariant the quadratic form

— a,® + a1’+ et oapt

we find, when classifying up to the orthogonal groups inclusive,
the system:

1) The complicated duality exists also in GrRAsSMANN's Ausdehnungslehre for
n even.
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€ = el € = e123
er  =-—ep2s €1 =-—eos
€01 =— €1
ez =+ eiz- a—{? e
€0 =-+1 e =+1 _ (17)
_ a-y=o—f
Rjen =—1 ern =-1 ! iden-
' — 035 it
eorzs = 1 eo123 =1 o Y. .
- — e iden-
e I= eo —eo I= eo “TE ity
er I=4e; —e1 I=+e eyel. 1,2, 3.
eo1 I= ess=eos —eon = em=e2s |.
ez I=—e3=eos, I2=—1, —e12l=—eo3=c¢03

with non-complicated duality. This system may also be obtained
from the preceding system R (page 334) by the transition e, —e,,

—ie, — g, etc, e, —e, ie,—> e, etc. It it noteworthy that, for
n =4 the theory of relativity ({or the space-element) exactly corre-
sponds to this more simple system.

For non-homogeneous rectangular interpretation of the fundamental
variables, e,, and e,,, are a vector, vesp. a trivector of the first
kind and Ie,, and Ie,,, are the corresponding quantities of the

second kind '). I is a projective and k an orthogonal pseudoscalar.

R conlains and distinguishes all these quantities. Rj.identifies a
vector resp. a trivector .of the first kind with a trivector vesp. a

vector of the second kind and k with an ordinary number.
fu

Decomposition of the Associative Product.

The associative product of two projective quantities of the sub-
degrees p' and ¢' and the principal degreespandq,p,q¢' <n,p=<yq,
consists in the most general case of p -+ 1 parts, each of which
being a product of a projeclive quantity with a certain number of
factors k. As a distributive combination each of these parts is a
product itself. The number of factors k is called the fransvection-
number of this product and this nomber is at most equal to the
smallest of the numbers p’ and ¢’. We call these products, if p’
and ¢’ are both <or both 2n’, beginning from the lowest and
otherwise beginning from the highest in sequence:

1) The customary distinction for # odd between polar and axial quantities does
not hold good for # even.

22%

-10 -
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(first) vectorial product x
second ,, » 3

(only for p even) a-th widdle product, a=§-+ 1.

second scalar product 2
first scalar product -

With this notation, which is in agreement with the existing dualities,
products that are identical with the rotational group obtain the same
name and the same symbol. Owing to the identification of I and k
with common numbers the first middle-product is identical with the
product of ordinary numbers mutually and with other uantities,
hence its symbol may be omitted as being customary.

The rule of transvection.
[f each factor is an alternating product of fundamental elements:

pa=ai....ay
eb=b1." by
we can form the combination:

(8, .b1) (@y—1.b2) ... (@y—it1.bi)a1. .. dysbigr.... by
repeat the same for all p / resp. ¢'/ modes of notation of ,a and b
and add the results.

The sum then consists of p'/ ¢'/ terms, equivalent to each
other in groups of {(p'—2)/ (¢'—i)/ i/. This sum divided by (p'—2)/
(@—=2)/ ¢/, or, stated more briefiy, the sum of (p) (¢%) ¢/ arbitrary
different terms, is called the i-fold-combinntion of ,a and ,b. The
i-fold combination is now equal to the product with the transvection-
namber i. The transvection-number of a product being known, we
can hence write it down from memory by this rule.

The free rules for R, and R,.

Hence the free rules for Rj, RS, R3, R) and K} are:

Transv.
0 a X b= quantity of the second sub degree. '
1 a.b= scalar in k resp. 1.
0 a.(Xc)=aXb.c= scalar in I resp. 1.1)
1 aX(bXce)=(.b)c—(a.c)b
1 a(bXc.d)=(a.b)(cXd)+(a.c)(dXb)+(ad) (bXc) (18)
1 @xXbp)X@eXd)y=0.c)(@aXd)—®b.d)@xe)+....
2 (@xXb).(cXd)=(.c)(a.d)—(b.d)(a.c)
2 (@Xp@eXd.e)=(.c)(a.d)e—(b.d)(a.c)e+.... )
3 (@axXb.c)(dXe.f)=(c.d)(b.e)(a.f)+(c.e)(b.f) (a.d)+...

) In alternating products the brackets have been omutted for the association
(-)., so that we write the alternating product of aj,...., a,:

al Xa2><...-><an'><an’+1-an’+2. cea nap-

-11 -
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The four systems differ only by the different signification attached
to I and k. Rj is the common veclor-analysis, in which no difference
is made between polar quantilies and axial ones and belween vectors
and Dbivectors. Rj3 distinguishes between polar quantities and axial
ones. [n GiBes’s form of this vector-analysis, owing to the groundlessly
introduced 4 sign ine,.e, =— I, the formulae acquire apparently
irregular changes of -+ and — signs and the transvection-rule
becomes ineffectual, so that the formulae stand side by side independ-
ent of one another and can be used only by means of a table

When applied to units the rules for R3 and Rj are:
er Xeg =— ez Xe1 =eg2 e23 X e12 = €31
€1 .6 =—1 eie . erg=—1

RS e . e23=—1 e12 I=leiz=—es cycl. 1=’2,3.
e1 Xeig =—g2 I =+1 -

e1l=le1=—e23

R e Xe,=—¢eXe =¢
8 € . ep=—1
The rules (18) and (20) can be dualised according to all existing
dualities as given in the table.

The free rules for B; and Ry are:

Transv.
numb -

0 a X b= quantity of the second sub-degree
a.b=scalar in k resp. 1

aX{®Xe)=aXxXbXc

a.bXc)=(.b)yc—(a.c)b
a.(bXc¢Xd)=aXbXc.d=scalar in I resp. 1
aX(bXcXd)=(a.b)(cXd)+(a.c)(dXb)+(a.d)(bXc)
a(bXeXd.e)=(a.b) (cXdXe)—(a.c)(dbXdXe)+...
(@aXbp) X(eXd)y=aXbXc.d

@Xb) = (cXdy=(b.c)@Xd)—@®.d)@Xc)+....) ;. (1)
@Xb).cXd)=(@0.c)(a.d)—(b.d)(a.c)
(@Xb).(eXdXe)=(b.c)@XdXe)+...
@Xp)X(eXdXe)=(.c)(a.dye+...
@Xpy(cXdXe.f)=(.c)(a.d)(eXf)+...
@XpXe)yX@XeX)=(c.d)(b.e)@axX+...
@XbpXe).@XeXf)=(.d)(b.e)@a.f)+...
@XpXey@XeXt.gy=(.d)(.e)(a.fHg+...
@XbXc.d) (eXiXg.h)y=(.e)(c.D)(b.g)(a.h)+...

independent of the units used, viz. e, e,, e,, e, or e, e, e, e,.

cycl. 1,2,3. . . (20)

B W WD =N O =D =D —

1) The index 2 under * is for simplicity omitted.

-12 -
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GWhen applied to units the rules for Rg and for e, e,, e,, e,are

er Xea =—eaXe =ei2 e12 * es3 =eis
\ e; .el =11 e12 . ez =— 1 .
el Xew =es=ies ez . €34 =e34 cycl. 1,2, 3, 4.
el . €12 =e2 er2 X e193.=— €3 dual e —3
€1 . eu=lI eiel=leiz=—exn )
er Xeje3=es3 ei23 X ex34 = — €14 (compli- (22
erl=—1le =emy=—1ie ef2z . ez =—1 cated)
b12>§e34=l ez | =—leass=e1
=-+1

and for e, e,, e, e,:
(See for formula (23) page 339).
The qnantities of an even by-degree form a sub-system with ¢
units and the rales: ’

ip# lp=—l2 % i1 =i3 jt# je=—jox ji=—1i3
i % jo=—jo® ii=]s ji#da=—i2 % j1 =
i1 ii=—1 it ji=+1 cycl. 24
. lii=iil=—j1 ljt=jI=+1i1 1,2, 3.
it Xji =j1 Xi1 =1 ’ (i1=e23)
2=—1 j1=c¢en

But these are the same rules as those for the units e,,e,, e,, i,
te,, 1€, of R3 with ordinary complex coefficients, so that the fre:
rales for R, also hold good for quantities of an even by-degree
of R?, if, instead of X and. we introduce the symbols » an

9a # ob = quantity of the second by-degree

2a X eb=scalar in I and 1

9a X (2b % 2c) =2a % 2b X oc

2a » (2b # 2¢) =(2a X 2b) 2c — (2a X 2¢) 2b

24 (2b % 26 X ad) = (22 X 2b) (2¢ % 2d) +....

(2a = 2b) * (2¢ % 2d) =(2b X 2¢) (22 # 2d) +....

(2a % 2b) X (2¢ % 2d) = (2b X 2¢) (2a X 2d) +....
(2a * 2b) (2¢ = 24 XX 28) = (2b X 2¢) (22 X 2d) 2e +....

(2a % 2b X c)(adx 2¢ X 2f)=(2¢ X d)(2b X 2e)(ea X of)+....
Hence these rules may be written down from memory, as wel
as the others.

(25

The System Ry and the theory of velativity (in an element of
JSour dimensional space).
. Fragments of Ry bhave been used by various authors') on the
theory of relativity. With thewm five products occur and two of thest

) H. Mingowskl, M. ABrRaHAM, A, SoMMERFELD, M. LAug, PH. FrANE.

-13 -
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and for o, e1, €2, €a:

eo X e1-=— e1 X o = eo1 = — €01 eo X e1 =— e1 X eo = gl =— eol

61 Xee =—ez Xe1=e;z= €1 e1 Xez =—e2 Xe1 = e12 = €12 (
€ .e0 =+1, e .e1=—1 '€o.~60=+1, el .e1=—1

e1 X e23 = €128 = €0 , €0 X €12 = o1z = — €3 e1 X eas=ez3=¢o, €0 X €12 =€o12=—¢€3

€1 . €e12=—¢€2.€1 . €10=—6€0, €0 . €01 =6€1" ;1 .312=—E2, e~1 . -3_10=-6—0, EB. :01=;l
eo.;o=l, er . e1 =1 e .eo=—1I, e . e =—1

eo Xe1 = — e23=— €23 ‘60 X e1 = — ez3 = — €33 _
e1 X e2 = eo3 =— €03 “e1 X e2 = eg3 =— €03

eol=(—[eo=e123=;o —eoI=1leo =e123=eo

er [=-1er =eopa=—e1 —e1 I=1e1 =epes =— &1 .

eor X eag =1 ‘ eo1 X eas=—1

€01 % €02 ==— €12=— €12, €0l ¥ €12 =— €02 = €0z €01 ¥ €02 =— €12 = — €12, €01 % .612 =— €02 = €02
€23 % €31 = eq2=e€l2 €22 ¥ €31 = €12 = €12

eo1 - eo1 =41, e1e.e12=—1 e . eoi=+1, €12 . era=—1

ot I =1eo1 = e23= €23, e1a I =lerz =— egs =;os, — g1 I =— I eo1 = €23 = €23, —erzl=—TFen = —eos=¢ep3

2=—1 (—Ip=—1
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said products are doubled by introducing the “dual’ bivector (dualer
sechervektor)'). E. Wiwson and G. Luwis have further elaborated
the system and obtain all the products, but three®). All these
conclusions are founded on analogies with the common vector-analysis
and the multiplications form no parts of the associative multiplication.
Therefore the free calculation-rules cannot immediately be pnt down
from memory according to the transvection-rule, but in so far as
they exist they only allow a use by means of a table. The names
scalar and vectorial too, have been divided over the existing
multiplications by analogy and not in agreement to the duvality «—jy.

WiLsON-LEw!S SOMMERFELD, LAUE, efc.
+aX b axX b=gzc [ab], vectorial product
—a. b a. b=c¢ [ab], scalar "
+aXeb aXob=13c Ic=[a 2b*], vect. pr.w. dual bivect.
, +a. 2b a.sh=c — [a 2b], vect. pr.
+ka=+tak al=—1a=3b¥
+ aXsb a.3b=4* i
—a. b aXsb=3¢ |
+2a X 2b 2a X ob = 4c ¥) *;“ I 1¢ = (2a 2b*), scal. pr.w. dual biv.
2a # 2b =g ,E [2a 2b], vector pr. (G. MIE)
i —2a . 2b oa . sh= ¢ ; — (2a 2b), scal. pr.
1 koa=+zak |2al=12a=sb%) - b =+ oa*
u kk=—1 =1 % r
| tka=xtszak| sal=_—Iz;a=b¥
h 3@ . 9b= 3¢
f —3a.2b aaXsh= ¢
+3. b A. b=c¢
saX b=z

) This is not a proper duality, because in the only duality existing with the
orthogonal group, a-y, a bivector e.g. o3 is not dualistic to the “dual”
bivector Tejy, but to e, itself. -

% The connection with an associative CLIFFORD algebra and the absence of
three products has already been briefly pointed out by J. B. Smaw, “The WiLsox
and Lewis Algebra for Four-Dimensional Space” Bull. of the int. ass. for quat,
(18) 2427,
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Therefore this duality does not altain expression, not even in the system
of WiLson and Lewis, though they use units of the kind e,, ®,,0,, €,.

The foregoing table (subjoined p. 340) presents a summary of
the products used by various authors.

The table has been arranged dualistically. Each product has been
indicated by an example. For the muliiplications we used in the
columns 1 and 3 the aunthor’s own notation, but for the quantities
we used all through the notations adopted in this paper. The dual
bivector only has been written with the customary asterisk, while
the commutative scalar of Wirson and Lewis has been indicated
by k. The products marked with #*) do not correspond exactly to
the other systems, because these systems do not contain the non-
commutative scalar I.

The system R contains the existing fragments and all the
existing multiplications and rules, and owing to the free rules of
calculation (21 and 25) it is eminently snited for practical purposes.

The system RS and the elliptic and hyperbolic geometry in three
dimensions.

With a homogeneous interpretation of the fundamental variables
RY corresponds {o a projective geometry in three dimensions, a non
degenerated quadratic surface being invariant. If the units are
selected according to (16) the equation of the absolute surface in
point- resp. plane-coordinates is:

e+ + ) +2"=0

w? +ut 4 u - ur=0
and the geometry is elliptic.*If, on the other hand the unils are
selected according to (17) the geometry is hyperbolic. The free rules
of the system are the same for both cases. To a fundamental
element a point with a number-value corresponds, {o a quantity of
the second degree a sum of linear elements (Dyname) and to a
quantity of the third degree a planar element. The sub-system of
the quantities of the second by-degree is a formi of biquaternions,
which was first mentioned by Crirrorp') as a system of linear
elements in a non-euclidic three-dimensional space. Hence the
system R¢ completes these biquaternions to a system which also
contains points and planar elements.

}) Preliminary sketch of biquaternions. Proe. Lond. Matk. Soc. 4 (78) 381—3895;
Further notes on biguaternions. Coll. Math. Papers (76) 385, 395.

i
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