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Physics. — “On the equivalent of parallel translation in non-
Buclidean space and on RIEMANN'S measure of curvature.”
By Dr. A. D. Fokker. (Communicated by Prof. H. A. LoreNTZ.)

(Communicated in the meeting of April 26, 1918).

1. Introduction. In the following pages I shall try to give a
mental picture of some ideas recently developed by prof. J. A.
ScrouteN before the Mathematical Society at Amsterdam which will
help to illustrate the meaning of a “system of axes moving geode-
sically”, and the “geodesic differential”, together with a few applica-
tions. ') The great point will be to realise in a new way wat kind
of displacement in non-Euclidean space must be considered to corre-
spond to a parallel translation, this being an operation indispensable
in vector-analysis to compare vectors in different points.

One of the characteristic properties of pure translafions is this,
that all points of a rigid body are thereby transferred over an
equally long distance. This property might be used to define a
parallel translation, provided the rigid consists of a namber of points
exceeding a certain minimum. If, for example, in three-dimensional
space, we give a prescribed displacement to one of the points of a-
rigid system consisting of two or three points, it is not enough to
demand an equal displacement for the other point or points to define
a translated position without ambiguity. But in a Buclidean space
of n dimensions other motions than pure translations are excluded,
if for a rigid body of no less than (2n—2) points we want all points
to run through equal distances.

This will be our starting-point. We know, however, that in general
no body of finite dimensions can move in curved space without
changing the mutual distances of its points. In order to retain the
idea of a rigid body we shall have to confine ourselves to bodies
with dimensions of the order of an infinitesimal e.

Another and more sevious difficulty arvises from the fact, that we
cannot get all points to shift over exactly the same infinitesimal
distance &, We cannot but leave a margin of the order of L&* for
the separate distances. Here the question arises whether in a certain

) Cf. a treatise offered by Prof. ScaouTEN o be published in the transactions
of the Kon. Akademie: *Die directe dnalysis zur neueren Relativitdistheorie”.
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direction only one displacement can be effected in which this approxi-
mation to the exact equality is realised? This, however, cannot be expect-
ed, since in the special case of Euclidean space not only pure transla-
tions but screw-displacements too are allowed by leaving this margin.
Therefore a second property of pure translations is required, fit to
exclude these screw-displacements.

This property is found in the fact that the shifts are not only
equal, but also parallel to one another..This amounts to a certain
sreciprocity between translations in different directions. Consider two
translations, by which a point £ is transferred to neighbouring points
Q and R vespectively. The first translation will carry point R to
the same place where the second translation will carry point Q.
This property indeed excludes screw-displacements.

In the following pages we shall first give a summary of the
results arrived at “in this paper, and afterwards (§ 6) give the ana-
Iytical formulae. For examples we will mainly take those of three-
dimensional space. The results, however, will hold good, independent
of whatever number () of dimensions we choose to ascribe to
our space.

2. Geodesic displacement. Let us define an infinitesimal rigid as an
aggregate of particles,which keep their mutual distances unchanged during
their motions. One of these points we may chovose as a ceniral, and
imagine the other points defined by the ends of infinitesimal vectors
from this central point, these vectors having constant lengths (of
the order & and including constant angles. The number of points
must be no less than (2n—2), hence the number of vectors (2n—3),
no n of them being situated together in a space of (n—1) dimensions.

We imagine this rigid to execute motions so as to shift the
central particle from a starting point I’ to neighbouring points over
distances of the order A.

[t appears possible (§ 7) to indicate a certain variety of motions
in which, firstly the shifts of all the other points of the rigid, up to a
margin of the order As®, equal the shift of the central point, and,
secondly, there exists a certain reciprocity which becomes apparent
when we observe two arbitrarily chosen motions belonging to the
vartety, which shift the central particle, let us say, from P to Q
and from P -to K, and when we notice the displacements of the
parlicles having their starting points in R and @ respectively. The
particle from R in the motion (PQ) will reach the same point attained
by the particle from Q in the other motion (PR).

The two conditions specified determine without ambiguity a variety



N 507.

of motions which we may call “geodesic displacements” of the
infinitesimal rigid. They are -the substitutes for parallel displacements’)
in BEuclidean extensions. We may assign the name “compass-rigid”
to a small rigid body that cannot move but in the geodesic manner
defined. [t must be understood that a compass-rigid which, after
a displacement, returns to its starting-point by the same way, will
on arrival be in ils starting-position too. If, however, it returns by
a cireuit, it generally will not be in its starting-position again on
arrival.

3. Geodesic differential. 1f we want to compare two vectors in
neighbouring points P and (), we can proceed as follows. We put
a compass-rigid with its centre in [ and by marking one of its
points we delineate the vector in it. Now displacing the compass-
rigid to @ it is reasonable to say that the marked point defines the
vector displaced geodesically from P to (. By comparing this
vector with the one present in ( we immediately see the meaning
of the geodesic differential of a vector. If this is known, it is clear
what CHRISTOFFEL’S covariant differentiation wmeans.

In the same way we can displace our vector-units from P to Q.
In general these will differ from the vector-units in Q. A set of
geodesically displaced vector-units is what Prof. ScroureN defined
as a system of axes moving geodesically.

4. Geodesic line. We can easily imagine what we have to do
in order to prolong a given line-element geodesically. We put the
centre of the compass-rigid in the starting-point and mark the end
of the line-element by an arrow in the compass-rigid. After the
cenire has been displaced along the line-element, the arrow will
point in another definite direction. This is the geodesic prolongation
of the element. Continuing to move the compass-rigid in the direction
of the arrow, the centre will gradually describe a geodesic line.

In this case, during displacements along a geodesic line, vectors
moving geodesically - will continue to include constant angles with
the geodesic (cf. Levi-Civitra’s article), these angles beingrﬁxed angles
in the compass-rigid.

5. RIEMANN's measure of curvature. Let us now suppose that we

) Taking another starting-point, T. Lzvi-CiviTa arrives at a definition of
parallelism which comes to the same thing: “Nozione di parallelismo in una
varieta qualungue, e conseguente specificazione geometrica della curvatura
Riemannigna”. Rend. Cire. Mat. Palermo, XLII p. 1, 1917. His geometrical
explanation of the measure of curvature, however, is totally different from the one
we shall give in section 5.
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make a compass-rigid describe a small circuit, e.g. along a vanishing
(quasi-)parallelogram. We already pointed out that in general it will
not veturn to its starting-position. The difference between the
two positions is such as might have been produced by an
infinitesimal rotation around the starting-point. The amount of this
rotation is proportional to the area of the circuit described, the
orientation of the “axis” of rotation (which in higher exiensions is
of (n—2) dimensions) being determined by the orientation of the
plane of the circuit. The rotation is intimately connected with the
curvature of space. When this rotation of curvature, as it may be
called, vanishes in all points for every arbitrary circuit, then the
space is Huclidean. ')

The” components of the operator by which from the data of the
area included by the circuit the rotation of curvature for the
compass-rigid can be derived, are Rismany’s four-index-symbols, of
the second kind.

Further — to confine ourselves to three-dimensional space — if
we take the length of the axis of rotation equal to the amount of
the angle of roiwation, and construct a parallelepiped with this axis
and the paralleiogram of the circuit, we can consider the ratio of
its volume to the square of the parellelogram as a measure for the
curvature of space. Indeed, in the limit, for a vanishing circuit,
this ratio is just the number indicated by RieMANN as the measure
of curvature of the space with respect fo the plane of the circuit
considered.

6. Now we shall proceed to give the required formulae. We take

the length of a line-element as defined by
ds'= Z(abd) g,sdx® dat , .

da® dz® representing increments of the coordinates along the line-
element dx, ¢.s (= ¢iq) Leing regular functions of the coordinates of
the starting-point, each index in the sum going through all the
values from 1 to n, where n is the number of dimensions of space.
The algebraical complements of g, will be denoted by g, so that

) The fundamental idex of a recent arlicle hy H. WryL (Gravitation und
Elekirizitdt, Berl. Sitz. Ber. May, 1918) may be considered the hypothesis that a
small rigid (= “Vektorraum”) after turning about an infinitesimal circuit of “trans-
" Jations” (of a somewhat more general kind) not only will have got in a changed
position, but in general will have changed its dimensions as well. In four-dimensional
space-time the linear dilatation of the (4-dimensional) rigid would be half the scalar
product of the alternating electromagnetic tensor and the area included by the
circuit. (Note added during the revisal of the proofs).
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/1 for n=gaq,
TN\ for n=f=a
" For the sake of brevity we shall write g for the determinant
formed of the got. Further we shall avail ourselves of CHRISTOFFEL'S
well-known symbols:

tm 0gun . 09/a  Ogim Im 1 m:]
= — — — 2 ab .
[: a :} g [a""l +— dam.  Odwe ]' 3 b z @9 l:a

The definition of the line-element entails the definition of the

= (b)gus gt

length of a vector v, with components v7:
v? = 2(ab) gqp v® Vb,
and the definition of the angle between two vectors v and w:

vw cos (vw) = Z(ab) gap v wh.

7. Let the points of a small rigid be given by their coordinates
relative to the centre: ue, v¢, we... (2 = 1, 2, 3, n), these being
the components of veclors u, v, w... which are of the order of
a vanishing quantity & If the centre shifts from P to a neigh-
bouring point (), determined by the infinitesimal increments in the
coordinates da® (of the order A), then we require the new coor-
dinates of the points of the rigid relative to @ in order to satisfy
the definition and first condition of section 2: the points are to be

. points of a rigid, and must each cover an equal distance.

Denoting the new relative coordinates by ue - du?, ve -+ dve . ..
etc. it is easy to formulate the latter half of the condition. For the
increments of the coordinates of the point designed by u will be
dz® 4+ due, and the starting point of the line-element through which
it runs lies beside P°, at a distance defined by u. So, if this line-
elemeni is to be equal to that from P to @, i.e.

ds* = Z/(ab) gqp dax dab,
we necessarily must have

; 0
0= 3 (abm) 6-9’,_“.” wi dat dad 4--3(ab) 2gup dwe dub . . (1)
pn

If the  aggregrate of points is to form a rigid, both the lengths of
the relative veclors w, v, w.... and the included angles must be
constant, and expressions such as

u' = Z(ab) gam s wn ,  uvcos (wv) = = (am) gam v v™,

must have the same value in P and . This implies

ag am

():Z«‘((Lml)a ;
I

dalus wn + Z(am) 2gam we dum, . . . (2)
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and

0=3 (aml)~ g"’" dalut v 4 3 (am) gon jus don - vndud . (3)

These are the equanons which must be applicable to duc, dve. ..
etc. in the translations mentioned. It is not difficult to find espressions
satisfying the equations. We can add to (1) the identity

I/ a m
0= (al )(g"” ql')d o dilwn,

alL
and a similar identity to (2):

0 0
0= = (al )(aqf‘,f 9‘2‘) ut dalum :

Replace at the same time the index & in the first term, right-hand
side of (1) by /, and m in the second term, right-hand side of (2),
by 6, and we get

m a m
0=S(a )[z m )( Jam | ol _ ag[')da,lu"l + =(b) Zgabdub]dw

dam  dae

-

and
m 6 a i
0 _— 2 (a) [z(l ) ( ga _ ﬂ J— ﬂ_l.) d/v[um + S‘(b) 29!11) dub] ul,

§ dam  Odw

Dividing by 2 we can reduce the equations to the form

0 = = (ab) gap dat [dllb + Z(lm) Y;nidwlu’":', Ce (1')‘

dul wn ], . (2)

0= 3 () gor w0 [dub + S |
Similarly, we can put for the third equation
0 = =(ab) gas [uﬂ [dvb + Eglrgdm’um] + v [dub + E?Z)Ed.rlu’" ]] 3
So we can satisfy the imposed condition by faking

im '
dudb = — Z(lm) b‘dmlu'". . N €]

and similar expressions for dvf, dw?. ...

The equation (4) is covariant. It will retain its form wathever be
the choice of coordinates.

It defines the position of the points of the small rigid when, by a
first approximation, they have all covered the same infinitesimal
distance.

It is seen, from (1), that in developing g.; into a series we have
neglected terms with products wm w". The squares of the distances
covered therefore can differ from P Q by an amount of the order
¢’ A so that the distances may only be taken as equal up to an ~
amount of the order ¢ A, which we shall neglect.
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8. The <“corrections” given by eq. (4) are of the order Ae. In
order to see if the solution defined by them is the only one, we may
ask if we can satisfy the equations by ‘“corrections” differing from
dur,- such as du¢ -~ du®, where du® is of the same order as du,.

If these are to satisfy eq. (1), (2), (3), we must evidently have.

0 = X(ab) gap dz® dub ,
o 0 = 2(abd) gop ut dub |
0 = 2Y(ab) gap u® d¥0 - gap v dub , efc.

If the rigid, besides the centre, consists of p points, we shall have
2p + 4 p(p—1) equations for pn variables dus, dve. .. etc. For
p — 2n—3 we have as many homogeneous linear equations as
there arve variables. If no set of n vectors w,v,w... are situated
together in an (n—1)-dimensional space, then these equations only
permit a solution of the form (e.g. for n = 3):
go Ge dwb dwc oo (5)
Gby 9cj
where o is an arbitrary’ number, and by b,¢,a, we mean a set
of three indices which form an even permutation of 1, 2, 3. We
denote by dz, and u, with lowered index the covariant combinations:

day = (@) gp ot wy = 2(j) :qz,J uj.

It can easily be ascertained that the expression given for du-,
together with similar expressions for dve, dwe. . . satisfy the equations.
They must define the displacements in the case of an infinitesimal
rotation about dx as an axis!). For all vectors u,v,w... keep their
lengths unchanged and both the angles included with dx and the
mutual angles remain unaltered.

Since the conditien imposed thus far appears not to be sufficient
to define a displacement without ambiguity, we must recur to the
condition of reciprocity of section 2.

Shifting the centre of the compass-rigid from P to @ the particle
designed by u might come from a position R into the position
defined by the coordinates

@9, + dz® 4+ ur 4 dut 4 Jue

. w
dat w) — —

due = r/‘”_q = (ij)

Uy U

or,
day da,

uy Ue

dalum 4 @
2hu —
Vy

If we now shift the centre from P to R, and we then wish to
find what will be the new position for the particle from Q according

l
%, + dat 4 ut ——-E(lm)) "
a

1) Through an angle w|dx].
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N

to the same displacement-law, we only have to interchange the
vectors dx and u

Now we see, the determinant changing its sign, that this position
will never be the same as that reached by the former particle from
R, unless w = 0. - -

So the application of the condition of reciprocity excludes screw-
movements ).

9. Now in the following way we can see that the condition of
the body’s rigidity and the equality of the covered distances together
with the condition of reciprocity arve sufficient to define the variety
of geodesic displacements without ambiguity.

From eq. (1) and (2) we learn that the required “corrections”
du® must be proportional both to the components of the displacement
dx and of the vector u. Therefore let us put

dut = 3 hgdaswt . . . . . . . . @)

Now, according to the condition of reciprocity we must apparently
have

a a
fegg == hys .

Substitute (4) in (3), and we get

a /]

0= 2= (alm) agalm dzxlua ym - = (amst) Yam {h?; ue das vt -4 k:, v das ),
WL

Taking other indices and putting

_ b
]la,lm = 2-'(6) Gal him (]La,lm = }la,ml )1
we get

0
0 = 3 (alm)dalusvm %lﬂ ~+ ham + Panla { -

In this equation we may regard the forms in brackets as unknown vari-
ables. Because of the symmetry in the indices @ and m_there are 4 n* (n—1)
of them. As the equation is to hold for an arbitrary combination

1y Dr. DrosTE remarked to me that a screw-motion might be excluded in a
different manner. Let P@ be part of a geodesic. In P and in @ take two infini-
tesimal planes perpendicular to the geodesic. Draw the geodesics perpendicular to
the first plane and intersecting it in a line-element PR. These together form a
“geodesic strip”, which will intersect the second plane in an element QR'. PR
and QF’ can be called “parallel” and in the same way each pair of elements in
the same geodesic strip including equal angles with the geodesic P@.

In our chain of thought, however, geodesic lines are defined by making use of
the idea of geodesic displacements (see section 10), and so we cannot avail
ourselves of the above suggestion.
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of three vectors dx, u, v, we conclude that the variables must
vanish. Thus

0= anm + Aa,im Pl -
Similarly

0= gif: ~+ hima + hapmi

0= ggﬂ + bt Riam -

By adding the first two, and subtracting the last, and considering
that Aygn = hyme ete. we find

< dm
]"a,lm - — [ .
a
Now we know

l l
k?,,, == g% hgpp=— = gob [ m] :—, :l%,

a

and so from (4) we see that our values for du’:

l
dub = — S(m)] "V delum . . .. .. (4)

constitute the only solution consistent with all conditions.

10. To explain the applicz'mtions of sections 3 and 4 we proceed
as follows. Suppose a vector V, in poinl P, be marked in the
compass-rigid. After a geodesical displacement to @ the marked
vector will have got the components

Ve_ ¥ 31"‘ el V.
[/

Now if we have in @ a vector with compunents Ve 4 d V7,
where dVe now represents some increment of the component Ve,
then obviously the components of the geodesic differential ave'

I
dVe + Z(im) z msd.vl o,
a

This geodesic differential will be a vector itself, being the difference
of two vectors, while d F* are no vector-components.

If the line-element PQ itself is drawn in the compass-rigid as a
vector with components 2% and displaced geodesically, then in @
the arrow will have got components

dxt — X (Im) : o (datdem
a

~

This arrow we have called the geodesic prolongation of the

-10 -
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element. It is easily- seen that this entails for the geodesic the
equation

0 =d'ae + Z(m) z daldgm .

This (covariant) equation coincides with what we get from-the
familiar definition of a geodesic as the shortest line between two

points.

11. We shall now displace geodesically a particle P’, which,
with relation to P, is defined by a.vector u, to a point S near T
by shifting the compass rigid in two steps from P to T, along P(
and Q7. Then, a second time, we displace the particle-to S" near
T, taking the steps along PK and K7, the quadrilateral PQTK
being a (quasi-) parallelogram with sides dx (PQ and K7") and ox
(PK and QT).

After the displacement along PQ the coordinates of the particle
considered relative to Q have become

dalum,

l
ut — Z‘(lm): "
a

At the second step we must be careful to take the values of
CrisTorrer’s symbols at point @, so that afier the displacements
along PQ and QT the coordinates relative to T' are )

9 (!
™ d.z'l,:u“‘ ;pq l d.::pu/] ——~3 m
m ) dur| a

4]

lm

dalym - 3 dardalum ,

u“—E;

a

If the displacements had been performed along PK and KT, the
coordinates relative to 7" would have been

tm " dx‘[u"‘ -3 }'pq

a m

] g {im
dobud |— X —
0ar| a

{
dalum —3 davdzlum,

a

ur— 3

Taking the difference we find

§o = Z(Imp) [a%) b I”ln ] (da! dzr—dardat) um ;
or
. 0 (im pn ,lm Sln pm
§¢ = § Emp) lja.ur al Gm" a | n Q al{ n :l X

X(dz‘du‘—-dri’dz’)um e e N ()
The first factor is seen to be a RIEMANN’s four- mdex symbol,

" of the second kind. Availing ourselves of his notation we can put

(da! dxr — dardalyum . . . . (6)

fo= 4 X(imp) gma, lp

The fi(@=1,2,...n) are the components of the displacement-

-11 -
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vectors which would become manifest after a geodesical displacement
of the compass-rigid about the circuit 7K PQ 7' The displacement
cannot be anything else but a rotation, the lengths and angles
remaining the same. We see how RIEMANN’s symbols determine the
rotation in terms of the components of the area of the circuit. This
rotation is characteristic of the curvature of space.

12. It now remains to prove the statement of section 5 as to
the interpretation of RiEMANN’s measure of curvature.

The measure of curvature with respect to the plane of dx and
dx is defined to be?)

X(alp mq) gaq fma, Ip} (do! dur — dardat)(da™ dxe —davdam)
o Z(lp mq)(gimgpe—9ty gpm)(dw‘ dar — davdz!)(dam dz1 — deadam )

The denominator is four times the sqnare of the area of the
parallelogram formed by dx and dx. For by changing indices with-
out changing the sum we get four times

o) (lp mq) 9lm g
Jom Ipq

Writing d for the length of dx, and J for the length of dx, we find
for the denominator

dal dam dardz.

’

d? dd cos (dd)

I dd cos (dd) J

this being four times the square of the area of the parallelogram.
We shall discuss the numerator for the case of three-dimensional
space and show that it represents four times the volume of the
parallelepiped formed by the axis of rotation and the parallelogram.
Proceeding with some caution, the analogon in more-dimensional
cases is readily found in the same way. We will put for the numerator

2Z (amq) gag Ry (dom dat—dzedamy . . . . . ()
denoting by R, the coefficients of the rotation of curvature (6):

e = X(m) Ry um.
or,,
] ¢ = Z(j) R; w.

How are the numbers E; related to the components of the axis

of rotation? If we suppose the components of the latter equal to &,
then the rotation is represented, as will be presently shown, by

1 .

G — E(ij) Jar Ybr

- Vy gaj 9b5

1} Of. for example Brancui, Lect. on Diff. Geometry, section 319.

bw . . . . . . (8

. 34
Proceedings Royal Acad. Amsterdam, Vol. XXI.

-12 -
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Here we mean by ¢ that index, which with @ and b forms an
even permutation of 123. By pgr we shall denote a similar set:
abe (=) pgr (=) 128.

We already saw that displacements of this kind constitute_a rota-
tion. To inquire whether the angular amount of the rotation is
equal to the length of 1, we mnst observe the displacement of the
end of a vector u which is perpendicular to 1, so that

S @)gapuwlt=0. . ., . . . . . 9

This displacement ought to be |u| multiplied by
culate |5]*:

1. Let us cal-

\

£ = Z(er) gerbe S‘_",

9ai Gbi Jei i g
3 (Im:jv w) 9oy 98) 9ej bw.|’ e vae lruw,
g gar gbr g(‘]' 9['20 g{/w

The summation with respect to ¢ has been effected by writing
in full the first determinant. If we want to sum up with respect
to r, we notice that the determinant vanishes buat for one special
value of », which is different both from 7 and j. If i=1p, j=gq,
then the determinant becomes 4 ¢, if ¢ =¢q, j = p, then we get —g.
In both cases we may write :

&= X (pqow) I Jqv il ud ue,
Ipwqo
and, by (9):
§P =l

So the correctness of formula (8) has been shown.
But then we are justified in putting

‘ . C % sapn | Gai Gbi

= Vg =0 Jaj 9t

and we can subsequently show that (7) represents four times the

parallelepiped mentioned. We write (7) with a slight alteration of

indices and we get: .

23 (cj k) g B; (dwj dwk—dwkdni) =

U,

2 Gai 967 el
::—‘/— X(ijk) | gaj gb5 gej | U (dwj dnk—dakdai).
g Jak 9ok ek

! " Now if j and % assume all values, a set j, k& fnrnishes just as
much as a set £, j, the determinant taking the value 4-g or —g
according to the combination 7,7, £ being an even or odd permutation

-13 -
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of 123, and vanishing for other combinations. So we get for the
numerator

Il ik

4y/g| dat dad dak |, . . N ¢ 1)

Oz’ dzi dzk
this being four times the volume of the parallelepiped formed by
1, dx and dx.
.. This sufficiently explains section 5. We may remark tha,;t formula .
(8) for the displacements of rolation implies a convention as to the
direction in which the axis of rotation has to be drawn. The axis
of rotation must be orientated in a manner to ensure that the
direction of § is correlated to the direclions of 1 and wu, i.e. a paral-
lelepiped constructed from 1, u and ¢ in the order thus specified,
must have a positive volume:

la b le
Vg lue ub ue = posttive, ,
g Q‘b &

This amounts to the same relation which exists between the
directions of the positive axes of X, ¥, Z.

One sees from (10) that the measure of curvature will be positive
if the direction of the axis of the rotation of curvature bears ihe
above-mentioned correlation to the directions of dx and dx.

Similarly, in four dimensions, if the.axis of a rofation in a special
case be a parallelogram on the vectors 1 and m, then the rofation
is given by

1 9ar 960 Yol
W= — X ()8 |gaj 955 9ej | I miuk.
v Juk Jok ek
where abed (=) 1234, and the direction of § is correlated to
the directions of 1, m and u, ie.
la b Ic d

mt mbd me md

Ve

= positive
wr  wb owe 4

go B & &

My thanks are due to prof. J. A. Scrouren, for his kindness in
allowing me to read his treatise on Direct Analysis, which is to
be published soon in the Transactions of the Kon. Akademie.

' 34
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