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Physics. - "01.1 tlte equivalent o} pamflel translation in no1/,
Euclidean space (md on RIEMANN'S measw'e of Cw'vrtt1we," 
By Dl'. A, D. FOKKER. (Communieated by Pl'of. H. A. TJORENTZ.) 

(Communicated in the meeting of April 26, 1918). 

1. Jntroduction. In the following pages I shalJ try to give a 
mental picture of some ideas l'ecently developed by prof. J. A. 
SCHOUTEN before the Mathematical Society at Amstel'dam whieh will 
help to illustrate the meaning of a "system ofaxes moving geode
sically", and the "geodesie diffel'E'lItial", together with a few appliea
tions, I) The gl'eat point wiII be to realil'ie in a new way wat kind 
of displaeement in non-Euclidean space must be considered to corre
spond to a parallel translatioll, th is being an opel'ation indispensable 
in veetor-analysis to compal'e vertol'S in different points. 

One of the eharacteristic pl'operties of pure ü'anslatïons is this, 
that all points of a rigid body are thel'eby transferred over an 
equally long distance. This propel'ty might be used to d~fille a 
paral1el tranRlation, pl'ovided the rigid consists of a llumber of points 
exceeding a cel'tain minimum. If, fol' example, in thl'ee-dimellSiollal 
space, we giY6 a presCl'ibed displacement to one of the pOÎ1lts of a' 
rigid system consisting of two Ol' three points, it is not enongh to 
demand an equal displacement for thE' othe1' point Ol' points to define 
a tl'anslated position without ambiguity. But in a Enclidean space 
of n dimensions otl1e1' motions than pme tl'allslations are exclllded, 
if for a rigid body of no less than (2n-2) points we want all poillts 
to rnn thl'ougb equal distances, 

This will be our starting-point. We lmow, howevel', th at in genel'al 
no body of finite dimensions ran move in cUl'ved space without 
ehanging the mutual distances of ita points. In order to 1'etain the 
idea of a 1'igid body we shaH bave to contine oUl'selves to bodies 
with dimensions of the order of an intinitesimal E, 

Another and more sel'Ïous diffi.culty al'ÏseS from the fact, th at we 
cannot get all points to shift over exactly the Bame infinitesimal 
distanc6 1::., We cannot but leave a mal'gin of the ol'der of b. f:~ fol' 
the separate distances. Here the qnestion arises whetbel' in a cel'tain 

1) Cf. a h'eatise offered by Pl'of. SCHOUTEN to hE' Pllhlished in thc tl'ansactions 
of the Kon, Akademie: • Die directe Analysis zur neueren Relativitätstheorie", 
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direction only one displacement can be effected ill which th is approxi
mat ion to tlle exact eq nali Lj' is l'ealised? Th is, howevel', cannot be expect
ed, since in the special case of Enclidean space not only pure transla
tiolls bnt sCl'ew-displacements too are allowed hy lea\ring this mal'gin. 
Therefore a second propel·ty of pure translations is reqnit'ed, fit to 
exclude these screw-displacemenls. 

This propel'ty is fOllnd in the faet that the shifts are not only 
equal, hut also parallel to one anothel'., This amounts to a certain 

.reciprocity between tmnslatiolls in different directions. Oonsidel' two 
tmnslations, by which a point P is tl'ansfel'red to neighbolll'ing points. 
Q and R respecÜvely. The first translalion will carry point R to 
the same place ,~he!'e Ihe second translation wiJ[ carry point Q. 
This pl'opel'ty indeed exclucles screw-displacements. 

In the following pages we shall fh'st g-ive a summal'y of the 
resltlts al'l'ived at 'in this pap el', alld at'tel'wal'ds (~ 6) give the ana
lytical fOl'mulae, For examples we will mainly take those of three
dimensional space. The results, 110wever, will hold good, independent 
of whatever numbel' (n) of dimensioJls we choose to ascl'ibe to 
our space. 

2, Geodesie displacement. Let us define an infinitesilllal1'igid as an 
agg/'eg'ate ofpa7'ticles,whieh lceep thei,' 1nutual distances uneltanged dUl'ing 
their motions. One of these points we may chuose as a central, and 
imagine the othet' points defined by the ends of infinitesimal vector; 
from this central point, these vectol'S havillg constant lengths (of 
tbe order E) and including constant angles. The numbel' of points _ 
must be no less Ihan (2n-2), hence the number of vectors (2n-3), 
no n of them being sitnated togethel' in a space of (n-1) dimensions. 

We imagine this l'igid to exerute motions so as to shift the 
centl'al pal,ticle fl'om a startillg point P to neighboming points o\'er 
distances of the order ~. 

It appears possible (9 7) to indicate a cel'tain val'iety of motions 
In which, firstly t/te shifts of all t/te ot/tel' points ofthe 1'igid, up to a 
margin of the order ~E2, equal the shift of the centml point, and, 
secondly, there exists a certain 1'eeip1'oeity which becomes apparent 
wllen we obsel've two (l1'bitmrily e/wsen motions belon.qing to the 
val'iety, which sbift the central pal'tie1e, let liS say, from P to Q 
and fl'om P -to R, and when we notiee the displacements of the 
pal'!icles having theil' starting points in R alld Q l'espeetively. The 
pa1,ticle from ft in the motion (PQ) will7'each the same point attained 
by the pa1,ticle from Q in the ot/ter rnotion (PR). 

Tba two conditions specified detel'mine without ambiguity a vat'iety 
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of motions which we may call ",geodesie disp-laeements" of tlle 
infinitesimal J'igid. They al'e -the substitutes for parallel displacementsI) 
in Euclidean extensions. We may assign the name "compass-rigid" 
to a small rigid body th at callJlot move but in the geodesic manner 
defined. It must be undel'sto,Od that a compass-rigid whieh, aftel' 
a displacement, returns to its stal'ting-point by tlle same wa)', will 
on arrival be in Hs stal'ting-positioll too. If, 110wever, it returns by 
a circuit, it genel'ally will not be in its stal'ting-position again on 
alTi val. 

3. Geodesie d~If'e1'ential. If we want to compal'e two vectol'S in 
lIëighbol1l'ing points Pand Q, we can proceed as follows. We put 
a compass-l'igid with its centl'e in Pand by marking one of its 
points we delineate the ve('to1' in it. Now displaeing the compass
rigid to Q it is l'easonable 10 say th at the marked point defines the 
vector displaced geodesically from P 10 Q. By eomparing this 
vector with the one pl'esent in Q we immediately see the meaning 
of tbe geodesie dijj81'ential of a vectol'. If th is is known, it is cleal' 
what CHRISTOFFEL'S covariant diffel'entiation means. 
- In the same way we ean displace 0\11' vector-units from P to Q. 
In genel'al these wiil diffel' from the vector-UI~its in Q. A set of 
geodesieally displaced vector-units. is what Prof. SOHOUTEN defined 
as a system ofaxes moving' geodesically. 

4. Geodesie line. We (~an easily imag'ine what we have to do 
in order to prolon,q a given line-element geodesic((l1y. We put the 
centl'e of the compass-l'Ïg'id in the starting-point and mark the end 
of the line-element by an arrow in the eompass-l'igid. Aftel' the 
centre has been displaced along the line-elemeJlt, the éH'row will 
point in another definite dil'ection. Tbis is rhe geodesie prolongation 
of the element. Continning to move the compass-l'igid in the dil'ection 
of tbe arrow, the centre will gl'adually descl'ibe a geodesie line. 

In th is case, dul'Ïng displacements along a geodesie line, vee tors 
moving geodesieally. will continue to include constant angles with 
the geodesie (cf. LEvr-ClvITA'S adicle), these angles being 'fixed angles 

/( in the compasA-rigid. 

5: RIEl\1ANN'S mellSUl'e of elt1'vatu1'e. Let us 110W suppose th at we 

1) Takil1g anothel' starting-point, T. LEV]·OrvITA arl'ives at a definition of 
parallelism which COlnes to tbe same thing: "Nozione di parallelismo in una . 
varieta qualunque, e conseguente specificazione geometrica della curvatura 
Riemanniana". Rend. Girc. Mat. Palet'mo, XLII p. 1, UH7. His geometrical 
explanation of the measure of cUl'vatUl'e, however, is totally different from the one 
we shall give in section 5. 
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make a compass-l'igid describe a smaH circuit, e.g. along a vanishing 
(q uasi-) parallelog,'am. We already pointed out tbat in general it will 
not retul'l1 to its starting-position. The difference bet ween the 
two positions is sucll as might have been produced by an 
infinitesimal rotation a,'oUild tbe starting-point. The amount of this 
l'otation is proporhonal to tbe area. of the circuit desc1'Ïbed, the 
ot'ientation of the "axis" of rotation (wllich ill higher exlensions is 
of (n -2) dimensions) being detel'rnined by the orientation of the 
plane of the circuit. The rotation is intimately connected with the 
cunature of space. When this 1'otation vf cw'vature, as it may ue 
ealled, vanishes in all points for evet'y al'bitl'ary circuit, tlten the 
space is Enclideall. 1) 

'rhe' eomponents of the operator by which from the dala of the 
area inclllded by the circuit the rotation of CLll'Vat~lre for the 
compass-rigid can be derived, are Rnll\fANN'S foul'-index-s) mboIs, of 
the second kind. 

Further - to confine ourseh'es to three-dimellsional space - if 
we take the length of tbe axis of rotation equal to the amount of 
the angle of rOiation, and constrnct a parallelepiped with th is axis· 
and the pal'allelogt'am of the circuit, we can cOl/sidet' the ratio of 
its volnme 10 the square of the parellelograrn as a rneasure for the 
CUl'vature of space. lndeed, in the limit, for a vanishing circuit, 
this mtio is just the number indicaled by Rnll\!ANN as the meaSU1'e 
0/ CUi'vatw'e 0/ the space witlt 1'espect lo t/ze plane 0/ t/te Ci1'cuit 
conside1'ed. 

6. Now we shall proceed to give the t'equired forrnulae. We take 
the length of a line-element as defined by 

ds l= 2(ab) gabd:ca d,v lo , 

diva dxh l'ept'esenting increments of the cool'dinates along the lil!e
element dx, gnh (= gha) being regulal' fllnctions of the coordinates of 
the starting-point, each index in the sum going thl'ough all the 
values from 1 to n, where n is the numbet' of dimensions of space. 
The algebraical complernents of ,gab will be denoted by ,qab, SO that 

1) '[ he fundamental idea of a recent al"licle by H. WEYL (Gravitation und 
Elektrizität, Hel'1. Sitz. Bel'. May, 1918) may be considered the hypothesis that a 
small rigid (= "Vektol'l'aum") aftel' turning about an intinitesimal circuit of Mtrans-

o lations" (of a somewhat more genera! kind) not only wil! have got in a changed 
position, but in general wiJl have changed its dimensions as weIl. In four·dimensional 
space·time the \ineat' dilatation of the (4·dimensionall rigid would be half the scalar 
product of the alternating electromagnetic tensOl' and the at'ea included by the 
circuit. (Note added during the l'evisal of the proofs). 
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/1 for n = a, 
~ (b)rI b rl1lb -

,'fa" - "0 f I " or n == a 

For the sake of bt'evity we shall write g fOI' the determinant 
formed of the ,gab. {i'lll'thel' we shall avail oUl'sel ves of CHRIS'ro:l!'E'EI;S 
well-known symbols: 

[lm] _ [agalll arlia a9llll] 
a -"- t à.v' +_ à,V"I_ - àma ' 

The definition of the line-element entails the definition of tlle 

length of !J. vector v, with components va: 

v' = ~(ab) gab va vb, 

and the de{inition of the angle bet ween two vectol'S V and w: 

t'W cos (vw) = E(ab) gab va wb• 

7. Let the points of a small l'igid be gi veil by theit' coordinates 
relative to the centre: ua, va, wa . .. Ca = 1, 2, 3, n), these being 
the componellts of vec(ors Ut V t W. .• which are of the order of 
a vanishing quantity 1:. If the centre shifts f/'Om P to a neigh
bouring point Q, detel'mined by the infinitesimal increments in the 
coordinateil d:t,a (of the order 6.), then we l'equire the new coor
dinates of the points of the l'igid relative to Q in order to satisfj' 
tbe definition and first condition of section 2: the points are to be 
points of a rigid, alld must each cover .an equal distance. 

Denoting tlle new relative coordinates by ua + dua, v,r + dva ••• 

etc. it is easy to fOl'mulate the latter half of the condition, For the 
inerements of the coordinates of the point designed by u will be 
dal' + dua, and the starting point 'of the line-element through which 
it runs lies beside P, at a distance defined by u. So, if th is line
element is to be equal to that from P to Q, i.e. 

ds~ = 2'(ab) gab d:lJa dm b, 

we necessRrily must have 

• ~d ~ 
0= 2' (ab m) -a - umd,va d,v b +,~(ab) 2gtlb d.vrt dub (1) 

IlJIII 

If the- aggl'egrate of points is to form a l'igid, both the lel1gths of 
the relatÎ\/e vec(ol'S Ut V t w .... and (he included aT/gles must be 
constant, anti expressions sueh as 

uv cos (uv) = ::E (am) ,gam Uil VIII, 

must ha\'e the same value in Pand Q. This implies 

~ àgalll 
0=.., (aml) àa:l da:1ttrt "In + ::E(am) 2grt1ll ua dU III , • (2) 
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and 

àgalll ) 0=.2 (arnl)-'-I dmlun vlll + .2(am gam/Ila dl)1/! + v11ldual ' (3) 
d,v 

These al'e lhe equations whieh must be applicable to dU(1, dvn, .. 

etc. in the translatiolls mentioned. It is not diffirult to find espl'essioJls 
satisfYing the eqllations. W'"e ran add to (1) the identity 

-. (iJgam à.glm) I o = 2; (alm) ---- dma d,/} ulll , 

à.v l à,va 

and a similal' identity to (2): 

(
àgal à9llll) o =.2 (alm) - - - ua d.VIUIIl. 
à317/1 à,va 

Replaee at the same time the index b in the fh'st tel'm, right-hand 
side of (1) by 1, and rn in the second tel'm, right-hand side of (2), 
by b, and we get 

,.., [-. (àgam à9al ag/m) ] O=;E (a) 2:; (lm) -à I + ~- - -:10- d.VIU Ill + .2(b) 2gnbdttb d,lJa, 
.. tIJ ~III ua 

and 

[ (
ogam àgal 09l1/!) ] 0= .2 (a) :2 (lm) - -+ - - - dm1u!II + .2(h) 2gab dttb u", 
àm l à.v1ll àma 

Di\'iding by 2 we can l'edllce the equations to the form 

o = :2 (ab) !lab dmG [dub + ::E(lm) ) l ~ t d,v l IJl/! J . (1') 

o = ::E (ab) ,gah lta [dUb + 2(lm) ll~! d,/:l UI/!], . (2') 

Si mi larly , we can put for the thit'd equation 

0= ;E'(ab) gab [ua [dvb + ::E~l:~d'V/VIll] + V" [du" + :2r:'~d,r/1tIll]J (3') 

So we can satisfy the imposerl conditioll by taking 
jl . 

dub = - .2(lm) I ~ I dtv l }tlli. , . . (4) 

and similar expressions fOl' dub, citob •••• 

The equation (4) is coval'iant. It will retaiu its f'OI'1ll wathe\ er be 
the chOIce of coordinates. 

It defines the position of the points of the small I'igid when, by a 
first appl'oximation, they have all covered lhe same infinitesimal 
distance. 

It Î'3 seen, fl'om (1), that in developing gaó into a sel'ies we have 
neglected terms with produets u1ll un, The squares of the distances 
covered I herefol'e can diffel' from P Q by af) amount of the order 
E' 1:::. 2

, so tbat the distances may only be taken as equal up to an . 
amount of the order E' 1:::., which we shall neglect, 

" 
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8. The "corrections" given by eq, (4) are of the order AE. In 
order to see if the solution detined by them is the only one, we may 
ask if we can satisfy the equations by "eorrections" ditfel'Ïng from 
dlta, - sueh as dua + dua, where ('Ua is of the same ol'der as dUa' 

If these al'e to satisty eq, (i), (2), (3), we musr evidently have, 

o = 2(ab) gab d:ca óub , 

o = 2(ab) gab ua dub, 

0= 2(ab) gab ua óvb + gab va dUb, etc. 

If the rigid, besides the centl'e, consists of p points, we shall have 
2p + t pep-i) equations tor pn variables dua, óva.,. etc, For 
p = 2n-3 we have as many homogeneous linear eqllations as 
there are \'al'Ïables. If no set of 12 vectol'S u,v,w ... are situated 
together in an (n-i)-dimensional space, then these equations on Iy 
perm!t a sollltion of the form (e.g. for n = 3): 

óua = ~ 2 (ij) I gbl gCI I d/vi u:J = ~ I d:Cb d:c
c I ' ' . (5) 

Vg gb; [lcj ~/ g Ub tic 

where w is an arbitrary' number, and by b, c, a, we mean a set 
of three indices which form an even permutation of 1, 2, 3. We 
denote by dXb and Ub with lowered index the covariant combinations: 

d''Ub = 2(i) 961 dwi , ttb = 2(j) giJ; Uj. 

lt can ea&i1y be ascertained that the expr'ession gi\'en fol' du", 

together with slmilar expressions fOl' óva , ówa • , • satisfy the eqllation~. 
They must define the displacements in the case of an infinitesimal 
rotation abollt dx as an axis t). FOI' all vectors u,v,w ... keep their 
lengths unehanged and both the angles included with dx and tbe 
H1utllal angles remain nnaltered. 

Since the conditi(m imposed thus fal' appears not to be sllfficient 
to define a displacement without ambig'nity, we must recul' to the 
condition of reciprocity of section 2. 

Shifting the eentl'e of the cOlllpass-rigid from P to Q the particle 
designed by u might come from a gosition R into the position 
rleftned by the cool'dinates 

:Cp + d:ca + ua + dt/a + Ot/a , 

or, 

:ca + d:ca + ua _ lJ (lm) llm I d:cl UIlI + ~I d:Cb d:cc I, 
P I a \ V9 U6 U c 

If we now shift the centre from P to R, and we then wish to 
find what will .be the new position fol' the particle from Q according 

1) Through aD angle wldxl. 
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to the same displaeement-law, we only have to intel'change the 
vee tors dx and u 

Now we see, the determinant ehanging its sign, that this position 
wiII nevel' be the same as th at reached by the fOl'mer partiele from 
R, unles~ w = O. 

So the application of the condition of reciprocity exelndes screw
movements 1), 

9. Now in the following way we can see that the condition of 
the body's rigidity and Ihe equality of tlle covered distances together 
with the condition of l'eciprocity are sufficient to define the variety 
of geodesie displacements without ambigllity. 

Fl'om eq. (1) and (2) we leam that the reqllil'ed "col'l'ections" 
dua must be proportional both to the components of the displacement 
dx and of the vector u. Thel'efore let ns put 

(4') 

Now, aeeot'ding' to the eondition of I'eripl'ocity we-must appal'ently 
have 

a a 
Itst = hts. 

Substitute (4') in (3), and we get 

'"' Ogam ~ ! 1/1 a o = ~ (alm) d.n
l 

d.vlua v1ll +...:;. (a m s t) g,,111 th~l ua d.vs vi -t ltsl v1II dxs ltt!. 

Taking othel' indices and putting 

(Ita.lm = ha,ml ). 
we get 

I dgCIII1 ! o = 2 (a l m) d.v l ua VIII I 0.'1)1 + !ta,lm + hm,la \ . 

In this equalion we may regat'd the fOl'ms in brackets as unknowII vaI'i
ables. Becallse ofthe syrnmetl''y in the indices (l and mJhel'e are ~ n 2 (n-1) 
of them. As the eqllation is to hold fol' an al'bitrary combination 

1) Dr. DROSTE remarked to me that a sCl'ew-motion might be excluded in a 
different manDer. Let PQ be part of a geodesic. In Pand in Q take two in fini
lesimal planes perpendiculal' 10 the geodesie. Draw the geodesics pel'pendieular to 
Ihe first plane and intersectiDg it in a line-element PRo These together form a 
"geodesic strip", whirh will interseet the second plane in an f'lement QR'. PR 
and QR' ean be called "parallel" and in the same way eaeh pair of elements in 
the samf' geodesie strip including equal angles with the geodesie PQ. 

In our ehain of thought, however, geodesie Hnes are defined by making use of 
the idea of geodesie dispJaeements (see sectioll lOl, anti so we eannot avail 
ollrsel yes of the a hove suggestion. 
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of tht'ee vertot'S dx, Ut v, we conrlnde that the variables mnst 
vanish, Th\18 

Ollam 
o = aiU l + ha,lm + hm,la ' 

Similal'ly 

By adding the fit'st two, and subtl'acting the last, and considering' 
that hl am = Al lila etc, we find , , 

. [lm] ILa,lm = - a ' 

Now we know 

ISm = 2 gah ha,IIll=-2 gab [l:] = _)l;t, 
and so ft'om (4') we see that our values fol' dub: 

dub = - 2(lm))l~21 di/;lu lll , (4) 

eonstitute the only sol\1tion consistent with all eondiiions. 

10. To explain the apJJlications of sections 3 and 4 we pt'oceed 
as follows. Sllppose a vector V, in point P, be mal'ked in tbe 
compass-rigid. Aftel' a geodesieal displacement to Q the mal'ked 
vector will have got the components 

Va - lJ ~l:ldiUl VIII. 

NolV if we have in Q [t vedor with components Vcr + dTTtc, 
whel'e clVa now represents some iucl'ernellt of the component Va, 
th en obviously the components of the geodesie cl((t'e1'ential are I 

dVu + lJ(lm) ) I: t d,!:l VIII. 

This geodesie diffet'enlial wil I be a vector itself, being the diiferenee 
of two vectol's, while cl Jlic are lIO vectol'-components. 

lt' the line-element PQ itself is dl'awn in t.he compass-I'igid as a 
vector with components {!tva, and displaced geodesically, then jn Q 
the arrow wiJl have got components 

d,va - :IJ (tm) )l; \ diU 1 d,'I)I/I: "-

This at'row we have cal1ed the ,qeodesie p1'olonyrttion of Ihe 
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element, It is easily- seen that th is entails for the geodesie the 
equation 

o = d' .'/Ja + 'lJ (lm) )l: ( "d.711 dm!ll , 

This (eovariant) equation eoïncides with what we get from- the 
familiar definition of a geodesie as the shol'test line between two 
points, 

11. We sha.ll now displace geodesically a pal'tic1e P'. which, 
with l'elation to P, is defined by a ,vector u, to a point S' near T, 
by shifting the eompas8 rigid in two steps fl'om P to T, along PQ 
and QT, Then, a second time, we disp"Iace the partiele-to S" near 
T, taking the steps along PK and KT, the quadrilateral PQTA _ 
being a (quasi-) parallelogram with sides dx (PQ and KT) and óx 
(pI( and QT), 

Aftel' the displacement along PQ the eool'dinates of tlle partiele 
considel'ed ;"elative tö Q have becomë" 

u" - 'lJ (lm) ~ l: t dm i um , 

At the second step we must be eareful to take the "alues of 
ORJSTOFFEJ,'S symbols at point Q, so that aftel' the displacements 
along PQ and QI' the coordinates relative to T are 

u"- 'lJ Fm t d,'UiU III - :!J \ lm! ómi[u lIl -.2 \ pq \' d:C}J1t'l J -2 ~ Ilm I d.7lpd.v1ulI! , 
I a I Cl \ 1 m a,vp I a \ 

If the displacements had been performed along Pi( and [CP, the 
coordinates relative to T would have been 

Ol' 

;a = ~ 'lJ(lmp) [~ Ilm/_ ~ Ipm~ + 2!pn/llm/ -:2 jln/ jPm l] X 
OJljl a \ 0.71' a \ - a ~ I n \ I a \ I n \ 

X (d,v l ó.'UJi-d.'Ul'rJ.'/JI ) u~, , , , , ' , , , (6) 

The til'St faetol' is seen to be a RIEl\fANN'S four-index-symbol, 
of the second kind, Availing om'seh'es of his I1otation we ran put 

;a = i 'lJ(lmp) )ma, lP!(d.v l (!.7II I -d,11/l óXI )llm . (6) 

The Çn (a = 1, 2, ' . ,n) al'e the components of tlle displaeeme~lt-
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vectors which would become manifest af ter a geodesical displacement 
of the compass-rigid abollt Ihe circuit T J( P Q 7'. The displacement 
cannot be anything else but a L'otation, the lengths and angles 
I'emaining the same. We see how RIEMANN'S symboIs delel'mine the 
rotation in terms of the components ,of the area of the eircuit. Tbis 
rotation is chal'acteristic of Ibe curvatlll'e of space. 

12. It now remains to prove tlle statement of section 5 as to 
the intel'pretation of RlEMANN'S meaSUl'e of cUl'vature. 

The measlll'e of CllrvatUl'e with respect to the plane of dx and 
óx is defined 10 be 1) 

:!J(a lp mq)gaq Ima. lpl (dml ö:cp-dmp(f:vl )(d:C1ll Ö,'/Jq -d:cM.'/JlII ) 

K= I • 
I;(lp mq)(gl1llg/Jq-glqYj.J111)(d:c a;c}'- d,1'Pa:c I )(d:c'" cfm'l- d,~:qaa;"') 

l'he denominator is fo'nr times the square of the area of Ihe 
parallelogmm fOl'med by dx aud óx. FOl' by cbanging indices with
ont rhanging the snm we get four limes 

1 

gim glq 1 l 1; (lp rnq) d.v d:vm d,'/J]'ó:v'l. 
il"mgpq 

Writing cl for the length of dx, and a fol' the lenglh of öx, we find 
tOl' the denommatol' 

41 d
2 

dó cos (do) I, 
dd cos (dd) öJ 

this being fom' times tbe squal'e of the area of the parallelogram, 
We shall disCllSS t!te numerator for the case of three-dimensional 

space and show that it represents four times the volume of the 
pal'allelepiped fOl'med by the axis of "otation and the parallelogl'am. 

Proceeding with some calltion, the analogon in more-dimensional 
cases is readily found in the same way. We will put fol' the numel'atol' 

a 
2:!J(arnq)gaq Rm (d,'/JII!óa;9-d:Vgif,'/J1II) • , (7) 

denoting by Ra", the coeffirients of the rotation of curvature (6): 

;a = :!J(m) R: uln , 

Ol', • 

;c = '1J(j)Rj 11./, 

How are the numbers Rj related to the compollents of the axis 

of rotation ? If we suppose the components of the latter equal lo li, 
tIJen the ,'otation is I'epresented, as will be presently shown, by 

r 1 ""'(' ') 1 gm gbi \ l' . :!lC =- .... tJ 'u'? 
Vg gaj gbj 

(8) 

1) Of. fol' example BIANOHI, Lect. on Diff. Geometry, section 319. 
34 

Proceedings Royal Acad. Amsterdam, Vol. XXI. 
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'Here we mean by c tbat index, which with a and b forms an 
e\'en pel'mutation of 1 23. Br pql' we shall denote ~ similal' set: 

abc ( ) pqr (=) 123. 

We already sa'w that displacements of this kind constitute, a rota
tion. To inquil'e whethel' the angnlar arrÎount of the rolation is 
equaI 10 the length of 1, we mnst obsel've ~he displacement of the 
end of a vectol' u which is pel'pendicular 10 1, so that 

2 (ab) [lab ualb = O. (9) 

This dispIacement ought io be lul mllltiplied by 111. Let us cal

cllIate Isl': 

1 =-g (ri,iv 10) 

The summation ,vilh respect to c has been e.ffected bl' writing 
in f\lll the first deter'minant. lf we want to sum up with respect 
/0 1', we notice that the determinant vanishes but fOl' oTle special 
valtle of 1', which is different both from i and j. lf i = p, j = q, 
then the determinant becomes + g, if i == q, j = p, thell we get -go 
lu both cases we may write 

and, by (9): 

~~ = 2: (pq vw) I 9/IV 9q') I IJl [I' uq WO, 

gpw,qqw 

b3 = ut l2, 

So the correctness of forrnula (8) bas been shown. 
But then we are jtlstified in putting 

Rj = ~ :!J( i) \ gai gbi Ili, 
Vg gaJ gbj 

and we ean l:iubsequently show that (7) I'epresents four times the 
pal'aIleIepiped mentioned. We wr!te (7) with a sIight aIteration of 
indices and we get: 

21) (o.i k) gek Rl (dmi ó.'I;k-d.vkó.d) = 
2 ,9ai gbi .oei 

=V9 IJ(i,ik) 9"i gbj gej li(d.vJÖmk-d.vkó,vi). 

/ grlk 96k [Iele 

: 'Now if j and k assume all, values, a set j, k fnrnishes just as 
much as a set k,j, the determinant taking the value +g or -g 
according fo the combinatioll i, i, k being an even Ol' odd permutation 



- 14 -

517 

of 1 2 3, and vanishil!g for otber combinations, So we get föl' the 
numerator 

li ti lk 

4 V 9 dmi dt~/ dtuk , (10) 

Ótvi ómJ ómk 

this being four times the v01ume of the parallelepiped fOl'med by 
1, dx and QX, 

, _ Thi8 sufficiently explains section 5, We may rem ark thaf forrnula . 
(8) fOl' the displacements of roLation implies aeonvention às to the 
direct.ion in whieh the axis of rotation has to be dmwn, The axis 
of rotation must be orientated in a mannel' to enSUl'e that Ihe 
direetion of ; is eOl'l'elated to the direcLions of 1 and u, i.e. a paral
lelepiped eonstmeted from 1, u and ç, iu the order thll8 speeified, 
must have a positive volume: 

la lb le 

Vg ua ub U C = positit'e, 
,;a ;b ;e 

This amounts to the same relation whieh exists between Ihe 
directions of tlle positive axes of X, Y, Z, 

One sees fl'om (10) that the measure of CUl'vature w,ill be positive 
if tbe dÎl'ection of the axis of the l'otation of clll'vallll'e bears the 
above-mentioned correlation to the directions of dx and dx, 

SimilaJ'ly, in foUt' 'dimensions, if the. axis of a rotation in a special 
case be a pal'allelogrnm on the vectors 1 and m, thell tlle I'otation 
is given by 

1 gal ghi gei 

;d = - ~ (ij k) gaj ghj ge} li mi uk , 
Vg 

gak g6k gek 

where abc d (=) 1 2 34, and the direction of ; is cOl'rell;lted to 
the dit'ections of 1, mand 

la 

u, 
l6 

mb 

ub 

;h 

Le, 
[e ld 

me me! 

UC ne! 
-= positive 

;c ;e! 
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