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Mathematics. — “QObservations -on the expansion of a function
i a series of factorials.” 11. By Dr. H. B. A. BoCKWINKEL.
(Communicated by Prof. H. A. Lorentz).

(Communicated in the meeting of September 29, 1918).

5. We now consider another example of NIELSEN’s theorem, not
belonging to the cases mentioned under N°. 4 of the remarks made
in the preceding paragraph. We choose

o) =,

where 6 is a number between O and 2, not equal to one of these
numbers. For this function we have

A=—m—o , A=0,
the first of these equations resulting from the fact that t=1 is an
ordinary point of the function. It is further easily found that the
nth derivative of « (f) satisfies the equation

o @) (1—tH—1  nl'(n) (1—t\  (1—)*~1 91
[ (d4-n) h]‘(()‘%—n)(e“’wt a'—t (21)

1—¢ .
The modulus of the expression — " is given by the relation
e —_—
1—¢ 2¢(1— cos 6)
T =1 —_— . (22)
el —t 1—t+V1—2tcos 6+

and it is not very difficult to see that it increases monotonously
from the value 0 to 1, if ¢ decreases from 1 to 0.

We divide the interval (0,1) of ¢ into two paris, (0, and (», 1),
where v is a number given by

» = nd—1 (R AR ) IR ¢1.)]
so that » depends on n and approaches to zero as a limit when =
becomes indefinitely large. The positive number d; is at our disposal
and will be fixed immediately. The maximum value of the modulus
(22) then differs from unity by a quantity greater than
fndi—1

if ¢ lies in the second interval, £ being a certain positive number,
which is independent of n and ¢; thus we have in this interval




¢t —¢
so that the left-hand member of (21) for these values of ¢ approaches
untformly to zero for n=—oc (the factor n I'(n): I'(d + n) is only
equivalent to n1—° and does therefore not affect this statement).

The integral
1
f nl(n) [ 1—t\0 (1—t)F—1
Y - - de
(0 4n) \ &0 —2 etf—t¢

consequently has zero for its limit if » increases indefinitely, however
small the value of d may be fixed.
For the interval (0, ») we have, independently of ¢ and n,

nl(n) [ 1—t )" (1—¢)f kn [(n)
T(d+n) ( ' d_t | >T(d+n)
< knt—4,

where % is again a positive number not depending on » and t.°)
Thus, considering (23), it follows

v al(n) [ 1—t\" (l—t)d'-1
pr(d“l'”)('— ¢t —t
0
< fen—(d—d1)

We therefore need only choose ¢, less than d, to see that also
the integral over the interval (0, ) is zero for n = . Thus the
whole remainder (11) is zero for n=— o, if only E(2) >0, ie,
since 2=-—oo and A’ =0, if R(@) > 2" and R (¢) > 2. For these

values of x the integral
f(l—-t)w —1
eif —¢

can therefore be expanded mto a series of factorials; and the theorem
of NieLsen holds in this case.

Again we take the example
] 1 1 0L 6L 2
O=Gt T (0<u< 1 )

Here 2’ =— 0, on account of the first term, and A = u, on account

___o ><1,

1) We shall always, in future, denote by % a finite positive number, without
always meaning the same number by this letter. This will not cause any am-
biguity, because the exact value of %k is of no importance in our reasonings. For
the sake of clearness, however, we shall often mention the quantities on which
k does not depend.
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of the second. If ¢ (f) were equal to the second term only, the
integral (1) could be expanded into a series of factorials for £ (v) > u
only, and this series would be absolutely converging for these values
of @. Thus the whole funciion may also be represented by such a
series for R (&) >u, ie. for B()>2 and R () _>2, but the con-
vergence is, on account of the first lerm, only conditional for
2 R(x) << 2+ 1. This, again, is exactly the proposition of NIE1.SEN.

6. If,’in the first example of the foregoing paragraph, we account
for the reason of tlie validity of this proposition, we infer that it
is a consequence of the fact that the expression
1—¢

¢t —t

n

bl

for a fixed value of ¢ >0, decreases with I/n as the n-*" power of
a number less than 1, which causes that, in the integral (11), only
an interval has to be considered which, in a proper manner, ap-
proaches to zero as n becomes infinite, so that the value of R (x) for
which expansion is possible can be depressed by unity. This suggests
the idea that something of the kind wight occur as a rule, if i (¥)
has t=1 for an ordinary point. The truth of this presumption is
proved by the following investigation.

We again divide the interval (0,1) of ¢ into two partial intervals,
with the point {=v as a common end-point, which is to approach
ultimately to zero as n becomes indefinitely large; and we assume,
as in the preceding paragraph, for » the value (23). Consider the
circle, with centre » and passing through two fixed points C and ('
lying on the circumference of the circle of convergence {0,1) of
o (¢), symmetrically with regard to the axis of real guantities, and
in the interior of an arc D A D' of the latter circle, which does not
contain a singular point of ¢ (f), D and D' being also conjugate
points, whereas A4 is the point with the affix ¢ =1. Then, from
and after some value of n the value of » will be so small that the
circle with centre » does not contain any singular point of o (#)in its
interior and on its circumference; and at all points of the latter
between the radii O D and O D, inclading an arc £ B E' of it (B
being the point on that arc with argument zero), the modulus of
¢ () will remain under a finite quantity X, independent of » and ¢.
As regards points of the supplementary arc EF E of circle (»), F
being the point opposite to B, we may remark that ¢ (t) there has
a modulus no greater than

@ (1—"),
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@ () means the natural majorant of ¢ (£), and »" the distance of the
points D and E.

We further remark that the radius of the circle (v) is greater
than 1 —w», say 1 — v 4/, It is evident that the numbers »' and »"
both approach to zero together with », but that their ratios to the
latter number remain finite and different from zero.

At a point £ of the interval (v, 1) we have, according to a well-
known proposition )

M
(1—t 42"’
if M is the greater of the numbers K and ¢ (1 —v"). Instead of
this inequality we may write

AU

n!

\ ‘a—z)ﬂ—lrpw(t) <( 1—t )"‘iw-ﬂ
n! 1-—t42'
) 1—t¢ 1
or, since for 0zt =1, 1—t+1"< et
,(l—t)"—l(p(ﬂ)(t) My o4
n! 142y

With regard to ¢ (1 — v") the following remarks may be -made.
If, in the equivalence-equation
lim a; = n¥
the quantity 4’ is no less than — 1, we have, according to the
proposition of Cesard, for any fixed d>0.
lim (v"y"H+8 g (1—2") = 0,

vi=0
and hence, in virtue of the remark made above on the relation
between »" and »,

lim oY1+ (p(1—p") = 0

v=0
and further -
m v+ Sk M =0

=0
since, as a matter of course, the expression K X »’++¢ has, too,
zero for its limit.
Thus we may write for (24), in connection with the assumption
(23) and the finite, not disappearing ratio between » and »'

(1 —t)r—1gpn(t) knk
I'(n—1) (1 4-kndi—1)n
< kake—né\‘ '
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where £ is again a positive number not depending on n and ¢.
Hence, corresponding (o any fixed positive quantily & chosen arbi-
trarily small, there is an mtegral namber N, such that the left-hand
member of the latter inequalily i1s less in value than &, for every
value of ¢ in the interval (»,1), if only n > N. For these values of
n we have therefore

1
— =1y (n)
! f (L—r—ly )

1
ke | (1—1t)B@ di

r(c+n)
< ke
if R)>—I1. For any such value of 2, ie. a fortiori for
R(z) > 2, smce 2’ was supposed greater than —1, the part of the
integral (11) taken over the interval (v,1) has zero for its limit
for n=—=o. :

For the integration over the remaining inlerval (0,v) we apply
the mode of treatment of § 3 and the inequality (17). According to
the latter there 1is, corresponding to any fixed d and & chosen as
small as we please, an integer XV such that we have uniformly
in the interval (0,1), and hence in (0,v),

— e
o) At S

r(A'+d+n41)
For the interval (0,v) it follows from this that, for n > N

(p(")(t) (1_._t)z+n—1
I'(x+n)

< keni—Rix)+r+o

thus

4

(1) 1—t -}:n-—l
’ f Uz (t) ( )’L dt < Fe 71—-R(3’)+)’+6‘+6l
0

r'z+mn)

If now R()>4~', we can have chosen the numbers d and d,
so small that R(x) is also greater than 2+ d + 0,, and in this case
we infer from the latter inequality that the integral over the interval
(0,1), .too, has zero as a limit for n = o0, if R(w) > 1. Thus the
theorem of NigtseN has been proved, i case t=0 is an ordinary
pomnt of the jfunction (7).

If a function ¢(#} has the point /=1 for its only singular point
on the circumference of the cirele of convergence (0,1), and if,
moreover, it satisties the conditions of Hapamarp, i.e. if it is con-
tinnons and “& écart fini” on_ thal circumference, or if a certain
derivative of negative order —w has this property, then we always have

w=—>1=3 41,
and the theorem of Nisrsen has ceased having anything parlicular.
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Again it may happen that ¢(f) can be divided into the sum of
two functions ¢,(t) and ¢,(), the first of which is regular at t =1
and the second of which has the latter point as its only singularity
on the circuinference of the circle (0,1). If, then, the number 2’ for
e, (@) is equal to 2,7 and that for ¢,(?) to 2, and if 4, > 2, so
that for the whole function ¢(?) the number A’ is equal to 2,”, the
integral {1) can be expanded in a conditionally converging series of
factorials for

¥, + 1< Ra)< ¥ + 1
if M=2,"<4,"41, and for

P Ry 2 +1
if 2,/ >2,"41. If, in this case, rp,(é‘) has the properties of Hapa-
MARD, then 2, 4 1=2,=12, and the proposition of NirLseN is
valid, which, now, really has a particular meaning.

7. The following proposition is, as a corollary, included in the
theorem of the preceding paragraph . ]
If the coefficients a, of a function ¢ (1), defined by a power-series

LPY

~p{t) = ZO‘: ayth

which has the circle (0.1) as its domain of convergence, are, for
n=oa, equivnlent to a power w’ of n, and if the series

0

) N 1)

et '+
is divergent for 0 < 8 <1, the point ¢ =1 is a singularily of ¢(2).

For if t=1 is an ordinary point of ¢(f), the series (6), which,

except for the factor I'(x), is equal to

w0

n! ay, N
Z:mﬂ_) T 1)

is convergent for [2¥) > 2’ and the convergence of (25) can be
derived from it. For we may wrile

! a, . n!l a, I'(x+a41)

WH T Pe-+nd-1) T D+ nd+e
If we choose @ such that 2 < R(x) < 2’ + 6, the series formed
by the first factor, it n takes all values from zevo to infinite, con-"
verges, as we have already seen, whereas the series, composed of
the terms obtained by taking the first finife differences, with regard
to n, of the second factor, converges absolutely;.and it is a well-
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knowu truth that the convergence of (25) is a consequence of these
two facts. The same thing would hold with regard to the series
5
()
if -
" lim p(n) = W'+, and lim A ¢(n) = o +0=1,
Hn==oo HZ=

Therefore, in the statement of the above theovem such a series
may be chosen as well. We further remark that A, which was
hitherto supposed (o be greater than —1, may also be less than the
latter number: the theorem of NiuLseN, in the particular case demon-
strated in § 6, keeps its validity for those values of 2, though we
shonld have to apply our reasonings to an integral of the form (8)
(in a footnote of § 1) in the latter case.

By substituting ¢=1'¢% in the power-series for ¢ () we obtain
the more general theorem:

If the coefficients an of a power-series in the letler t are equi-
valent to 0’ for n—= oo, the function ¢ (f) represented by that series
has, on the circumference of s circle of convergence (being the circle
(0,1), singularities at all poinis where the series

ant®
2o <8<
diverges. We may add that this theorem already holds, if only the
upper lhmit of the coefficients a, is, in the sense of equation (14,
equivalent to n/' for n = .

Finitely we observe that the reverse of the proposition does not
hold: if the series (25) converges, the point :=1 need not be an
ordinary point. To make this clear we need only think of the case
that the coefficients a, differ from zero only for values of n lying
at a certain distance from each other; it may happen then that the
series (25) converges absolulely, but the function ¢ (f) has its whole
circle of convergence as a singular line.

8. As already remarked, we doubt of the general validity of
NieLseN’s theorem, though we are not in a position to furnish a case
of the non-validity. It is our opinion that, if A'<a<{ 4’41, there
will be cases in which the integral (1) cannot, for all values of
R () > 2, be expauded into a series of factorials. On the other hand
we can prove that such an expansion is not possible for any value
of R(z)<#4, which is a thing not immediately evident if 2 lies
between 2' and 2" 1.1)

H If R(x) <A, the impossibilily is at once evident, since the series-terms have
not zero for their limits then.

]
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Suppose the series (25) to converge for # > #, and to diverge
for 8 <, and, consequently, the series (26) to converge for
R @) >4+ 0, and to diverge for R{x) < 2' 4 0,, then the integral
(1) will, at any case, not admit an expansion into a series of
factorials for any value of R (2) <4 +4 0,. We now shall prove
that for any positive d, taken as small as we please,

lim (1—)""+0+3 ¢(6) = 0?)

=1
so that A<2' -+ 0,; by this the required proof will have been
established.

For the sake of brevity we write

V46, +d=na,

Consider the derivative of negative order — « of ¢ (¢), which
according to the definition of RieMany *), is given by

¢
1
D-»p(t) = F(—(af(t——u)“—l o (W)du = t(t),
0

then ¥ (1) is a function regular at =0 with the same circle of
convergence (0,1) as o () has; its expansion into a power-series is
Ha,,t"
y T(a-+n- (a+n+ ])
From this formula it may be derived that @ () remains finite for
{=1, in virtue of the initial hypothesis.
Conversely we have

W(t) = 27)

7 (t) = De{i=p(t)]-

First, let
y46, <1
Then we may choose d so small that also « <1 and write
plt) = D= D|eap(9)1*) =D“~1[at“—1¢(t) + (o) = '

ﬁ—u)—“ [ep(u)us—1 4+ '(u)u] du | (28)
F(l - Y ! s

Now s (u) is, in the range 0 Z w = 1, finite and thus less than
a certain number g. Hence

}) Or for negative values of A’ + §;, lim (1 — HX +h+n+39p (n) (¢) = O, if 715 such
that 2’44, +230.

%) See among others BorgL, Legons sur les séries & termes posilifs, p. 75.

%) Properly speaking it should be D.D=z—1, but this operation, in the present
case, is equal to D=—1, D, since the subject of the operation is zero for { =0,
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14

<y f w1t — u)—* du
0

] f Y ) ~dis

or, substituting u = &

1 1
l f P(uyus—1(t— u)y~%du ’ < g J v*—1(1 — o)~ dv,
0., S

so that the integral in the left-hand member of this inequality
remains finite for all values of ¢ in the closed interval (0,1). Further
we divide the second integral on the right-hand side of (28) as
follows, supposing ¢ > 4,
t t—(1—7) t
f W(w)ur(t—u)—* du = f + f
0 0 i—{i—)

To the first of these two integrals we apply the second mean
value theorem, which is allowed, because the expression u* (t—u)—*
increases monotonously in the interval in question. We obtain

t—(1—t)
P'(w)ux(t—u)— da = (2t —1)(1—t)—= [P(&t— 1)— ()]
0
where $ is a number in the interval (0, 2i—1). This part of the
integral, as « (f) remains within finite limits, 1s therefore for ¢ =1
at most equivalent to (J—#)—. In order to infer the same thing
with regard to the second integral, we make use of the fact that

bk (l—t () =0, (n=1,2,...) . . . . (29)
=1

We shall prove this at once; it should not be thought that it is
a consequence of the proposition mentioned in a footnote of § 1:
it follows solely from the convergence of the series (27) for ¢=1.

If we assume, for a moment, the formula to be frue, we have
for the whole interval 0 2 e Z 1, if K is a certain positive number,
not depending on w,

K
W) < 7.
— U
and so, in the interval of integration 2i—12u <!
, K
1’7 (u) < ]:, \

from which it follows

-10 -
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i t
f W(w)ut — v+ da| < i% ﬁt—tt)—“ du = K(1—t)—
20—1 2t~1
so that this integral, too, is for {=1 at most of order (1—i)—=
The same holds therefore fov the function ¢ (#), and since « may
be supposed arbitrarily little greater than 4’ -+ 8,, we have certainly
for every ¢ >0

lim (1 —t)" 4+ g () = 0

{==1
and thus, as we proposed to show
2TX 46,

Secondly, let 2" 4/, lie between the integers p—1 and p; we
may choose J so small that the same holds for V' + ¢, + § = «.
We write

a=p—1+c . . . . . . . . (80)
so that
0 e <1 . L ... . (81)
In this case we have the following reduction
o(t) = D*—1 Dr [tie)] )

p o
) . Pm %' 4m—1 ‘p(m)(g)
- ] )“ —1 r - m
[ ) rhc

Owing to (31) we may, as in the former case, using here the
inequality (29) for n =*m, prove that the expression
Dx—1 = “+-m—1 Win()]
is at most equivalent to (1 —#—«+m—Yand thus ¢ (1), as m is
no greater than p, is of an order no higher than that of (1 —#)—®'+»~—1)
that is, according to (30), of the order (I —#)== Thus the required
result is obtained completely.

9. We now give a proof of the proposition used in the preceding
paragraph. It may be stated as follows:

If the expansion in a power-series of a function ¢ (i) converges
at the point t="1 of the circle of convergence (0,1), we have for all
positive integral values of n ’

bm (1=t W (@=0. . . . . . . (32)
=1

This proposition, of course, ceases to have a particular meaning,

1) Properly speaking it should be DpD#'—1, but this comes to the same thing
as D#'~1Dp, becanse {-(p—1)-times the subject of operation is zero for =0

4

-11 -
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if t=1 is not a singular point of ¢ (¢), but if it is, the proposition
is not a matter of course.

Since, if the coefficients of the power-series in question are complex,
the two series formed separately by means of the real and of the
1magmmy parts of those coefficients must both converge, we may
without loss of generality suppose the coefficients to be real
quantities. We then consider, together with the function

¢)=a, +at ...+ aid"+ ...
the function

f(t):;i_t)tz Ne . . . . . . (3%
Q

where
n
Sy == ;p ap,
“<

Since s,, as n becomes indefinitely large, approaches to a definite
limit s, the series (33) behaves, so far as regards its terms for large
values of n, as the power-series of the funetion

3
1—¢
and according to the reasoning of Cesaro we have not only

] .
bim [j(/) ———] —s,
t=1

but also b ¢

. ,,
f:;[: )(t) t)"+1—J =s . . . . . . (39

Further, from n-fold dlﬂ'enentlatlon of the identity

Pt = (1—8) ()

we obtain the new one
A= 1rgl) _ A—rHifoi) (1= 9rf0—0()
nl n! T =
The limit of the right-hand side of the latter equation for t=1,
15, by (34), equal to zero for all positive infegral n-values, and the
required formula (32) has thus been proved. ‘
By substituting ¢ =t ¢ we obtain: If the expansion in a power-
series of a function ¢(8) converges at the point t = ¢¥ of iis circle
of convergence (0,1), then, for all positive integral values of n and
Jor real values of ', we have

lim (L —t) )(gerw) = 0
=1

-12 -



