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Physics. — “Magnetic properties of cubic lattices”’ By Prof. L. S.
OsrnstEIN and Dr. F. Zernige. (Communcated by Prof. H. A.
LorenTz.)

LN

(Gommunicated in the meeting of September 29, 1918).

The well-known model of EwiNe has been treated more in detail
by different scientists. A few have taken the very unsatisfactory
standpoint, that elementary magnets are distributed at random 1
space'). More in accordance with reality is the supposition, from
which W. Peppir ?), and later on also Honpa and Oxusa *) have
started, that the magnetic particles are arranged in a cubic lattice.
The reasonings -hawever show two important fallacies.

In the first place they neglected the demagnetising force in a sphere;
accordingly they. think .that dipoles cannot yield a result, which
made them unnecessarily consider magnets of finite length. In the
second ‘place they considered only those rotations at the research of
stability, in which the magnetic axes of all particles are moved
in mutual parallelism,

..As.- will be shown hereafter, the consequence of this unfounded
limitation 1n the freedom of motion of the particles is that the
stability becomes much greater than is in reality the case.

If we sweep this limitation, we find that the arrangement of
magnetic atoms m a cubic lattice is unstable without exterior field.
A -body of snch a structure, can therefore possess no coércitive
force. o

§ 1. We consider a cabic laltice with edge . In the corners of
the laitices we imagine dipoles possessing the strength p, and which
can rotate freely. Be those dipoles directed all parallel to an edge
of the lattice by a strong exterior field H. Now we put the question
how  far the exterior of the field must be weakened to reach the
limit- of stability. If the system without exterior fleld is stable the
intensity H, at which this is the case, will be negative.

.The magnetic properties of the latiice considered will consequently

.1) Gans.u. HEryz, Zeitsch. fir Mathematik und Physik.
%) Edinburgh Proc. 195 and 7.
%) Phys. Review, X, 1917, p. 705. -
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— if Hj is negative — be roughly speaking analogous with those
of a ferro-magnetic body with hysteresis. If on the contrary we
find a positive value for H,, we have to do with a body without
hysteresis that can only be magnetised up to saturation by a strong
field H, With a weaker exterior field the magnetic atoms will not
remain totally directed and consequently M will decrease. We shall
deduce for that case the connection between the intensity H and
magnetisation, in other words: the permeability.

In order to find from H, the cobrcitive force /;, we must bear
in mind that the latter is defined as the negative interior field required
to make the magnetisation change its sign. This interior field will
always be found by adding the field H,, which is caused by the
magnetised body itself, to the exterior field H,. The field A, must
be calculated on the supposition, that the body has a continuous
space-magnetisation.

So we have

H=H, + Hg,. and especially H,=— H, — He,.

Here — H.,, 18 the so-called demagnetising force. By this defini-
tion H. will become independent of the form of the body considered,
which consequently is not the case for H,. In the preceding para-
graph we must consequently read for H, everywhere Hy 4 He,.
In our calculation we shall always take the limit spherical. Then
Hcan is — 1/a M'

It is easy to demonstrate that H, becomes —0 when we impose
on the turning of the atoms the limitation discussed above that their
axes always remain parallel. For this purpose we only have to sum
up the reciprocal energy of two dipoles over the whole lattice. From
considerations of symmetry we then find that this sum is zero. ')

We shall give another proof of the theorem mentioned, the principle
of which can also be useful for our further calculation.

We choose a system of axes parallel with the edge of the lattice
and take the origin in one of its points. We imagine in all the
points of the lattice except in the origin, Northpoles of unity
sirength, and we imagine the lattice limited by a very large sphere
about 0. Let V (z,y,2) represent the potential in a point w,y,z. The

potential of dipoles with moment p in de a-direction is p—a—f,

&
o2 o2 0?
the intensity in O is consequently p a.z-' , P 63/1;0 , P az;/; ° respectively
w l/

in the @, y and z-direction. The potential energy of a dipole

) H. A. LorexTz, Theory of Electrons. Note 55, p. 208.
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0
with moment p’ in 0 will consequently be pp’ Tz—", when this di-
2
pole was also directed along the =z-axis, whilst it amounts to —
a! -
pp' a—;—f—“, when the last dispole is directed along the axis of .
)

When we place in all corners equally directed dipoles, we can
dissolve these in dipoles according to the direction of the axes in
components with moments pg, py, p.. And so the potential energy
of the dipole in the origin is:

, 07, , 07, , 0V, 0*V,
Py +pVTZJ’—+p:_§;’_+2PIPVW+

i a* V,+ 9 v,
aPrx Pz 30z PPy W “

On account of the symmetry the three mixed differential-quotients are
*y, oV, oV
da Oyt | 97
differential-quotients are also zero because ¥, fulfills the equation of
LapLAcE. In consequence therefore the interior energy of the lattice
is zero, independent of the direction of the dipoles (provided all
dipoles are parallel). So a very weak exterior field will be sufficient
to let all dipoles assume the directions of this field, in other words:
H, is zero.

The same result holds good for the two other Bravais cubic
arrangements: the centred cubic and the plane-centred cubic lattice
The limitation used thus yields a coercitive force which is equal
to one third of the magnetisation of saturation. For stéel the coer-
citive force is at least 80 times smaller.

zero, and we have further %. Consequently these

2. In what follows we shall want the potential ¥ of a rectangular
"lattice with unequal edges a, b, and ¢ for the case that every corner
carries a pole of unity strength,; this potential depends upon the form
of the boundary even if we imagine it at great distance. We shall
avoid the difficulties of the boundary by the following artifice.
Besides the point-charges 1 in the corners we give the body a
homogeneous space-charge of — 1 per volume a, b, ¢. In total the
body is thus uncharged and the parts at a great distance of the particle
considered have a vanishing influence. So we are able to calculate
the potential V” for this case of a lattice infinitely extended n all
directions. From this we shall then find V for the case of a sphere
by adding the potential in a homogeneous sphere with a charge-
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R | . . .
density - 7 which with exception of a constant is equal to —
abc

' +y 42 7
Babe
We begin by calculating the potential U, which is caused by the
charges lying between the planes z = == 4 ¢. Evidently U 1s a per-
odical function of x and y with the periods a and b. So it may be

represented by a double series of Fourizk: ,
2; 2 =012.... A
U= 2= Z,, cos ”ma:cos——ﬁy " '
b n=20,1,2...

in which for the sake of symmetry only the cosinus appears. The
coefficients Z,, are functions of z, which can be determined from
the equations:

1
AU=— for |o| <o AU=0 for |2|> 4o

with. the conditions of Iimut

oU oU
= —_—_ = — ‘or 2z — = k¢
=0 (32)=(5), © g :

Now the Fourikr-series for z # 0 may be twice differentiated, so

that after substitution 1n these equations every term separately must

1

fulfill the homogeneous equations, and Z,, the equation AZ,,= o
aoc

From this we shall find

1
Z,, = (16 0! I) Izl > ke Zonp = By eIz | — %% I/-—- +_
‘T ¥4
at 1
2abc = |< ¢

In order to determine still B,, we can take z =0 and use the
ordinary form of coefficients:

2mrn
B —fda:fdy U.—o cos———— & cos -—b—y

. . ab
in which when m or n are zero we must have - ForU,—, we have

-t

U= 22 + C‘lk)
v & \4r

in which »; 15 the distance to the point (e, £b) and C;; the potential
of the parallelepipedum abc with that point as centre, homogeneously
filled. For the sake of convergence we shall here for a moment
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introduce 71 e¢—* as law of attraction and in the result take ¢ = 0.
Then we can write
e—-:r,k

U=o (8) = C(g) + 22’:. .

drry

where C('(¢) is the potential of the infinite space homogeneously
filled, and thus is a constant, only dependent on &.

If we substitute the values of U(¢) m the double integral, the
term C(e) will consequently yield zero. In the other term the sum
and the integration may be interchanged. The various integrals may
then be united into a single one over all rectangles. And so we
obtain :

2am 2an

¥ rcos — z cos <Y
a N
j f ————— e~y da dy,
"o 4n Vot +’

By introducing pole-coordinates this integral may be reduced to

1~ ° 1
— dre—‘j cos(Ir sing)dyp = 4 | J,(Ir)e—2dr= S—
y. (h sing) dp o Ve
0 0 0
and thus for e=0
ab 1
‘I‘ .Bm" — ‘2"l-

The potential found can further easily be summed up for all the
layers of distance ¢ in which the lattice may be divided by planes
perpendicularly to the z-axis. In a point for which 0 <z < 4c all
layers under the point yield

(3e—2)* 2am 2an

b 2B fe + et 4 e Ket20) L Jeos —— 2 008 — y =
2abe a b
(3¢c—2)° el 2am . 2an
aaie + 2B, iy cos " & cos —b—y
and all planes above it
e—lle—=2) 27em 2mn
mn 1 -_6"[6 cos s & 08 -—-b—' y
8O
(}c—2)* 2 ¢z} ele—2)  2mm 2mn
1 __ N\t ) “ k|
= 2abe abl  1—elr O T T Y @)

in which the sign ' means, that we must take half of the terms
for which m =0 or n =0, whilst there is no term for m=n=20.

For the spherically limited lattice without space-charge we ulti-
nately find
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Pyt (o)’

6abc  Zabe ;L T @)
where S represents the series X' of (1).

Formula (1) evidently holds good for 0.<z <e.

From the potential V" determined in this way we can find
as above the potential energy of a dlpO]e with the components
Pz Py, P'» when the latter is placed in’a point (a, Y, %) of the field
caused by dipoles p,, p,, p, in the corners of the lattice.

The expressions

- f V:
f—

, 0V , 0V
""(Po:an';,—-i—-.."l-(PzPy +Pypx)a_m);/+-..)

will represent this energy.
From (2) follows for the derivatives of second order occurring

o

in this expression -

PV LS 1 Vs 1 Co

0z* = 0x*  Babe ’ 5y_’ T a_y; _'ag-bic '
¢V _ 08 2 i N
0z°  02° + Sabe ' dydz  dydz

(3)

3. In ovder to examine generally ~the stability of the system
described in (2), we must study the behaviour of ‘the quadric form,
representing the potential energy as function of the variables deter-
mining the direction of all dipoles. The difficulty of this p:oblem
does not he 80 much m the great number of variables, as in the
1mp0551b1hty to form a smgle series, in which the variables relating
to neighbouring magnets, follow each other closely.

This difficulty does not present itself in the case when there are
dipoles placed on one line at mutually equal distances. There the
stability may easily be examined in the well- known fashion with
the help of a determinant. We shall mention a few of the results,
as they may guide us in the case that has our ‘atfention. If all
magnets are directed by a field parallel to the line, the system is
still stable if the field is abolished. If we apply a slowly increasing
field, contrary to the magnetisation, there may be indicated a definite
group of small deviations of the dipoles, for which- the system first
becomes unstable. Thése displacements awe such that the” magnets
lie, in one plane and alternately will make angles 4 ¢ and — ¢
with the direction of the field. The coercitive force. found for this
displacement of the magnets is ouly, one third of the force found
from the supposition, that all magnets turn parallelly. ;
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For the case of the cubic lattice the analogous general method is
impracticable for the reason mentioned above, but it is clear that
also there we must find the combination of deviations, which
most easily leads to an unstable ‘position of the magnets. This
combination must serve in calculating the coercitive-force, and it
will yield for this quantity a smaller value than all other virtual
displacements. Led by the analogy of the above mentioned simple
case we shall examine those combinations of displacements, in which
the dipoles of the lattice are distributed over two equal groups,
which show an opposite displacement. Further it will be favourable
in order to get unstability if the magnets with opposite deviations
are placed as alternately as possible. -

We can obtain a division into two groups by starting from a
plane through three arbitrarily chosen points of the lattice and
then using the system of parallel planes which contains all points.
The dipoles lying in such planes can be assigned in a systematic
way to each of the groups. The most obvious method is to count
the planes alternately to the first and to the second group. Let the
chosen planes divide the three edges of the elementary cube, respec-
tively in [/, m, and n parts. The dipoles on the z-axis will belong
alternately to the two groups, when / is odd, but all to the same
group if / is even. From this it follows that in principle there are
possible only three divisions into groups i. e. dipoles aloﬁg three,
along two or only along one axis belonging alternately to different.
groups. These divisions can be obtained by starting respectively
from the octahedron, the rhomb-dodecahedron ov the cube-plane.

In the same way we can examine the disiribution of the points
of the central cubic lattice, by paying attention to the question
whether the dipoles lying on three of the cube-diagonals belong or
do not belong to different groups Here the two last cases appear
to be identical. Consequently there are only two possibilities, which
belong respectively to the octaeder and the rhomb.-dodecabedron plane.
When we consider the distributions of the plane-centred cubic lattice
we can take three diagonals in the sides which meet in one corner.
Then the first and the third case are identical and belong to the
octahedron-plane, the second case belongs to the cube-plane. - ..

With each of the lattices mentioned we meet with a way of
the deviations that will yield ho sharper criterion for the stability
than the deviation in parallel of all dipoles. These are the distri-
butions that belong to the octahedron-plane. For it is evident that
for each half separately the equivalency of the three directions
of axes still exists. Analogous to what_has been discussed sub 1 it
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holds good not only for each part separately, but also for the parts
mutaally, that the energy is zero for every position of the dipoles.
The coercitive-force thus becomes again a third of the magnetisation
of saturation, for other divisions into two groups a much smaller,
even a negative value being found.

There are still many other divisions into groups conceivable, which
perhaps may be of interest when another direction of the exterior
field is chosen. So e.g. the division into three groups. In the case
exclusively trealed here where the field is parallel to the edge of
the cube, they appeared to yield a greater value for H, than that
calculated below.

4. We shall take the y-axis in the direction of the exterior field,
the a- and z-axes along the two other edges. For an arbitrary division
into two halves the dipoles of which are directed parallel to the
ay-plane, and form angles 4+ ¢ and — ¢ with the y-axis, we can
indicate the energy as follows. Every dipole may be decomposed
into a y-component p cos @ and an a-component p sin ¢ for the one
and — p sin @ for the other group. The y-components form a com-
plete cobic lattice and their mutwal energy is consequently zero.
In consequence of the exterior field H, each dipole has an energy

5—)‘ t, cos ¢ per

unity of volume. Also the magnetical energy of the a-dipoles and the
y-dipoles is zero on account of the cubic arrangement of these latter.
The mutual energy of all xz-components thus remains to be calculated.
In order to determine this we imagine the a-components of the
dipoles of the second group inversed in sign.

Then all are directed in the same way and their mutual energy
is zero. If now we inverse the dipoles again then only the mutual
energy of the two groups becomes different in sign. The energy sought
for of all dipoles together is thus equal to twice the mutual energy
of the two groups. We shall now calculate this with the help of (2).

Call the potential caused by unit-poles placed in the first half V|
then the energy of a magnet with moment — p sin ¢ in the field
of the first group the dipoles of which have a moment psin ¢ is
according to what preceded

pH, cos ¢ and so the dipoles together an energy of

QR | v
n
PO e
or per unity of volnme
p’ v

é—a-;ain'(pa;-’—.
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The total energy per volume-unity is thus for the system
3 31

4 p .
—(—z;H,coup—{—?d—aax’ S N €

The second derivative with respect 1o ¢ of this expression is for
p=0

P 2p* o'V
Ly * R
ar + & 0a*
The energy 15 a minimum and the equilibrium stable as long as
1t is positive.-y
For the limiting case we have
vV
FYIE AN
And consequently the coercitive force becomes
E p iV - 98
— - - — — . e e e 5
1. 3d Hap 0w’ 2p 0x? )

-
3

S

the last according to (3), where abc = 2d*.
When this formula yields a negative value a positive field stronger
than — H, is necessary to make the position ¢ — 0 stable.
Foria weaker-field we find the equilibrium-positive from the first
derivative of (3) .
]

; 0
v Hsingp 4+ 2p Fyey singcosp =10
- x

Y

“n P

or
rV
cosp=—H/2p Fyes
e pcos 1
The magnetisation is here /= F ey H=23.The
4 0a*

magnetic field within the sphere is U — § = U (1—}3) and the
mductive U+ [ = U (1+p). The constant permeability of the matter
18 consequently

dH,
‘ . 148 7 + %
N T 1387 &H
—43
Pﬂ
For the divisions into two groups, which we have discussed sub 3
3
we can always calculate 5 according to the series found in 2 and
2

the relation (2), where in some cases we must turn the z and z axis

5(

-10 -
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over an angle of 45° or interchange the z, ¥ and z axis. The series
always show strong convergence; for the following numbers, the
calculation of 8 terms was only necessary in one case.

The table given below gives the values calculated for A, in this
way. For the cases in which the lattice is unstable, the permeability
is indicated in the unstable direction. In the third to the fifth column
the values of @ & and ¢ used in the calculation are mentioned.

Latice | WXE | G| G = x| ®
111 'fa
+41.104
010 1 1 1 ’ —0.0521 | 14
Cubic ' —0.0521 | 14
+0.546
o1 1 V2 |pV2 -+ 0.546 P
! ~0.0925 | 3.2
1 o
Centred +0.440
cubic ol1 1 | ve |2 ]| 40.440
+0.1209
1 '3
- | Face centred +0.668
cubic 001 e V2| 1,V2| Yy +40.1610
B - +0.1610

We must remark, that for the three cases always occurring with
equal values of a, band c only one calculation was necessary. For we
can interpret them as belonging to one and the same division in
two groups, but with the exterior field successively in the three
directions of the axes. According to (5) the values of H, belonging

to it will taken together be equal to Z%:—M. Moreover on account
a

of symmetry only two are always equal to each other, so thatonly
one must be calculated. The smallest value of H, for each lattice is

printed in bold type, the others have importance mainly for the
A}

-11 -
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calculation. So the centred and the plane-centred show coercitive
force, and even in a degree much too great for steel e.g.

In all our considerations we have left unconsidered the heat-
movement. The magnetic properties found here are apparently always
represented by magnetisation-curves consisting of straight lines.
These broken straight lines will no doubt be rounded off by the
heat-movement, and consequently resemble more those under obser-
vation. Another cause for the rounding off must be looked for in
the fact that the real materials are aggregates of crystals lying at
random in all directions. For the present we draw the attention for
the effect of this cause to the well-known theories of Pierrk Werss.

~

[nstitute of Theoretical Physics.

Utrecht. | gontomber 1918.
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