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Physics. - "Magnetic p1'operties of cubic !attices." Bl' Prof. L. S. 
ORNSTEIN and Dr. F. ZERNIKE. (Oommuncated by Prof. H. A. 

LORENTZ.) 

(Communicated in the meeting of September 29, 1918). 

The well~known model of EWING has been treated mOI'e in detail 
by different scientists. A few have taken the verl' nnsatisfactol'Y 
standpomt, t!Jat elemental'y magIIets are dlstribllted at random In 

spare I). More in arCOl'dance wlth I'eality is the snpposition, fl'Om 
w hieh W. PEDDm '), and later on also HONDA and OKUBA 3) have 
started, that the magnehc partieles are arranged in a cn bic lattice. 
The reasonings -however -show two Important fallaeies. 

In the tirst place they neglected the demagnetismg force in a sphere; 
accordmgly they. think ,that dlpoles eannot yield aresuIt, which 
made them unnecessarily considel' magnets of finÏte lengt/I. In Ihe 
serond ' place they ~onsidel'ed only those rotatlOns at the reseal'ch of 
stability, in which the magnetic axes of aJI partieles are mO\'ed 
in mlltual parallehsm. 
,.As.- will be show:n hereafter, the consequence of this unfounded 

limitation In the fl'eedom of motion of the partieles is thaI t~e 

stabiJity becomes much gl'eater than is in reality the case. 
lf - we sweep thls limitation, we find that the arrangement of 

magnetic atoms m a cubic lattice is unstable wIthout exterior field. 
A ,b_ody of snçh a st ruetlll'e, can therefore possess no coël'citi ve 
forèe. 

, 
§ 1. We considel' a cubic lattice with edge d. In the corners of 

the laltices we imagine dipoles possessmg the slt ength p, and which 
l'án rotate fl'eely. Be those dipoles <hrected all parallel to an edge 
of the }at~ice by astrong extel"Îol' field H. Now we put the q~eslion 
how fal' the exterior of the field must be weakened to reacll the , . 
limi:f of stability. If tbe syslem without exterior tield is stabIe tbe 
mtensity Hq at which thls is tlle case, will be negative . 

. The magnehc propel,tie& of the lattice considered wil! consequently 

.1) G~NS. u. HERTZ, Zeitsch. für MathematIk und PhySlk. 
2) Èdinburgh Pr~c. 195 and 7. 4 

3) Phys. Review, X, 1917, p. 705. 

59* 



- 3 -

912 

- if Hg is negative - be )'oughly speaking analogolls with those 
of a fel'l'o-mag'netic body with hysteresis. If on the contrary we 
find a positive value for El". we have to do with a body without 
hysteresis that can only b~ magneti"ed up to salm'ation by astrong 
field H,r Wlth a weaker extel'ior field the m~gnetic atoms will not 
remain totally directeu and consequently JJ1 will decrease. We shall 
dedllce for that case the eonneetion between the intensity' Band 
magnetisatlOn, in othel' words: the permeability. 

In order to find from Hg the coërcitive force JL, we must bear 
in mind that the latte I' is defined I:l!.S tlle negative infm'io1' field reqnired 
to make lhe magnetisation change its sign. This interiOl' fiel9 will 
al ways be found b~' adding the field Heon, which is eaused by the 
mugnetised body itself, to the extel'lor field He. The field Boon must 
be calclliated on Ihe supposition, that the body haó a contimlOlIs 
space-magnetisation. 

So we have 

H = He + Beon and eópeciallJ' He = - Hg - &Orl' 
HeL'e -- Beon IS the so-called demagnetising force. By th is detlni­

tion He will become independent of the form of the body considel'ed, 
which consequently is not the case fOI' Hq. In the p"eceding para­
graph we must consequently read for H.f! everywhel'e Hq:t Beon' 
In our calculation we shall always take the limit spherical. Then 
Beorl is - 1/. M. 

1t is easy to demonsh'ate that Bq becomes = 0 when we impose 
on the tuming of the atoms the limitation diócussed above that theü' 
axes always remain parallel. For this plll'pOSe we only have to sum 
lip the reeiprocal eneL'gy of two dipoles over the whole lattice. Fl'om 
consideratiolls of symmetl'y we then find that tbis. sum is zero. I) 

We shall give anotber proof of the tlleOl'em mentioned, t,he principle 
of which ean also be useful for our furtheL' calculation, 

We choose a system ofaxes parallel with the edge of the lattice 
and take the ol'igin in one of its points, We imagine in all the 
points of the lattiee except in the origin, NOl'thpoles of unity 
stl'ength, and we imagine the lat!ice limited by a very large sphere 
about O. Let VD(x,y,Z) represent the potential in a point :c,y,z. The 

àV 
potentialof dipoles with moment p in de m-direction is p dg;·' 

d' V d' V d'V 
the intensity in 0 is consequently p -a " p ~ , p ~ respertively 

g;2 uyax dZu::C 

in the .'IJ, y and z-dÏl'ection, The potential energy of a dipole 

I) H, A. LORENTZ, Theory of Electrons. Note 55, p. 208. 
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iP V. 
with moment p' in 0 wiJl consequently be pp/~, wh en tbis di­

val 
pole was also directed along the x-axis, whiIst it amounts to 

pp' :~~, when the last dispole -is directed along the axis of 1/_ 

When we place in all COI'ners equally dil'ected dipoles, we can 
dissolve these in dipole5 according to the direction of the axes in 
components with moments px, Prl' {J;::, And so the potential enel'gy 
of the ~ipole in the ol'igin is: 

I ()' V a' v 3' v a' v 
- p'x (}a;'o + p!11 ay'O + p'z àz'o + 2px PIl aa;o; + 

iP V a' v I + 2pxpz da;a; + 2pzpy àza; \ " 
On account of the symmetry the thl'ee mixed diffel'ential-quotients are 

a' v. a' v: 0' V 
zero, and we have fUl'ther __ 0 = -a 0 = -a 0, Consequently these 

ctv' y' Z2 

diffel'ential-quotients al'e also zero because Vo fultills the eqnation ot 
IJAPI.ACE, In cönsequence therefore the interiOl' energ)" of the lattir'e 
is zero, independellt of the dil'ection of the dipoles (provided all 
dipoles 11I'e pal'allel), So a "el'y weak extel'ior field \'~·ul be sllfficlent 
to let all dipoles assume the directiolÎs of this field, in other wOl'ds : 
Hq is zero, 

The same resll\t holds good fOl' tlle two otller BRA VAlS rubic 
arl'angements: the ('enti'ed cubic and the plane-centred cllbic lattice 
The Jimitati,on usad thus yields a co'erciti"e force whieh is equal 
10 one third of the magnetisalion of satlll'ation: For stéel the eoer­
citive force is at least 80 times smaller, 

2: In what follows we shall want the potentiàf V of a rectàngulal' 
. lattice with unequal edges a, h, and c fol' the case that ever)" corner 
carries a pole of unity stl'ength.; Ihis potential depends upon the fonn 
of the boundal'Y even if we Ïlllagine it at great dislance. We shall 
avoid the difficulties of the boundary by the following artifice. 
Besides the point-rhal'ges 1 iJl tlle corners we give the body a 
homogeneous space-charge of - 1 pel' volume a, b, c, In total the 
body is thns uncharged and the parts at a great distance of the particle 
considel'ed have a vanishing influence. 80 we are able to calculate 
the potential V' for this case of a lattice infinitely extended III all 
directions, Ft'om this we sllall then tind TT for the case of a sphere 
by adding the potential in a hOIllogeneous sphere with a rharp;e-
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. 1 
density + -b' WlllCh with exception of a constant is equal to 

a c 
:r,' + y' + z' 

6ahe 
We begin by calculatrng the potential U, WhlCh is cansed by the 

charges l,ving between the planes z = ± ~ c. ÉVIdently U IS a perl­
odiral funetion of IV and Y wlth tbe perwds a and b, 80 it may be 
represented by a double serres of FouRTER: 

2.7rm 2'ln 
U=~ Zmn COS--Il:cos-y 

a b 
m= 0,1,2"" , 
11 = 0, 1,2, , ' 

in whlrh for the sake of symmetry only the cosinus appears. Thë 
coefficients ~nu are functIOns of z, which can be determined from 
the equations: 

1 
I::.U=- for Izl < ic 

abc 
I::.U= 0 fOl' Izl > io 

with. the conditions of limIt 

U =0 - = -(àU) (è}U) 
z = ± 00 è}z I Uz J 

for z = ± ie, 

Now the FOUR1ER·sel'les for z ~ 0 may be twice dlffel'entlated, 80 

that af ter substttution In these equatIOns every term separately must 
1 

fulfill the homogeneous equations, and Zoo the equation 6Zoo = -, 
abc 

From thlS we shall find 

o Izl> ic 
Zoo = I I 

hC-IZI! Izl < lC 
2abc 

In order to determine still Emu we can take z = 0 and use the 
ordinary form of coefficients: 

a b 

ab J f 231'm 2.1W "4 B'llIl = d:c dy U z=O cos -a- Il: cos -b-!I 

o 0 

ab 
in which when 'In or nare zel'O we must have -, For Uz=o we have 

2 

Uz- o= ~~(_1_+ e,k) 
I k 4TH'Ik 

in which ?'lk IS the distance to the point (ia, kb) and elk the potential 
of the pat'allelepipedum abc with that pomt as centre, homogeneously 
filled, For the sake of ronvergence we shall here for ft rnome~t 
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mtl'oduce 1~1 e-I ; as law of attl'achon and in the l'esult take E = O. 
Then we can write 

e-cr,k 

Uz=o (e) = C(e) + ~~ --, 
, k 4nr,k 

where C(s) is the potentialof the infinite space hornogeneousl)' 
tilled, and thus iq a constant, only dependent on E. 

If we subshtute the values of UCe) m the double mtegral, the 
term CCs) wnI consequently yield zero. In the other term the sum 
and the integratIOn may be interchanged. The val"Ïolls integrals may 
then be united into a single one over all rectangles. And so we 
obtain: 

.. 2nm 2nn 
a b __ JJ

C08-:r: cOI-y 

-------r'vx-+y' d:r: dy. 
_COl 4", V.'I1'+yS 

By introduring pole-coordinates thIS mtegral may be redllCed to 

COl ~ COl 

2-}dr~-,r (:01 (11 lin q) drp = ~ rJ.(lr)e-l/dr= ~--=-
2n J ~. 2V1s+es 

o 0 0 

and thus for E = 0 
ah 1 
-Bmn=-. 
, 2l 

The potential found can fUl'ther easily be summed up fOl' all the 
layers of distance c in which the lathce may be divided by planes 
perpendicularly to the z-axis. In a point for which 0 < z < !c all 
layel's under the point yield 

(!c-z)' 
2abe 

, 2Jrm 2nn 
I- ~Bmll le-Iz + e-l(z+C) + ~-ll.z+2c) + ... 1 cos --:r: COl - Y = 

a b 
(tc-:)' e-lz 2Jrm. 2nn = ---- + ~Bmll -- COl --:r: cOI-y 

2abc l-e-le a b 

and all planes above it 
e-I(~-z) 2nm 2.1rn 

~ BfllII -'--- cos --:r: cos - y 
l-e-1c a b 

so 
(ie -z)' 2 e-1z + e-1(c-z) 2.1rm 2nn 

V' = + ~ - I cos --:r: cos -b- y . , (1) 
2abc abl 1-4- C' a. 

in which the sign :E' means, that we must take half of the terms 
fOl' which m = 0 or n = 0, whilst there is no term fol' 1n = n = O. 

Fot' the spherically limited lattice without space-charge we ulti­
nately find 
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,1:' +y' + z' (la-z)' 
V'= - '- - ~ + S 

6aba 2abc J 

, (2J 

where S reprE'sents the sel'les l:' of (1). 

Formuia (t) evidently holéis good fa I' 0.< z < c. 
FI'om the potential TT detel'nlined in ~his way we can find 

as above the potentia\ energy of a dlpole with the components 
p'X' P"I' p'z, when tlJe lattel' is plaeed in' a point (x, y, z) of the fi~ld 
caused by dipales px, P'I' p::: in the corners of the lat'üce. 

The expr'essions 

( 
à'V à'V ) 

- px p'z à.v' + ... + (px p'y + pq p'x) à.vày + ... 
will l'epresent this energy. 

From (2) follows for the deri vatives 01 second ol'oer occUl'ring 
in this expl'ession 

~'V a's v 1 I 1 1 f' I 

à.'I)' - à,v' - 3aba 'ày' ày' - 3aba 

a' v a's \ 2 a' V è1'S 
àz' = àz' + 3aba ' dyàz - àyàz . • (3) 

3. In order to examine general}y"the stability of the system 
deseribed in (2), we must stud)" "the b~havioul' of 'the qnadl'Îe form, 
representmg the potential energy as function of the variabl,e.s deter­
mining the dil'ection ot' all dipoles. The difficulty of this p)'o-blem 
does not ~ Ue sa much in the goJ'eat number of variables, as in th~ 
impossibilit.f to fOl'm a single sel'Ïes, in whieh the valiia,bles relé!'~ing 
to neighboUl'ing magnets, follow ea('h othel' cloi:iely. , 

Thió difficulty does not present itself in the case when thel:e al'e 
dipales placed on one !ine at rnutually equal distances. There the 
stability may easily be examined in the well-kn?~n faRhion with 
tlle help of a determinant. We sllall mentiolJ a few of the results, 
ns they may guide us in the case that has o'ur 'à.tfention. If all 
magnets are di/'ected by a field pal·allel.to the Jine, the system is 
still i:itable if the field -is abollshed. If ,~e --apply a slow Iy increasing 
Held, contraI')" to tlle magnetisation, thel'e may be indicated a definite 
grollp of small de\'iations of the dipoles, for _,whieh' the system first 
becomes nnsfable. These disp1acements ~ï\e sllch tlïat the- magnets 
liel.in one plane and altemately wiII make allgles + cp and - cp. 
with tlle direction of the field, The coel'citj'{e force.: found fol' this 
displacement of the magnets is ouly, one third of the force fOllnd 
from the supposition, that all magnets turn parallelly. 



- 8 -

917 

For the case of the cubic lattice the analogous general method is 
impracticable for the reason mentioned above, but it is clear that 
also there we must find the combination of deviations, which 
most easily leads to an unslable 'position of the magnets. This 
combination mnst serve in clliculating the coet'citive-force, and it 
will yield for Ibis quantity a smaller value than all other vit·tual 
displacements. Led by the analogy of the above mentioned simple 
case we shall examine those combinations of displacements, in which 
the dipoles of the lattice are distribuled over two equal gl'OUpS, 
whirh show an opposite displacement. Fut,ther it will be favourable 
in order to get unstabihty if the magnets with opposite deviations 
at'e placed as alternately as possible. ~ 

We ean obtain a division into two groups by stat,ting from a 
plane through Ihree arbitral'ily chosen points of the lattice and 
then Llsing the system of parallel plan es which contains all points. 
The dipoles Iying in such planes ean be assigned in a sJstematic 
way to eaeh of the gl'Oups .. The most obvious method is to count 
the planes alternately to tbe fh'st and 10 tbe second group. Let the 
ehosen planes divide the three edges of the elemenlary cube, respee­
tivety in I, m, and n paris. The dipoles on the x-axis will be long 
alternalely to the two gl'OUpS, when 1 is odd, but all to tbe same 
gJ'oup if I is eve~. ,Fl'om tqis it follows that in pl'inciple ~~lere are 
possible only tht'ee divisions into gt'oupa i. e, dipoles along three, 
along two or onl,}' along one axis belonging alternately to diffel'ent­
groups. T.hese divisions can be obtained by &tarting l'espectively 
from tbe ortahedJ'on, the rhomb-dodecahedt'on Ol' the cube-plane. 

In tbe same way we can examine the dislribution of the points 
of the centml cu bic lattice, by paying attention to tbe question 
whethel' the dipoles lying on three of the cllbe-diagonals belong Ol' 
do not belong' to different groups Here the two last cases appeal' 
10 be identical. Consequently th ere al'e only two possibilities, which 
belong I'espertively to the octaedel' and (he rhomb.-dodecahedron plane. 
When we consider the distI'ibutions of Ihe plane-eentt'ed cubie lattice 
we can take 111I'ee diagonals in Ihe sides whieh meet in one eorner. 

- Then the fit'st and the third ('ase are iden tieal and belong 10 the 
ortahedl'on-plane, the second case belongs to the çube-plane. "" 1 

With each of the lattieeH mentioned we meet with a. way, 'of 
the deviatLOlIs that will yield' 'no ,Shal'pel' el'Ïtel'Ïon fol' the stability 
than the deviation in pal'allel of all dipoles. These are the distri· 
butions (hat belong to the octahedl'on-plane. For it is evident that 
for earb half sepal'ately the equivaleney of the thl'ee dil'ections 
ofaxes !!till exists, Analogólls :to wluiLhas been discussed sub 1 it 
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holds good not only for each pat't separately, but also for the parts 
mutuall.v, that the energy is zero for every position of the dipoles. 
The coel'citive-force thus becomes again a third of the magnetisation 
of saluratioa, for other divisions into two gl'OUpS a much smaller, 
even a negative value being found. 

There al'e still many ot her divisions into gl'óups conceivable, which 
pel'haps may be of interest when anothel' dil'ection ot the exterior 
field is chosen. 80 e. g. the division into three gl'OUps. In the case 
exclusively tl'eaied here where tbe field is pat'allel to the edge of 
the cube, they appeared to yield a greater value for He than that 
calculated below. 

4. We shall take the y-axis in the direction of the extel'Ïor field, 
the .'V- and z-axes along the two other edges. Fol' an arbitral'y dlvision 
into two halves the dipoles of which are dire~ted para1Iel to the 
xy-plane, and form angles + cp and - rp wlth the y-axis, we can 
indicate the energy as follows. Every dipole may be decomposed 
into a y-component p cos (p and au x-component p sin'p fol' the one 
and - p sin rp for the other group. The y-components form a com­
plete cllblC lattice and their m lltual enel'gy is consequently zero. 
In consequence of the extet'IOr field He each dtpole has an energy 

pHe cos cp and so the dipoles togethel' an energy of :. He cos cp per 

unity of volume. AI&o the magnetical enel'gy of the .'V-dipoles and the 
y-dipoles is zero on account of the cubic arrangement of these latter~ 
The mutnal energy of all x-components thus remains to be calculated. 
In orde)' to determine this we imagine the x-components of the 
dipoles of the second gt·oup in \'el'sed in sign. 

Then all are directed in the same way and their mutIlal energy 
is zel'O. [f now we inverse the dipoles again then only the mutual 
energy of the two groups becomes different in sign. The enel'gy sought 
fOt' of all dipoles together is thllS equal to twice the mutual energy 
of the two gl'OUps. We shall now calcuJate this with the help of (2). 

Call the potentia,] callsed by unit-poles placed in the fil'st half V, 
then -the enel'Kr of a magnet with moment - p sin qJ i]) the field 
of the fit'st group the dipoles of which have a moment p sin cp is 
according to what preceded 

Ol' per unity of volume 
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The total energy pel' volume-unity is th us fol' the system 
p p~ as v 

- - He C08 rp + - -a - sin
S cp , 

dl dl .t:' (4~ 

The second del'ivative with respect to p of this expression is for 
rp=O 

P 2p' a'v 
d' He + dl i}.t:2 

The energy IS a minimum and the equilibrium stabie as long as 
It is positi ve .... · \ 'J 

For the limiting case we have 
i}1 V 

? Hq =-2p cl~' L~ 

And consequently the coel'citive force becomes 
• _ p ~ à' J7 . i)'S 

!Ic = Sdi -I- 2p àa: 2 = 2p ax 2 • 
(5) 

the last accol'.ding to (3), w here abc = 2d'. 
When thts formull! yields a negative valne a positive field stl'Ongel' 

than -- He is necessàl'y to make the position cp = 0 stabie. 
FOl'~a weaker-field we tind the eqnilibl'ium-positive ti'om the first 

deri vati ve of (3) I' 

a'v 
H $in rp + 2p ~ 8in fj! ('08 rp = 0 

, IJ.t:' 

Ol' 

P C08 tp 1 
The magne.tisation is here I = --3- = - --- H = ll. The 

• < d 2d' à' V 

àa:' 
magnetic field wLthi~ the sphere is U - t J = ij (i-i- iJ) and the 
mductlve ij + 1 = U (l +rl). The constant permeability of the matter 
IS consequently 

diR 
C + J 

1+~ P '3" 

l'=l-t~= d'Hc -' 
--t 

p 

For the divisions mto two gl'OUpS, ;hich we ha\'e dlscussed sub 3 
a' v 

we can al ways calculate -::\- according to fhe series found in 2 and 
IJX' 

the J'elation (2), where in some cases we must turn the x and z axis 

" 
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ovel' an angle of 45° or mtel'change the x, y and z aXlS, The series 
always show stl'ong ronvel'gencE'; for the followmg lIumbeJ's, the 
calculation of 8 terms was only necessary in one case. 

The table given below gives the values ralculated fol' He in this 
way, For the cases in whlch tbe lattice is unstable, the permeability 
is mdlCated in the unstable dil·ection. In tIie third to the fifth colnmn 
the values of a band c u&ed in the calculation are mentioned. 

Lattice I Varying a b • c He 
IJ 

I 
planes Cl Cl (j=2d M 

-
I I 

111 1/3 

~ 
+1.104 

010 1 1 1 -0.0521 14 

Cubic 
, 

-0.0521 14 

'I'V2) 
+0.546 

I 011 1 V2 +0.546 -
\ -0.0925 3.2 

111 1/3 

Centred 

'I,V2) 
+0.440 

cu bic 011 1 ~/2 +0.440 

+0.1209 

\ 
111 1/3 

Face centred 

l 
+0.668 

cubic I 001 1/2 V2 I12V2 112 +0.1610 

I 
. +0.1610 

I -L 
We mllst remark, that for the three cases alwltys ort'Ul"l'ing with 

equal values of a, band C only one calculation was necessal·y. For we 
can interpret them as belonging to one and the same division in 

I 

two gl'OUpS, but with the exterior field snccessively in the thl'ee 
dil'ections of the axes. Acco!,ding to (5) the values of H~ belonging 

to iI wlll taken togethel' be equal to ~ = M. Moreover on account 
al 

of symmetry only Lwo are always equal to each ot her, so that only 
one must be calculated. The smallest value of He for each lattice is 
printed in bold type, the othe1'8 have impol'tance mainly (Ol' the 
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C'alculation, 80 the centred and the plane-C'entred show C'oercitive 
forC'e, and e"en in a degl'ee much too great tbr steel e.g. 

In all our considemtions we have left unconsidered the heat­
mo\;ement. The magnetiC' properties found hel'e al'e apparently always 
repl'esented by magnetisatlon-curves consisting of straIght Iines, 
The6e bl'oken stl'aight lines wiII no doubt be rounded off by the 
heat-movement, and consequently resembIe more those under obsel'· 
\'atlOn. A nother cause fol' the roundmg oft' must be looked fol' in 
the fact th at the rea I materials al'e aggl'egates of cl'ystals Iying at 
random in all dÏl'ectlOns. FOI' the present we dl'aw the altention fol' 
the effect of th IS eau se to the well-known theorles of PIER RE WEISS, 

[nst~tute of Theoretica! Physics. 

Utrecht, ~ 
G

' September 1918, 
1'0mngen, 


