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Physics. — “Contribution to the theory of adiabatic invariants.”
(Preliminary communieation). ') By G. Krurkow. (Communicated
by Prof. H. A. LorenTz). \

(Communicated in the meeting of Dec. 29, 1918).

Introduction. Any quantity that has to be quanticized, which may
be called a “quantum-quantity”, must satisfy {wo conditions:

1. it must be a function of the integrals of the equations of
motion of the system under consideration. This condition is self-
evident, since the quantity must not change by the motion of the
system, and has therefore never been explicitly stated;

2. it must be an adiabatic invariant, i.e. it must not change
when the system is submitted to a reversible adiabatic influence.
This demand was first formulated by Enrenrest and proved by means
of general statistical reasoning?). Assuming that the adiabatic influence
may be calculated by the methods of mechanism this condition
follows directly .from the fact, that the quantum-quantity varies ab-
- ruptly, whereas the external influence may be infinitely small; the
quanticizable quantity tberefore cannot vary at all, it must be an
adiabatic invariant.

Calling the quantum-quantity v, the integrals of the equations of

motion ¢,,c,.... and the adiabalic invariants »,,v,.... the condi-
tions (1) and (2) are expressed by
v=funct ¢y ¢59...) - . . . . . . (D
v=funct (v, v,y....) - . . . . . . (2

3. There is still another condition which a quantum-quantity
has to satisfy: it must have a meaning which is independent of the
system of co-ordinates. This condition appears to me to embody the
notion of the coherence of the degrees of freedom established by
Pranck ®). To this condition I hope to be able to return in a later

1) Address delivered in the Petrograd. Phys. Ges. in Dec. 1917 and April 1918.

%) P. EHRENFEST. Ann. d. Phys. 51 (1916) p. 327, Phys. Zschr. (1914) p.
Acad. Amsterdam 22 (1913) p. 586. Ann. d. Phys. 36 (1911) p. 98. Verh.
d. D. phys. Ges. 15 (1913) p. 451. )

3) M. Pranck. Ann d. Phys. 50 (1916) p. 285. -
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paper: on this occasion it will be left out of account and we shall
only deal with condition (2).

This condition imposes on us the task to find the adiabatic in-
variants of a given mechanical system and to look for a general
method of solving the “adiabatic” problem.') A method of that kind
was unknown so far; the adiabatic invariants had to be gnessed at
and their adiabatic invariability hbad to be tested a posteriori. In this
way the following invariants were found:

a. the quantity T of statistical mechanics, which measures the
phase-extension limited by the “energy-surface”?*);

b. the ‘action” calculated for a full period of a periodical system ;

v:fZTdt');

c. the guantum integrals of the ‘“‘conditionally periodic” systems;

b,
v,'=f ;dg,':Zf,'dq,'.‘)
0 o3

In -what follows I shall sketch out a general method of finding
adiabatic invariants and apply it to certain special cases, viz.

a. Cyclic systems. Properly speaking these systems come under
the head of conditionally periodic systems; but-as the conditions are
particularly simple in this case and bring out the very natural
character of the method, I shall discuss them separately;

8. conditionally periodic systems;
y. ergodic systems.

Under (8) [ shall only eonsider the limiting case, in which there
are no commensurable relations between the periodicity-moduli. To
the further cases and in particular their relation to the third con-
dition stated above I hope to return on a later occasion.

1) This point was specially ewmphasized by Enrexrest. Compare for instance
P. Egrenrest Phil. Mag. VI-Vol. 33. p. 513 (1917).

%) P. HeErrz. Ann. d. Phys. 33 (1910) p. 544.

%) L. BoLTzMANN. Prinz. d. Mechanik-II p. 181. P. EBRENFEST Ann. d. Phys.
51 (1916) p. 327 Anhang.

%) J. M. BurGERs. Ann. d. Phys. 52 (1917) p. 195. To the papers in the Pro-
ceedings of the Amst. Acad referred to by the author I had unfortunately no
access.

2%
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THE GENERAI. METHOD.

1. Definition of adiabatic invariants'). We consider a mechanical
system of n degrees of freedom, the equations of motion of which
must be written in the Hamiltonian form

0H - oH

":-———, = — =12,...., oL, 3
Di aql qs apl (T’ n) ()

H is here a function of the p, and ¢,. It must not confain ¢
explicitly. Moreover it is supposed to depend on certain external
co-ordinates, which we shall call the parameters a,. These parameters
may either retain constant values, in this case we have the iso-
parametric problem, or they may vary, which gives the rheo-para-
metric problem, or they may vary very slowly?), which is the
herpo-parametric or adiabatic problem, to which we shall give
special attention. -

We shall make the following assumptions:

I. None of the quantities p, or ¢, increases to infinity. The ¢, are
confixed within fixed limits.

Il. During the time in which each ¢, goes to and fro many times
between its extreme values, the a; must change by an infinitely

small amount of the first order. Moreover each a, must be approxi-
mately constant. Equations (3) must remain valid during the process.
It follows from these assumptions that the herpo-parametric problem,

will be obtained by putting a; = const. in the rheo-parametric problem
and then taking for all the quantities the time-average in the
corresponding iso-parametric problem. ,

In our discussion we shall confine ourselves to one parameter a.
This is not an essential limitation of the problem, but it simplifies
the formulae considerably. ‘

An adiabatic invariant is a function » of the integrationconstants
€, Cy, . . .. Of the iso-parametric motion and of the parameter a, the
total “adiabatic” derivative of which with respect to o disappears:

T _h wE 0E
da 0Oa  Oc, da ' Oc, da

where the horizontal line indicates the time-average.

N )

2. The iso-parametric problem. In the equations of motion (3) we

, 1) Comp. P. EHRENFEST l.c¢. and J. M. BurGERs 1. ¢,
%) Implicitly this condition will show itself in the fact, that HAMILTON’s function
only contains the parameters @ itself and not the corresponding moments.

’
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put @ = const. and integrate according to Jacosr’s method. If
A e=c¢ H =cy.... Hi=c,. . . . . . (5)

is a set of normal integrals of the equations, from which p, may
be solved, the characteristic function

V=f;ﬁ'.-dq,, e ®
1

may be formed, where the functions F'(q., c., a) represent the quan-
tities p. deduced from equations (5), and putting
oV oV oV
a—g]—:fl -a—c,:."f’ ....a—c;'
these will be the additional integrals, where

t,=t+e* t,=¢*% ....th=¢*. . . . . (8)
The quantities ¢* are the n integration-constants. The iso-parametric
problem is thereby solved. ’

=ty . . . . e (7)

3. The dyfferential equations of the rheo-parametric problem. In
order to obtain these equations we shall pass from the variable
quantities p; and ¢, to the variables ¢, and #. This is a “contact-
transformation”. It is obtained by means of the characteristic function

V(q:" i a)=fEFz dg, - . . . . . . (6')
i
as transformation-function
oV oV

-a—q::—._lpg a—cl“—‘.h R (1)

The differential equations retain the Hamiltonian form. If @ remains
constant, the new Hamiltonian function is equal to the transformed
old one, i.e. to ¢, and the following trivial result is obtained:

(;1 -:Oyé,=0,.ooo(;n=O;Elzls.t;:O,---.t:n:O
We now allow a to change, i.e. we put @ — function (¢). The
transformation-function V is now an implicit funetion of ¢ through
the intermediary of ¢, ¢. and a:

- OV_ oV - ov- BV"z
Frik a‘f‘*?a?."‘)*"a;

The differential equations (3) retain their form all the time, but
the new Hamiltonian function X now becomes

ovy -
K=°1+(6‘;)“ B 0 )]

-
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where the brackets are intended to indicate, that the derivative
0 V/da must be expressed in the variables ¢, and #. The differential
equations of the theo-parametric problem therefore are as follows:

K . K . ¥
CETE T T YT TR
(11)
0K . oK . 0K
[ r,: —_—

‘=50_1 dc, ””‘nzac,,
4. The herpo-parametric or adiabatic problem.

To begin with we put @ = const. Substituting the value of K
from (10) the equations (11) then assume the form:

. .0 [0V .
ciz_aé—a(-—a—a- (t:l 2...?1)

0 /oV (12)
rlzaa (aa +1 tx_..a ( ) (®=2,3, ..n)

or, indicating the diﬁerentiatlon with respect to the parameter a
by means of a dash:

LAV ) AUNE S 14 "
cz—--——a—ti(—a:) tl-—(a)—l-‘g z—a(aa) .. (12)

We now only need to put the line which indicates the mean
value on the left side and on the right actnally to calculate the
time-average in order to obtain the differential equations of the
herpo-parametric or adiabatic problem. The integralion, in which the
said line on the left is omitted, gives the adiabaticinvariants; indeed,
the equations being

- i == f; (¢ tay @) ty=gi(ci t: a)
and ¢(cy, t,, @) their integrals, the total differential dgp/da owing to
the equations must disappear, or

dcp B(p 0p O
=g |—0
da. aa n ( ‘ﬁ T 0 g)

Yo afp dp _
+2(6c: z)"%-—o

but this is no othe1 than equation (4), i.e. the equation which
expresses the definition of adiabatic invariants.

In this manner the problem set in the introduction: to derive a
general method of finding adiabatic invariants, has been solved.
Before discussing the more general applications two special problems
— classical ones for the quantumhypothesis — may be treated by
our method.
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5 (A). The linear oscillator. The parameter is here the frequency.
The solution is as follows:

H=1}p* 4 }a’g’=e¢, p=F=V'2 —a'q" V=f;iq F=qul/2cl—a’q’ (13)
oV ag® IV (dq
— = — | dg — — = == v e
% fq F %, fzr i (14)

L9V _d[V\ dg_ ., 1 .
f=anl)=u(®) w e =aer o w

The mean value of the right-hand side is ¢,/a. Thus we obtain
the well-known adiabatic invariant c,/a.

B. Body rotating about a fived axis. Calling the moment of inertia
(the parameter) A and the moment of momentum p, we have:

1 — tr——
H= é-zp’ =¢, p=F= Ve Ae, V=quF=—" gV2de,. .. (16)
oV g oV Aq oV &
—— = —_— = = —_— | = — . . 17
A" F % F 5 OA) a" (0
pUp— 0 oV — & (18
] - a_l a — Z .- . . . . » )

which gives ¢, 4 = const., hence also p = T =}/2A4c¢, = const.

APPLICATIONS.

6. The cyclic system. We call cyclic those co-ordinates which do not
occur in the expression for the Hamiltonian function (ignorable co-
ordinates according to Taomson and Tarr’s terminology). They will
be indicated by ¢,(x=1,2,...., %), the remaining, non-cyclic co-
ordinates by ¢FfA==Fk-+1, k+2,....,n).

Hence we have

. 0H
H = H (¢, ¢z, p»; 0) px:——-a—-—zo pr=¢ . . (19)
9
The characteristic function now will be
) V=Zcq.+ Wlgnennaria) . . . . . (20)
x

We shall further assume that ¢, is the energy-constant; we then
obtain
oV +6W__t BV_OW_T‘ (20
acx“q'* dog " de; o

where all ¢, excepting f,, are constants and ¢, = ¢ -+ const.

7
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From the equations for # the ¢, may be derived as functions of
the ¢z, ¢; and ¢,. Further we have
oV oW

da ~ Oa (21)

-

H

oV
from which it follows, that 5T is a function of the ¢, ¢; and ¢, and
a

independent of the Iy hence :

, 9 /aV .
c,;_—a—ry-c(é—a- =90 ¢z — adiab.Invar . . . (22)

In the case, when K =mn, i.e. when all the co-ordinates are-
cyclic, we have -
H=~H (p) pi==¢ V=2Zcq ¢t=1,2,...n) . (23)

1
If the energy-constant ¢ is a function of the ¢, which is found by
substituting the ¢; in H, the new Hamiltonian function will be

oV
K=C+(§;)

oV . . .
But 5 is equal to zero, hence all ¢; are adiabatic invariants. As
a

the co-ordinates corresponding to the moments c; the old co-ordinates
¢, must be taken — they are all linear functions of the time. This
fact brings out the natural character of the method, hence it appears
to be a very natural generalization of the method of reasoning
followed in the theory of cyeclic systems. )

The simplest instance of a cyclic system — a body rotating about
a fixed axis — was discussed above under 5.

7. The conditionally periodic system. As is well-known a condition-
ally periodic system possesses besides the energy-integral (n—1)
other integrals which are of the second degree with respéct to the
moments. They all contain the moments only as squares, not as
products, thus only p;* and no p;p.. Solving the pi* we get

pi'=wi(ghe, -.c) pi=Vwi (¢ . .cointegration const) (24)
therefore each p; depends only on the corresponding co-ordinates
¢;. 1f the initial value of ¢; lies in between two simple successive
roots a@; and b; of the equation w; =10, the co-ordinate displays
‘librational motion. We shall here consider the case in which this
holds for all the co-ordinates g:.

The characteristic function V is now given by
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V=3 dg: Vi (25)

hence .
V_ 5 d-al/_TaV—-E d-aﬁ;—: (26, 27
5= Ef Vg = faS = es

The first group of the rheo-parametric differential equations has

the following form
.2 V.
KA T (P

or putting @ = const and substituting for 0 V/0a its value from (26)

. (Efdg;al/lpl) S ... @8

Now it follows from (27) that the integral within the brackets
depends on £ only through the intermediary of the ¢; (on ¢; it
depends explicitly and also through the ¢;; hence

, OV ; 3g; ,
cx_—(?m—ﬁ) ] . . L] . . (28)

We have now on the left to put the line indicating the mean
valne and on the right actually to calculate the time-average. For
this we need the following propositions: the curve of the orbit fills
the whole region a; <¢i<b;(t=1,2....n), the filling being every-
where ‘“dense” ). The time-mean of an arbitrary function f of the
phase of motion of the gsystem, taken over an interval of time =
increasing indefinitely, may be replaced by the space-mean of the
function over this region *). In the variable quantities ¢;, #; in order
to compute the space-mean we have to integrate the function fover
& “period-cell” and divide by the “volume” of the cell

2 bz,
oV wp; 1 T
Q= |wg| (w,z :qu,. ac“’ -_—_-ZJd(ﬁ_a;E). . (29)
2 3
i py

f=lim fdtf—— Ju—f"“l' L f ... (30)

) P. Srécke. Math. Ann., 54 (1901) p. 86. In the proof it is assumed that
between the i (equation 29) no relations of- commensurability exist.

3 Comp\. J. M. Burcers L c. p. 200.

§
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Representing by £, the sub-determinants corresponding to the w.

the mean value of the right-hand side of (28’) after some reduc--

tion may be written in the form

bi
= 1 o/ pi . ;
—_ 202 dgi . . . - . . (81
Qiﬂ faa g (31)
a;
or putting
b; -
vi=2|dg Vi . . . . . . . (32
a;

and noticing that the integrand disappears at the limits of the
integral, also in this form

1 O’Uz '
—S—QE‘QW i N 18
Hence we obtain the relation
_ 1 dv;
e + =20y —=0 . . . . . . (33
et 52 Lig 5~ (33)
We now solve this set of equations for the derivatives 0y, /da
0v; :
-—v-+ T 0.7c--0 e e (34)
9a
Instead of w, we may write
0 4 0 \
— v;
®;, :0—; dgi ‘/lpl._.a—cx B 1))
a;
Hence instead of (34)
av; a’Ul
—ee=0 . . . . . . . (36
T2 2 550 (36)

The v. ave functions of a and of the ¢;; the left-hand side of (36)

therefore is the complete “adiabatic” derivative %_ hence the v, are
a

-

adiabatic invariants.

The above invariants have been obtained by submitting to the
series of operations prescribed by our method the first group of our
rheo-parametic equations, those for ¢’,. We shaill now show, that
we need not proceed -and that we need not consider the second
group of equations, those for ¢,, at all, supposing our object to be to
find the condition mentioned in the introduction under (2) which
every quantum-quaniity of the conditionally periodic system has to

-10 -
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satisfy. We may briefly formulate the condition mentioned under (1)
by saying, that each quantum-quantity v must retain a constant
value along the “orbit” of our system; it is a function of those
integrals of the iso-parametic system which do not contain the time
¢t explicitly, ie. of ¢,,....¢Cy, t,,.... % The time-mean of »is there-
fore v itself. We may then replace this time-mean by the space-mean
for the cell £; this being a function of the ¢, and a, v is a function
of the ¢, and independent. of Z,,....%4. Now we have found n adia-
batic invariants, functions of ¢ and a; the remaining ones, which
have not been computed, all contain the £, hence we do not need
these for our present purpose. The conditions (1) and (2) for a con-
ditionally periodic system without commensurate relations between
the w, therefore assume the form -

v = funct (c,, . - : Ca 3 Q) 37

v = funct (vyy...v,)
where the v, are given by equation (32). We know, that the
quantum-theory chooses as quantum-quantities the v, themselves ).

§ 8. The ergodic system. So far we have assumed that the iso-
parametric problem is actually solved. Now we shall only suppose,
that the, energy-integral _ .

H(piygaad) =6,. . . . . . . . (38)
is given and in addition introduce the ¢‘ergodic” hypothesis that

the system passes through every point of the ‘“energy-surface”
H=c¢,*). The time-mean F of a phase-function f is then given by

1
f fdp, - dpy dg, . - . dg, = f 4

9 Y. . (39)
f Jdpg-- dp, dg, . . dqné

the integrals being taken over the energy-surface 'H —c,.
As a very natural specialisation of our general method we now
take as transformation-function 7~ the quantity

V:f!"dg, e e . (40)

1) K. SCHWARZSCHILD. Sitzungsber. Berlin 1916, p. 550. P. EpSTEIN. Ann. d.
Phys. 50 (1916) p. 489; 51 (1916) p. 168. A. SoMMERFELD. Ann. d. Phys.
bl (1916) p. 1.

) Cf P, and T. EHRENFEST Enc. d. math. Wiss. 1V 32. §10.

%) L. BoLtzMANN. Gastheorie Il p. 88. and seq.

-11 -
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I’ being the expression for p, which is obtained by solving H=c,

Pr=F Py Py -ngmecia) . . . . . (41)

When this expression is substituted in H=¢, the result will be

an identity. By differentiating this with 1eSpect toc,, p,, o PusQas oo Qs
we find

‘ OF oF

O0H 1 0H  0q 0H _ 0p,

F O0F dg.  O0F 0p,  OF

ac1 a_ol 5"_1

from which the Hamiltonian equations are easily derived as follows

Op, OF 09. oF dt oF.
e s el N L —=—1". . . (42)
0p, 0Og.  Og, Op.  dg, O
Let us now form the derivatives of the transformation-function J~
with respect to all the variables which it contains:
ov_ oV GF oV E)Fd oV o0F
0, g JOg T op J e T e, B,
Evidently ¥~ forms the transition from the vauables Puisee s Pu
¢ir---5qn to the variables p,,...,pw Qu ..., @u €, 4. OF all the
rheoparametric differential equations we only need the equation for

¢ here, viz.
, 3 (v 3 [ (OF
Gl = ——at— aa)_-—a_tl‘( adql) . . . . (44)

The integral inside the brackets only depends on ¢ through g¢,,
hence -

oF .
¢y = — aa’h) N €

We now form the mean value according to (39):

oF

f f dp, - -dpndg, .. dgu 5
.. . . (45
Ya (45)

dp,...dpndq, ... dqn e

. oF ,
where in the denominator 1/, has been replaced by 5 according
1

(42)

dg,=t, (43)

to the last equation of the set (42’). It is easily seen, that the
numerator and denominator are the partial derivatives with respect
to a and ¢, respectively of a function V of the form

V=f...fdpl...dp,,dq,...dq,,, . .. (46)

-12 -
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the integration extending over the region enclosed by the energy-
surface H —=¢,. We thus have . |

oV oV _

a—}-a:al_o. B ( Y))
hence V is an adiabatic invariant. It can also easily be shown
that this quantity has a meaning which is independent of the system
of co-ordinates used; it therefore also satisfies the condition mentioned
in the introduction under (3). The same is true for the quantity
called v in § 3, b.

It remains to be seen under what conditions the quantities v,
defined by equation (32) also satisfy this requirement. It may be
expected that this enquiry will teach us how to quanticize systems
which are “degenerated” in different ways. It also seems very pro-
bable, that this question will be decided on the lines indicated by
Pranck ') and ScawarzscuilD *). For instance, as regards the movement
of a top on which no external forces are acting, of the three adia-
batic invariants: the moment of momentum, its projection on the
axes of the figure and its projection on &-axes of a fixed system of
coordinates of arbitrary orientation (all three multiplied by 2x) only
the first two may be quanticized. The “elementary region” thus
will be not 4* but 4°(2n, 4+ 1), where n, is the quantum-number
corresponding to the moment of momentum. On this ground excep-
tion may be taken to EpsTEIN’s calculation of the specific heat of
hydrogen?®). To all these problems — problems relating to the
adaptation of the quantum-hypothesis to different cases — I hope
to return soon.

The method above developed is independent of this question, it
is the solution of a purely mechanical problem. It seems advisable
to try and apply it {o systems which cannot be integrated by a
separation of the variables in HamiLron-Jacosr’s partial differential
equation, e.g. to the Poinsor-motion. About this question also I hope
to be able to make a communication shortly.

Petrograd, September 1918. Physical Laboratory of
, the University.

1) M. PLaNnck. L. c.

%) K. SCHWARZSCHILD. Sitzungsber. Berlin 1916. p. 550.

) P. S. EpsTeIN, Ber. d. D. Phys. Ges. 1916 p. 398. Compare especially
(10) on p. 401. Objections may also be made to the quanticizing proposed on
p. 407, seeing that the quantum-quantities in that case are not adiabatic invariants,

-13 -



