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Physics. - "Contribution to the theol'Y of~adiabatic invariants." 
(Preliminary comrnnnication). 1) BJ G. KRUTKOW. (Oomrnunicated 

by Prof. H. A. LORl!1NTZ). \ 

(Communicated in the meeting of Dec. 29, 1918). 

lnt1'odzection. Aay quantity that has to be quanticized, which maf 
\:le called a "q uantum-qllantity", must satisfy iwo conditions : 

1. it must be a function of the integrals of the equations of 
motion of the system under consideration. This condition is self­
evident, since the quantity must not change by the motion of the 
system, and has therefore never been explicitly stated; 

2. it must be an adiabatic invariant, i. e. it must not change 
when the system is &ubmitted to a reversible adiabatic influence. 

\ 

ThlS demand was tirst formulated by EURENFEST and pl'oved by means 
of general statistical reasoning '). Assuming that the adiabatic influence 
may be calculated by the methods of mechanism this condition 
follows directly,rl'om the fact, that the quantum-quantity varies ab-

. ruptly, wbereas the external influence may be infinitely smalI; tbe 
quanticizable quantity tberefore cannot vary at all, it must be an 
adiabatic invariant. 

Calling the quantum-quantity v, the integrals of the equations of 
molion Cl' CII •••• and the adiabatic invariants VI' VII •••• the con di­
tions (1) and (2) are expressed by 

v=funct(cl,c" .... ) .... (1) 

v = funet (VII V" .... ) • • . . (2) 

3. There is still another condition which a ql1antum-quantity 
has to satisfy: it must have a meanillg which is independent of the 
system of co-ordinates. This condition appears to me to embody the 
notion of the cohel'ence of the degrees of freedom established by 
PLANCK a). To this condition I hope to be able to return in a lat~r 

1) Address delivered in the Petrograd. Phys. Ges. in Dec. 1917 and April 1918. 
') P. EHRF.:NFEST. Ann. d. Phys. 51 (1916) p. 327, Phys. Zschr. (1914) p. 

Acad. Amsterdam 22 (1913) p. 586. Ann. d. Phys. 36 (1911) p. 98. Verh. 
d. D. phys. Ges. 15 (1913) p. 4:51. ' 

3) M. PLANCK. Ann d. Phys. 50 (1916) p. 285. 
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paper: on this occasion it will be left out of account and we ahaH 
only deal with condition (2). 

This condition imposes on us the task to find the adiabatic in­
variants of a given mechanical system and to look for a general 
method of solving the "adiabatic" pl'oblem. 1

) A method of that kind 
was unknown so far; the adiabatic invariants had to be gllessed at 
and their adiabatic invariability had to be tested a posteriori. In this 
way the following im'ariants were found: 

a. the quantity V of statistical mechanics, which meaSUl'es the 
phase-extension limited by the "energy-surface" 2) ; 

b. the "action" calculated for a full pel'iod of a periodical system ; 

v J2 Tdt I); 

c. the quantum integrals of the "conditionally periodic" systems; 

bi 

Vi - Jpi dqi = 2JPi dqi. 4) 

o Di 

In -what follows I shall sketch out a genera] method of finding 
adlabatic invariants and apply it to certaÏIl special cases, viz. 

a. eyelic systems. Properly speaking these systems come under 
the head of conditionally periodic systems; bnt- as the conditions are 
pal'ticularly simple in this case and bring out the vel'y natural 
character of the method, I shall discuss them separately; 

{J. conditionally periodic systems; 

y. el'godic systems. 

U nder (fJ) [ shall only considel' the limiting case, in which there 
are no commensnl'able relations between the periodicity-moduli. To 
the fllrther cases and in pal'ticulal' their relation to the thil'd con­
dition stated above I hope to retUl'n on a later occasion. 

1) _This point was specially emphasized by EHRENFEST. Compare ror instanee 
P. EHRENFEST Phil. Mag. VIrVol. 33. p. 513 (1917). 

2) P. HERTZ. Ann. d. Phys. 33 (1910) p. 544. 

3) L. BOLTZMANN. Prinz. d. Mechanik· II p. 181. P. EHRENFEST Ann. d. Phys. 
51 (1916) p. 327 Anhang. 

4) J. M. BURGERS. Ann. d. Phys. 52 (1917) p. 195. To the papers in the Pro., 
ceedings of the Amst. Acad reCel'red to by the author I had unfortunately no 
access. 

72* 
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THE GENERAJ. METHOD. 

1. Definition of adiabatic inval'iant.ç 1). We consider a mechanical 
system of n degrees of freedom, the equations of motion of which 
must be written in the Hamiltonian form 

àB dH 
Pi = - :;--, q, = ~, (i = 1, 2, .... ,n) , (3) 

uqi UPI 

H is here a function of the Pi and ql' It must not ('ontain t 

explicitly. Moreover it is supposed to depend on certain external 
co-ordinates, which we shall caB the parameters ax• These parameters 
may either retain constant valnes, in this case we have the iso­
pal'ametl'ic problem, Ol' they may vary, which gives thc rheo-para­
metric problem, or they may vary ,ery slowly 2), which is t11e 
herpo-parametric or adiabatic pl'oblem, to which we shall gh'e 
speeial attention. 

We shall make the following assnmptions: 
1. None of the q uanlities PI Ol' ql incl'eases to infinity. The ql aJ'e 

confixed within fixed limits. 
11. During the time in which each q, goes to and fro many times 

bet ween its extreme values, the ax must change by an infinitely 

small amount of the first order. Moreover each àx must be approxi­
mately constant. Equations (3) must J'emain "alid dul'Ïng the process. 
It folJows from these assumptions that the aerpo-parametric problem, 

will be obtained by putting äx = ronst. in the l'heo-pal'amelric problem 
and then taking fOf all the quantities the time·average in the 
corresponding iso-parametric problelIl. 

In our discussion we shall confine ourselves to one parameter a. 
This is not an essential limitation of the probIem, but it simplifies 
the formulae considerably. 

An adiabatic invariant is a function v of the integl'ationconstants 
Cl' C" • • •• of the iso-parametJ'ic motion and of the parameter a, the 
total "adiabatic" derivative of which with respect to a disappears: 

dv àv OV dC I ov dc, 
da = oa + aC

I 
da + ac, da + .. '. . (4) 

where the horizontal line indicates the time-average. 

2. The iso-pal'rtrnet1'ic problem. In the equations of motion (3) we 

• 1) Comp. P. EHRENFEST I. c. and J. M. BURGERS l. c. 
') Implicitly this condition will show itself in the fact, that HAMILTON'S function 

only contains the parameters ax itself and not the corresponding moments. 
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pnt a = const. and integrate according to JACOBI's method. If 

. (5) 

is a set of no l'ln al integrals of the equations, from which Pi may 
be sol ved, tbe characteristic function 

v= J 7Fidqu . • • . (6) 

may be formed, where the functions F(q" c" a) represent the quan­
tities p, deduced from eq nations (5), and putting 

av av av 
-a =tl -a =t, .... ~ =tn ••• (7) 
~ ~ u~ 

these will be the additiollal illtegrals, where 

. . . (8) 

The quantities c/~ at'e the n integration-constants. The iso-parametric 
problem is thereby solved. 

3. l'he differential equations of the 1·heo-pammet,.ic p1·oblem. In 
Ol'der to obtain these equations we shaH pass from the variabie 
quantities Pi and q! to the variables Cl and ti, This is a "contact­
transformation" , It is obtained by means of the characteristic function 

V(qi, ei, a) J ~ F, dq, . . . . (6') 

as tl'ansformation-function 
oV oV 
-:l=PI ~= ti . .. . 0 (9) 
uql J lICI 

The differential equafions retain the Hamiltonian form. If a I'emains 
constant, the new Hamiltonian t'llnrtion is equal to the transformed 
old one, i.e. to c, and the following tl'ivial result is o,btained: 

~I = 0, ~, = 0, ...• ~II = 0 i tI = 1, t~ = 0, .... til = 0 

We now allow a to change, i.e. we put a = function (t). The 
transformation-function V is now an implicit function ot' t thl'ollgh 
the intermediary of q" c, and a: 

oV (avo av.) avo 
-=~ -ql+-cl +-a ot i oql oCc oa 

The dlffel'ential equations (3) retain theit' form all the time, but 
the new Hamiltonian function f( now becomes 

. . . • . . • (10) 



- 6 -

1116 

where the bl'arkets are intellded 10 indicate, that the derivati,'e 
a v/aa must be expl'essed in the variables C, and t" The differential 
equations of the Hleo-pammett'ic problem therefore ál'e as follows: 

af( aK aK 
Cl =- at; 

. àK 
t,= ~ 

UC, 

aK 
•••. t .. = àC

n 

4. The hel'po-pa1'ametl'ic 01' adiabatic pI'oblem. 

. . (11) 

To begin wllh we put ä = const. Substitllting 
from (10) the equations (11) tIJen assnme the fonn: 

the value of /( 

~i=_~~(àV) 
dtl àa 

(r = 1,2,. " u) 

. .. à (àV) 
tI := a àc, a; + 1 

. . à (av) 
tx = a aex Ta (.1:=2,3, .. n) 

. (12) 

or, indicating the differentiation with 
lIy means of a dash:_ 

respect to the pal'ameter a 

e'i = - à~/àà:) - t't = Cà~) + ~ I à (av) 
t x = ac~ àa (12') 

'Ve now only need to put the line which indicates the mean 
value on the left side and on the right actually to calcnlate the 
tJme-average in ol'der to obtain the differential equations of the 
herpo-parametz'ic or adiabatic problem. The integration, in which the 
said line on the left is omitted, gives the adiabatic-invariants; indeed, 
the equations being 

C'j = ft (Cl! tI, a) 

and CP(C2' t2 , a) tbeir integrals, the 
the equations must disappear, Ol' 

t'l = gi (Ci, tI a) 

~otal diffel'ential dlP/da owing to 

dep alP ').' (àrp .f aq;) _ 0 --+ ..... -JI+-g 
da àa i àCi à I 

alP (àep, àrp _) dIP 
~+..s -a Ci +~l'i -:;:-- = 0 
ua i ei u ti da 

but this is no other than equation (4), i.e, tbe equation which 
expl'esses the definition of adiabatic inval'Îants. 

In this manner the problem set in the introduction: to deri ve a 
general method of finding adiabatic inml'iants, has been solved. 
BefOl'e discllssing the mOl'e general applicalions two special pl'oblflms 

\ __ classicalones for the quantumhypothesis - may be treated by 
our method. 
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5 (A), The linear oscillato1'. The parametel' is here the frequenry. 
The solution is as follows: 

B=~p' + ~a2q'=cl p=F V2c1-a'q' v:-fqF {dqV2Cl-a2q2 (13) 

~: = -J dg at' :: fa; = ti ,. (14) 

C'1 =: (à;),V) =: (i);),V). dg = ag' = ~a'q' . (15) 
vt l va ug va dt1 a 

The mean vaille of the right-hand side is cl/a. Thus we obtain 
tbe well-known adiabatic invariant cda. 

B. Body 1'otatin,q aboztt a fimed amis. Calling the moment of inel'tia 
(the pal'ameter) A and the moment of momentum p, we have: 

1 V- J -H=2A P'=c1 p=F= 2Ac1 V= dg[f'=gV2Acl ••• (16) 

oV clg i)V _ Ag _ (OV) -2 r 
i)A -F oC

I 
- F - tI oA - A 1 

(17 ) 

c\ = - aal (::) = - ~ . . . . (18) 

whieh gives cIA = const., henee also p = T = V2Ac 1 = const. 

ApPLICATIONS. 

6. The cyclic system. Weeall cyclic those eO-OI'dinates whieh do not 
ocelU' in the expression fOl' the Hamiltonian function (ignorable co­
ol'dinates aecording to THOMSON and T AIT'S tel'minology). They will 
be indicated by gx (,v = 1, 2, .... ,k), the remaining, non-cyclic co­
ordinates by qj'p. = k + 1, k + 2, .... , n). 

Hence we have 

. dH 
px = - dg:/, = 0 

The characteristic funetion now will be 

V = ~ Cx q t + W (ql.! Cx! Cl. ; a) 
x 

px=Cx .. (19) 

(20) 

We shall further assume that CIl is the energy-constant; we tllen 
obtain 

av oW dV aw 
dc

x 
= q:t + ac; = tx acl. = aC) = ti. • (20') 

where all t, exeepting til' are constants and til = t + const. 
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From the equations for tj the q. may be derived as functions of 
the Cx, c) and tJ • Furthel' we have 

av aw 
a;= aa . (21) 

av 
from which it follows, that da is a fllnction of the C.c, c~ and t~ and 

,independent of the .ix, hence: 

c'x= - d~xea:) = 0 Cx = cîdiab. Invar . . . (22) 

In the case, when [( = n, i. e. when all the co-ol'dinates are­
cyelic, we have 

R=H(pi) pi=Cj v = 1; Ci qi 
i 

. 
(i = 11 21 ' , • n). (23) 

If the en:el'gy-constant c is a fllIletion ot' the Cl whirh is found by 
sllbstituting the Ci in H, the llew Hamiltonian function wiII be 

K=C +(~~) 
avo 

But aa IS equal to zero, hence all Ci are adiabatic invariants. As 

the co-ordinates eOl'l'esponding to the moments ei the old eo-ordinates 
ql must be taken - they a,'e all linear funrtions of the time. Tllis 
fact brings out the natUl'al ehal'acter of the method, henee it appears 
to be a very natural genel'alization of the method of ,'easoning 
followed in the theory of cyclic systems. -

rhe simplest instanee of a cyclic sJstem - a body rotating about 
a fixed axis - was diseussed above uuder 5. 

7. The conditionally pel'iodic systf.m. As is well-known a condition­
ally periodie system possesses besides the energy-integral (n-1) 
other integ'l'als which at'e of the seeond degree with respéct to the 
moments. They all contain the moments only as squares, not as 
products. thus only pi 2 and no Pi pX' Sol ving the Pi' we get 

Pi' = lf'i (qil Cl " l'l!) Pi = V lf'i (Cl' ,Cl! integration const.) (24) 

thelefol'e each pi depends only on the corresponding co-ordinales 
qi. Ir the initial va\ne of qi lies in between two simple suecessive 
roots ai and bi of the equation tf'i = 0, the rO-Ol'dinate displays 
'librational motion. We shall here ronsider the case in which this 
holds tor all the co-ordinates qi. 

The chal'acteristic function V is now gi ven by 
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. . (25) 

hence 

a v f v- a v f aV 4j 
-:--a = ~ dqi o 'Pi'-a =~ dqi-o-=t r • • (26,27) 

a 1 ar I ax 

rhe fh'st gl'Oup of the l'heO-pal'ametl'ic differential equations has 
the following form 

• . 0 (OV .) 
cr=--o ~a 

r:r ua' 

or putting a = const and substituting for a v/aa its value from (26) 

, a (f aV'Pi) C x = - - 2 dqi--a·x i aa . . (28) 

Now it f01l0ws fl'om (27) that the integral withm Ihe brackets 
depends on t.t only through the intel'lnedial'Y of the qi (on Cx it 
depends explicitly aIJd al80 th!'ough the qi; hence 

, (óV 'Pi OQi) 
ax=- ~--­

i aa a·x 
(28') 

We have now on the left to put the line indicating the mean 
yalne and on the right actually to calculate the time-a\'el·age. For 
this we need the following Pl'opositions: the CUt've of the ol'bit fills 
the w hole l'egioll ai ~ qi ::; bi (t = 1, 2 .... n), the filling being every­
whel'e "den se" 1). 'rhe time-mean of an arbitrary function f of the 
phase of motion of the system, taken over an intel'val of time T 

increasing indefinitely, may be l'eplaced by tlle spa~e-mean of the 
fllnction over this l'egion 2). In the \'ariable quantities Ci, ti in order 
to compute the space-mean we have to integrate the function f over 
a "period-cell" and divide by the "volume" of the cell 

bi 

( J 0\/ l/1i J' àV l/1i) 
W,X = dqi~ =2 dgi ~ . . (29) 

ai 

henee: _ 

- IJ IJ' .. "J f = lim -; dt f = !.1 .Q • dt 1 ••• dt" f . . (30) 

I) P. STäcKEL. Math. Ann .. 54. (1901) p. 86. In the proof it is assumed th at 
between the (j)ix (equation 29) no relations of- commensurability exist. 

2) Comp. J. M. BURGERS I. c. p. 200. 
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Representing by ~IX the sub-detel'minants cOl'l'esponding to the Uht _ 

the mean value of the l'ight-hand side of (28') aftel' some reduc-" 
tion may be wl'itten in the fOl'Ill-

Ol' putting 
bi 

Vi = 2 Jdqi- V tJ1i ' 

ai 

. . . . . (31) 

. (32) 

and noticing that the integl'and disappeal's at the liriîits Or the 
integral, also in th is form 

1 OVi 
- - ~ .Qix - , • " , • (31') 

,2 i àa 

Rence we obtain the relation 
.., 1,., àVi 
ex + Q 7 !'2ix Ua = 0 . . . , . • (33) 

We now solve this set of equations for the derivatives àv,/àa 
{)Vj -- + 1; ruix a'x = 0 oa x 

, • -. . . . (34) 

Instead of Wt,T we may write 

(35) 

Rence instead of (34) 
àVi àvi--+ ~-a'x= 0 .. , . (36) 
àa x oC,c " 

The v, are functions of a and of the Cx; the left-hand side of (36) 

therefore is the "complete "adiabatic" derivative dv,: hence the v, are 
da 

adiab'atic invarÎants. 
The above inval'iants have been obtained by snbmitting to the 

series of opel'ations prescl'ibed by our method the first group of our 
rheo- parametîc equations, those fol' c':/;, W e sh~ll now show, that 
we need not proceed "and that we need not consider the second 
gl'Ollp of equations, those for t'3., at all, supposing om' object to be to 
find the condition mentioned in the introdllction under (2) which 
evet'y quantum-qllantity of the conditionally periodic. s'y'stem has to 
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satiRfy. We may briefly formlliate the condition mentioned nnder (1) 
I' by saying, that each quantum-quant.ity v must retain.a constant 

value along the "Ol'bit" of Out· system; it is a function of tliose 
integrals of the iso-parametic system which do not contain the time 
t explicitly, i;e. of cl> .... Cn, tv' ••• til: The time-mean of v is thel'e­
fore vitself. We may then replace tbis time-mean by the space-mean 
for the ceU S;! i this being a fllnction of the Cx and a, v is a function 
of tbe Cx and independent. of t., .... til. Now _we have found n adia­
batic invariants, f'unctions of C and a i the l'emaihing ones, which 
have not been compllted, all contain the ta., hence we do not need 
these for Out· present plll'pose. The conditions (1) and (2) for a con­
ditionally periodic system without commensnrate relations between 
the 1.V0; thel'efore assume the f'orm 

v =funct (cu' ... cn i a) I 
11 =funct (vlI' .. VII) 

· (37) 

where the Vx are given by equation (32). We know, th at the 
quantum-theol'Y chooses as quantum-quantities the Vx themselves 1). 

~ 8. 7ï~e e?yodic systeJn. So, far we have assumed that the iso­
pal'ametl'ic problem is actually solved. Now we shall only sllppose, 
tb at the, enel'gy -in tegral 

· (38) 

is given and in additioll intl'oduce the "el'godic" hypothesis that 
the system pas&es throllgh every point of t.he "energy-surface" 
H = C. 2). The time-mean F of a phase-function f is th en given by 

_ J. J dp2 ... dpn dql ... dq,,':-f 

f f J" . ~l 1

3

) 
. .. ap •... dp, dgl' .. dq'l .-

ql 

.. (39) 

the integrals being taken over the enel'gy-smface 'H = C,. 

As a \'el'y natural specialisation of om' genet'al method we now 
take as transfol'mation-function V the quantity 

. '. . . · (40) 

I) K. SCHWARZSCHILD. Sitzungsbel'. Berlin 1916. p, 550. P. EpSTEIN. Ann. d. 
Phys. 50 (1916) p. 489; 51 (1916) p. 168. A. SOMMERFELD. Ann. d. Phys. 
til (UH6) p. 1. 

S) Of P. and T. EHRENFEST. Ene, d. math. Wiss. IV 32, § 10. 
S) L. BOLTZMANN, Gastheorie 1I p, 88. and seq. 
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F being the expreSSlOn fol' PI whieh i& obtained by sol ving H = Cl 

PI = J? (P2 •.• , PlII gl' ... , g,l, Ol ; a). .' . . . (41) ~ 

When th is expl'ession is substituted ill H = Cl the l'esult will be 
'an identity. By differentiating this with respect to CIJ p" "',PIl,gl'''' ,gil' 
we find 

aF aF 
. • • (42) 

dB 1 aH dgl aR apx 
-=-,-=--,-=--
dF dF àgl d F 0px dF 

aOI ao] Oe ] 
fl'om which the HamiItonian equations are easily deri ved as follows 

dp.1 all agx aF 
apI - ogx Ogl 

- -opx 
dt oF_ 
-=-(. 
dgl oeI 

. (42') 

Let us now form the del'Îvatives of the transformatIOn-function V 
with respect to all the variables wbich it contains: 

oV av JOF oV {OF oV JOJ? 
:.\""=F -a = :.\""dql=Px ~= ~dq]=qx :.\""= :.\""dgl=t l (43) 
uq I qx ug:r up t upx U Ol U Ol 

Evidently V forms the transition fl'om the variables PI' ... , pil' 
qu' .. , qll to the vaIÏable& IJ,,· .. ,p", q., ... , qll, Cl> tI' Of all Ihe 
rheoparametl'ic diffel'ential. equations we only neen the equation fol' 
c' here, viz. 

0'] = - ~(OV) = _ aO (J~F dql ). • • • (44) 
at l oa ti ua 

The integral inside the brackets only depends on t through gil 
herare 

(
aF. ) 

0'1 = - oa ql ..' 

We now form the mean value according to (39): 

-J ... JdP' ... dpll dg] .. dqn ~~ 
0'1=,------------ oF J, .. JdP' ' . ' dpll dgl' .. dqll 001 

. (44') 

. (45) 

aF . 
where in the denominator lig: has been replaced by ~ accordmg 

VOl 

to the last equation of the set (4:2'), It is easily seen, that the 
numerator and denominatol' are the padial del'ivatives with respect 
10 a and C, l'espectively of a fllnction V of the form 

V = J ... J dpI .• ,dpn dgl:' . dgn, ' (46) 
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the integt'ation extending over the l'egion enclosed by the energy­
sUl'face R = Cl' We thus have 

av av, 
-a + a-Ol = O. 

a 01 
.' . . (47) 

hence V is an adiabatic in variant. It ean also easily be shown 
that this quantlty has a meaning which is independent of the system 
of co-ol'dmates used; it therefore al80 satisfies the condition mentioned 
in the intl'oduction under (3), The same is true for the quantity 
called v in ~ 3, b, 

It remains to be seen undel' what conditlOns the quantities VI 

defined byequation (32) also satisfy th is requirement. It may be 
expected that this enquiry will tearh us how to quantieize systems 
which are "degenel'ated" in different ways, It also seems very pro­
bable, that this question wiU be decided on the lines indicated by 
PIJANCK 1) and SCHWARZSCHIJ,D ~). Fot' instance, as regards the movement 
of a top on which no extel'flal fOl'ces are acting, of the thl'ee adia­
batic inval'iants: the moment of momentum, its projertion on the 
axes of the figm'e and Hs pl'o.]ecLÎon on ;-axes of a fixed system of 
coordinates of arbitl'at'y orientation (all three muItiplied by 2.1r) only 
the first two may be qllanticized. The "elementary l'egion" thu'3 
wiIl be Hot ha but !t 3 (2n l + 1), where 111 is the quantum-numbel' 
cOl'l'esponding to the momellt of momentum. On this gl'ound excep-. 
tion may be taken to EpSTEIN'S calculation of the specific heat of 
hydl'ogen 3), To all these pt'oblems - problems l'elating to the 
adaptation of the quantum-hypothesis to diffet'ent cases - I hope 
to return soon. 

The method above developed is ind€'pendent of this question, it 
is the 801l1tion of a purely mechaniral pt'oblem. lt seems advisable 
to try and apply it to systems which cannot be integrated by a 
separation of the variables in HAMII,TON-JACOBI's partial diffel'ential 
equation, e.g. to the POlNsoT-motion, A bout this question also I hope 
to be able to make a communication shortly. 

Pet1'ograd, September 1918. PlLysical Laborat01'Y of 
the Dniversity. 

1) M, PLANCK. 1. c. 
2) K, SCHWARZSCHILD. Sitzungsber. Berlin 1916. p. ü50. 
S) P. S. EpSTEIN. Ber. d. D. Phys. Ges. 1916 p. 398. Compare especially 

(10) on p. 401. Objections mayalso be made to the quanticizing proposed on 
p. 407, seeing that the quantum-quantities in that case are not adiabatic invariants, 


