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Physics. — “On the Theory of the Friction of Liquids 11.” By
Prof. J. D. van prr Waars Jr. (Communicated by Prof. J. D.
VAN DER WaAALS).

(Communicated in the meeting of March 29, 1919).

§ £ Distribution of density in a lquid flowing i a field of
Jorces. Before proceeding to the “friction by formation of groups”,
we shall discuss a simpler problem. We shall namely imagine that
a gas streams in a field of force, and then examine what modifi-
cations are brought about by the streaming in the distribution of
density as it would arise in a field of forces when there was no
current. For this purpose we shall again imagine the simple case
that the streaming takes place in the .-direction, and that the
velocity may be represented by u=— az. We shall (urther suppose
that we have to do with a stationary current, so that in a point
at rest in space the density and the velocity of the current are
constant.

In order to examine the distribution of density which will present
this stationary character, we shall assuine that there are two causes
that might give rise to a change in the density in a given point.
the ‘“molar” current, and the “diffusion” current. It is not to be
denied that this distinction 1s artificial, and that the change of the
quantity of substance in an element of space can of course always
be found from the total current that flows in through the boundary
surfaces. 1 shall, however, suppose that this total current may be
thought composed of a molar current, 10 which I shall assign the
unmodified velocity ¥ = @z, and a current which is the consequence
of the inhomogeneous density in connection with the heat motion.
The latter will be denoted by the name of diffusion current. I shall
further assume that the change brought about by each of these two
causes, can be computed independent of the other cause.

The quantity which enters a volume element per second through
the molar current is:

dn on

a?d.q:c(ydz:~1¢5;dmdydz e .. (10)

In order to calculate the contribution of the diffusion- current we
shall assume that the distribution of the velocities of the gas-mole-
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cules at any poinl may be found in the following way. We shall,
namely, assume the velocities of the molecules which have collided
in a cerlain layer to consist of two components: 1. the velocity of
current in the layer m which they have collided, and 2 the heat
motion, of which latler it will be assumed that it is distributed over
the different molecules according to MaxwerLi’s law. Undoubtedly
we make an error when supposing these things, but we may expect
that this will only be an error in a numerical coefficient, and that
the - nature of the phenomenon and alse the order of magnitude
will be corvectly represenled by the formulae derived by the aid
of these suppositions.

In order to examine the diffusion current through a plane 4, we
shall consider two planes lying on either side of the plane 4 at a

3
distance —‘/5-/. ({ = mean lenglh of path of {he molecules). And we

shall consider the molecules passing through the plane 4 as “emitted”
from one of these two planes, by which we understand that they
have hLad thew last collision there. Let us first consider the molecules
that collide in the 4 plane'’), and which possess a component of
velocity normal to the plane . between w and w - dw. Arrived
in the plane 4 these molecules have obtained a normal velocity 0’
determined by the equation:
0g [)/3
Y, mw'® =1/ nuw® - 5 —‘g-
The number of inolecules of this group passing per second and
per unit of area through plane A, is when n represents the density
- nly8 ., .
of the molecules in 4, andn 4+ — % that in the -+ plane:
ERTER o b3
1 i3\ AR L EWE L
—n A —— | we 7 kToz 3 d—d—d— . . (11
Vﬂ“( +6z 3) ¢ o a (1)

When we pay only attention to the molecules ewmitied from the
0s /8
0z 8
In the direction from -+ to — however, there go, also molecules

—+ plane, w’ must always have a value for which '/, nuy'* is >

Y i ¢ the plane parallel to 4 al a distance ¥ I3 on the side where the
potential energy : of the molecules is greater than in 4. The plane lying on the
other sidé’ will be called the — plane. The z-axis will be normal to 4 in the

0
direction from the — plane to the - plane, so that 3£ > 0.
: z
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which have first passed through it in opposite direction with such
a small velocity that they could not reach the - plane, but reversed

> . r i \J E v h
their velocity in consequence of the force — — before having reached
I3

it. When also thesse molecules are taken into account the total
diffasion eurrvent from - to — is found by integrating expression
(11) with .respect to w and v between — o and 4 oo and with
respect to w’ between 0 and — oc.

The molecules flowing in opposite i.e. in the 4 direction through
the plane are found by taking a group of molecnles emitted from
the - plane:

_L_ (n — 27.1 {‘_/_3) w'g—lﬂ—-i_ij*—_we_—;é%’gzt—:édf as df’

vV at 0z 3 w o«
and by integrating w and v in this between — oo and + oo and 20’
between 0 and - cc. -

Thus it is found that the plane 4 is passed per secoind and per
unit of area in the — direction by the following number of molecules:

1a:1V3 1 0:iy38

% Mly'3\ i s only/8\ ~iias
Nt ———— e — | ——— e =

21/7'() 0z 3 0z 3 2

“_ul/Sl(On de 1 a3 / 1dn odel
=g e et i)

(12)

In this we shall assume n/to be constans, though, strictly speaking,
this is only allowed for gases at small densities. In the case of
thermodynamic equilibrium this diffusion current must be zero through

£
very plane, so that then !(n)+ﬁ1= constant, which gives the

known distribution of the molecules in space in that case.

We shall make use of the value of the diffusion currentin equa-
tion (12) in order to calculale how much enlers through the six
sides of a volume element vy de. We find for this:

a3 Lot
~3|/.7rn v

so that we find for the condition for a stationary state in connection
with equation (10):

da dy dz,

L) + -,

& On
Z(7L)+']:cr£ :u;; . . . (13)

V'3
LAy
: +3Vﬂﬂv

I shall here leave out of account the question what corrections
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would have (0 be applied to the numerical factor and use equation
(13) further uncorrected. '
g :

ln) -{-ﬁ is the quantity that GBBs represents by ¢ and denotes
by the name of thermodynamic potential. In the case of thermo-
dynamic equilibrium it is constant, and equal to {n,), when n, is
the density in the point where the potential energy is put zero. In
the case of no equilibrium considered by us I shall put:

Z(n)—f—k—}—ul(nu):w. A )

or taking into account that we suppose w to be small: -
71_-:.n,e_ﬁ'(l—HU)=n°e—ﬁ’—f-nw, .. (14a)
so that nw represents the number of molecules that in consequence
of the current is present in an element of space in excess above the
normal number n, g kT, According to equation (13) w is found as
the potential of imaginary agent, of which the density would
V3x o
a.nl ¢ oz’

To illustrate the meaning of the found formula we shall apply it
for the following simple case: the field of forces arises from a single
centre of forces, in which we lay the origin O of the system of
coordinates, the force being only a function of ». If there was no
current, this field of forces would in a gas give rise to a denser
clond round O, in which the density wonld only be a function of
r. Let us now think the gas set flowing with a constant velocity u
m the negative a-direction, and let us suppose this to bring about
a slight variation in the density, so that by way of first approx-

be: —

0
mation we may take in equation (13) the value of 52 as it would
T

be without current, hence:

gl;:—noe ﬁlc_}‘g‘z B ( 1))
which causes equation (13) to become:
, V3x a 0¢
V= — v . (130)

The 1maginary agent is then negative on the side of the positive
v-axis, and has an equal, but positive value on the side of the
negative w-axis. Then the potential v of this agent will be zero in
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the yz plane, as is easily derived from considerations of symmeiry,
and will on either side of it present the same sign as the imaginary
agent. The excess nw, therefore, also shows these signs, which comes
to «this that the cloud has shifted in the direction of the negative
£-axis, as was to be expected.

When we no longer assume u to be constant, but v = asz, w
will obtain a positive sign in the 1% and the 3'd quadrant, ie. the
clond will be elongated in the direction of a line that forms an
angle of 45° with the original axes and lies in the 15t and the 3
quadrant,

§ 5. Distribution of the density in a fowing liquid at the critical
point. When after these preparatory remarks we proceed to the
problem of the anomalies of density in a flowing liquid, we shall
first have to calculate ¢*w according to equation (13a). For this
purpose we first remark that the value given for g*w by this
equation is only a consequence of the movement of the gas relative
to the centre of force. When we put-w = constant, and if we then
make the centre of force participate in the movement, it would of
course come to the same thing as if everything was at rest. We
shall, therefore, always have to take this relative velocity for u in
equation (13a). The value of *w in a volume element dz dy dz = dw
can now be calculated as the sum of contributions furnished by
forces exerted by the substance in the different surrounding volume
elements. When we call one of these surrounding elements
dz’ dy’ d22 = dw’ and the density in it »n’, then the n’dw’ mole-
cules in it can be conceived as a centre of force. When we put
again w — az, the velocity of the substance in dw relative this
cenfre will amount to a (z-—2’). Let us further represent the potential
energy of two molecules at a mutual distance » by ¢(r), the
contribution to w*w in do which is owing to the substance in dw’
is then: '

V3x n 0p(r) x—a'
' gl kT o'

in which ' represents the distance of the spacial elements de and
do'. When we turn the axes 45° round the y-axis, and when we
call the new axes &, 7,8 we find for the total value of g*w:
Viza [0pC—8y—C-L)

al kT or' 2 )

This equation gives the distribution of the imaginary agent in
space. We find from it for the value of w, in a volume element

.
a(z—2")yn'do'

(16)

' = —
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dé, dy, 8, = dw,, when we represeni the distance of an element
do to do, by 1

I R Y e T
w, == ——;l-]GTU 5 ?1 w'de . (A7)

[f n’ were constant, we should of course find 7*w =0 and w = 0.
If, however, in a definite region n’ is greater than in' the sunrround-
ing volume elements, then in a line parallel to the -axis and passing

through the centre of this region tw*w will be negative, and in a -

line parallel to the §-axis positive. The imaginary agent and w have
then opposite signs, so that here also the condensed group will be
elongated in a dirsction forming an angle of 45° with the original axes.

§ 6. The application of the virial velation. In order to calculate
the stress tensor from the value found for w,, we shall make use
of the virial equation. We shall, however, have to demonstrate
beforehand the applicability of this equation for the case under
consideration. Let us for this purpose consider a definite volume in
the space in which the flowing gas is found. We shall assign to
it the shape of a rectangalar parallelepiped and choose the coordinate
axes parallel to the sides. As we think the state stationary, the

expression Zma®, in which the summation extends over all the
molecules in the volume will be constant. The fact that through the
bonndary planes molecules enter and leave the considered space,
does not affect this. We conclude from this that:

\;_Z(Emm 2)=0=3Zm 2+ e X—l— Om(,,,l__a,’?j.‘;,af(.é) dn . (18)

In this X is the @-component of the force acting on a molecule,
x, and x, are the abscissae of the boundary planes of the parallel-
epiped normal to the a-axis, and O is the area of these planes.
f@) d: denotes the number of molecules per c.c.m., of which the
t-component of the velocity lies between a and @ + dz. The latter
term refers to the change in the value of Zmaa, which results
from the molecules entering and leaving through the planes z, =¢
and @, = c. The molecules entering and leaving through other
boundary planes will yield on an average a contribution zero to

d .
— Xmax. Let us put:
it P

& =& + ¥
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in which « represents the velocity of current and zy the velocity
of the heat motion, and let us take into consideration that

22'17114..%1‘:0.

fZ u &g )’(.’(:) da = 0

2Zmu + Om (v,—a,) u’ﬁ'(.'z':) dw =0,

and

Equation (18) then assumes the following form :

> m"‘"’th + 2 X+ O(””l*"”a) mfi”i" f(a") d.‘L‘. =0

Let us further split up X into X, and X,, in which X, refers to
the mntual forces of the molecules in the considered volume and
X, to the forces exerted by bodies lying outside the volume on the
molecules contained in it. We shall only have to take forces X,
into account that act in the planes #, ¢ and w», = ¢; the others
will be zero on an average. We shall further be allowed to pui:

(E Xi)xl “{_ m Oﬁtﬁ,f(‘ﬁ) d"" = Pz 0 . e .. (1 9)

in which (I X,),, represents the sum of all the forces X, thal act
in the plane x, = ¢, and p,, an element of the stress tensor in the
well-known way. The lefthand member of (19), namely, indicates
the total change of momentum which is caused by the substance on
the lefthand side of the plane z, = ¢ in that on the righthand side
both in consequence of transport by the molecules in their heat
motion and in consequence of forces. As O(x,—x,) = V we find"

pes V=S ma* + T x X,
or

R
pm=7}'_z'mx,,. C 0

when the sign =" in the last equation represents a summation over
all the molecules in a c.c.m.

§ 7. The stress tensor in a flowing hquid. When we now calcu-
late pz: according to equation (20), we find:

i “”“"ff o , & g‘)gdwxdww. L@
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in which de, and dw, are two elements of space the distance of
which is expressed by 7,,, and in which the density of the mole-
cules amounts respectively to n, and n,. We now can put:

n, =n + 4, + w:(;t'i_Al)
=n + 4, + w,(n+4,).
In tlis n vepresents the mean density, A the deviation, as we

might expect it also without current, w, n, = w, (n -+ 7,) representing
according to § 4 the deviation from the mean density brought about
by the current. Terms that would contain w?, have been neglected.
In the product 7, n, the term (n 4 A,)(n 4+ 4A,) will yield the same
value for all the coordinate dirvections. This term would-also vecur
when there was no current, and its integral in equation (21) will

- a .
produce the term — of the hydrostatic pressure according fto the
v

equation of state. Let us also remark that nd, =0 and nA,=0,
then (21) may be written as follows:

a 2
pg—p = ——ff » G E)— (w2, By + wn, &, 4 nw n,w,)de, dw, (21a)

1

We shall neglect the third term. The 15t and the 20d will be
equal on an average, hence we may take twice the first. We shall
substitute 1n it the value for w, that we have found 1n equation
(17), in which we may replace ' by A’, because when A’isevery-
where zero, also w, becomes == 0. Thus we find-

_ VExa ey =ty
peg—p = — al kaff AA '

1 dgp (§,—S5 ‘
— [p(:L«—‘)-dw’dw_dw]dw,. I 2 1)

r, Op P1a

12

and in the same Way-

1 acp G—&)

) "107'12 P12

w'dw dw dw,.

It will hardly be possible to calculate the value of these expres-
sions accurately. I shall confine myself to a 10ugh estlmatlon of the
order of magnitude, and demonstrate that pg— p and pgg-—-p
assume equal but opposed values, which in virtue of the properties
of the stress tension had to be the case. o
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If for two different elements of space the values for & were

always independent of each other, A,&" would be = 0, except when
we make the elemeni dw' coincide with dw,. When we then made
the value of dw, approach zero, the righthand member of (210)
would become zero. The A’s for different elements of space are,
however, not independent, but when A, is e.g. positive, the A’s in
the adjacent elemenis will probably also be positive, so that the
product A, A'dw,do’ will be positive on an average not only for
do' = dw,, but also for a finite region round dw,. In this region I
shall assign to A’ not only the same sign, but also the same value
as to 4,, and 1 shall assume that the size of the region is equal to the
sphere of attraction of a molecule *). I shall further assume that we
get a sufficient approximation for pgz — p, when we assign the

value n to n,, and 1 shall write » for f n, dw', 10 which we extend

the integration over the just-mentioned region. » then represents the
mean number of molecules in a sphere of attraction. At the ciitical
density 1 should then be inclined to ascribe to » a value between
5 and 25, though not much is to be said with certainty about this
value. In consequence of these assumptions (216) passes into:

—_— —_ﬂa_v. ‘j‘fA :_a_({(g'—"ga):_'(g—g,)"
P P="""u MJ . -

oy Gt

rOr, T

dododo, . . . . . . (2lg
12 o

In order to find the sign of this expression, we transport the
origin to the point & 7,8, and (first determine the sign of

b BN (P )3
the quantity &['E ) - €8 = (). The bisextrices of the angles
2 2 N
between the displaced § and &-axes, divide the plane into four
quadrants; two of them contain the §-axis, and two the §-axis. In
the two quadrants that contain the §-axis, ¢ will be >0, in the

others @ will be<{0. If we next inquire into the sign of

!
JQ—~dw=I, this sign will depend on the situation of the point
rl

& &
If this point lies in the quadrants where @ >0, ! will also be

1} Not improbably it is greater; but as the elements do' and dwy, the mutuaal
distance of which is much greater, do not appreciably contribute to the value of
the righthand member of (2ib), the.restriction to this value may be justified.

-10 -



1292
a(p (gz—gl)ﬂ

a7'1 2 "1z

>0 and vice versa. Let us now finally form fI dw,,

and let us first integrate along a circle »,, — constant; then the
positive values of / will be multiplied by greater values of (§,—&,)?
than the negative values, so that the positive sign results. If we
had calculated pz;—p, we had mnltiplied by (§,—¢,)?, so that then
negative values of / had been multiplied by a greater factor, and
the negative sign would have resulted. '

In order to arrive af last at an estimation of the order of mag-
nitude of (pzz —p), we observe that:

Ogp a
fam-rd.v({e/dz:—ﬁ; e e e (29)

in which a represents the known quantity a of the equation of state
and N the number of molecules per molecular quantity.

1

We further assume that in the factor — the radius of the sphere
rl

of attraction of the molecules (¢) may be written for r,, and that

E—EP—G-5) . G5

nd ——= will con-
7‘! 12

p 3
sist in this that the values which would be obtained by an omission
of these factors, are multiplied by a moderate value g, smaller

the influence of the factors

than 1. 'y
Thus we find, when we also take into account that N7 =RT7:
aV3x (@1
—_— == — w A
P —p dRT R (@1d)

If we had calculated p, we shonld also have found a term with
A* in the virial of the attractive forces. If we call it p’, then:

— &
P'—_—%A’ﬁ;

s0 that:

— V3 1
Pe "P_ 17O vu%—-—:::i: 10—,

p' ~  8alRT

As our purpose was only a rough estimation, we have taken in
this:
a=1 and pu=1
a = 3.104
[l =10-1
0=>5.10—8
N =6.10"

-11 -
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When we take for pr =70 atm. for CO, and n = 0,000678,
we find:

— = 4= 10-11
P

, hence if at the critical

[ B

1 a a
Now pp = round — — and p’ = —
8 Wéi vk!

poini the mean A becomes somewhat smaller, but of the same order
of magnitude as n, then pzz — p will become of the same order of
magnitude as 1 for a gradient of velocily @« =1, and must, there-
fore, certainly, be taken into account. On the strength of this we
should have to expect that an abnormally great value of 7 would
he found at the critical density, when for 7% we examined the
value 7 as funetion of the density. WarBure and Vox BaBo') have
determined % for CO, at 32,6° for different densities. n increases with
the density. There does not appear any irregular increase at the
critical density from their observations. It would be interesting when
similar observations could be made at a temperature nearer 7}

1) WIEDEMANN's Annalen. XVII p. 390. 1882.

| 84
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