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Physics. — “On EisteiN's” Theory of grawvitation”. (1. By Prof.
H. A. Lorestz. o -

(Communicated in the meeling\ of April 1916.)Y)

§ 32. In the two preceding papers®) we have tried so far as
possible to present the fundamental. principles of the new gravitation

theory in a simple form. -

We shall now show how Eixstem’s differential equations for the
gravitation field can be derived from HamiLtoN’s principle. In this _
connexion we shall also have to consider the energy, the stresses,
momenta and energy-currents in that field.

We shall again introduce the quantities g, formerly used and we
shall also use the “inverse” system of quantities for which we shall
now write ¢%. It is found useful to introduce besides these the
quanfities )

qab — V:q gab‘ -
Differential coefficients of all these variables with respect to the
coordinates will be represented by the indices belonging to these
latter, e.g.
___ agab . aggab
gab,p——a—w; v Gabpg = m~

We shall use CHRISTOFFEL’s symbols
ab
I:GJ—_—'l(!]ag,b'{'gbc,a—gab,c) - y

and Riemany’s symbol
(ik;l'm) =1 (gzm, &+ grLun — G, km — Gk, il) 4

+ (ab) gob [ia"l] [lﬂ - [ﬂ [k;n ]:

Gim == (k) ¥ @k, im). . . . . . . (40)

G==m)gmGpm . . . . . . . (4]

This latter quantity is a measure for the curvature of the field-
figure. The principal function of the gravitation field is

Further we put

1 Published September 1916, a revision having been found desirvable.
%) See Proceedings Vol. XIX, p. 1341 and 1354, ¢
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E{' Qd ’
where
Q=V—46.
In the integral dS-the element of the field-figure, is expressed 1n
a-units. The integration has to be extended over' the domain within a
certain closed surface 6; x is a positive constant.

§ 33. When we pass from the system of coordinates z,,....z, to
another, the value of G proves to remain unaltered, it is a scalar quantity.
This may be verified by first proving that the quantiies (i%, /m)
form a covariant tensor of the fourth order?). Next, (¢*)) being a
contravarant tensor of the second order®), we can deduce from (40)
that (Gi,) 1s a covariant tensor of the same order?®). According to
(41) & is then a scalar. The same is true®) for Qd S.

We remark that gi, = ¢a:®) and gas e = garer- We shall sappose
Q to be wutten in such a way that its form is not altered by
interchanging ¢, and g’ab or gasf. and gayer. If originally this condi-
tion is not fulfilled it is easy to pass to a “symmetrical” form of
this kind.

It is clear that @ may also be expressed 1n the quantities g# and
their first and second derivatives and in the same way in the go¥’s
and first and second derivatives of these quantities.

If the necessary substitutions are executed with due care, these
new forms of @ will also be symmetrical.

§ 34. We shall first expi'ess the quantity @ in the gq’s and thewr

1) This means that the transformation formulae for these quantities have the form
(FhIm)' = 2 (abee) papukPelPen (abice)
See for the notations used here and for some others to be used later on my
communication in Zittingsverslag Akad Amsterdam 28 (1915), p. 1073 (translated
in Proceedings Amsterdam 19 (1916), p. 781). In referring to the equations and
the articles of this paper I shall add the indication 1915.
2) Namely:
gr == (ab) a, 7wp19°°.
The symbol (gkl) denotes the complex of all the quantities g¥l,
8) Namely :
- ? Gom=2 (ab) Par Pom G
4) On account of the relation _
V——-g' dS’:V:; das.

5) Similarly: s
gba — gab, gba — Sab
1%
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derivatives and we shall determine the variation it undergoes by
arbitrarily chosen variations dgas, these latter being continuous functions
of the coordinates. We have evidently i

Q 0Q
f abe 2 b —— d efe
Sy et & = (@) 5o e

—

0Q = Z(ad) é;Q— dgar + Z(abe)
By means of the equations

0 0

dgab,ef——— 5‘ dngab . and dgab e — ‘a—‘ dgap
v Oy &g

this may be decomposed into two parts

N Q=6,Q+dQ . . - . . . . (42

namely ,
Q BQ = 02
=3 ()5~ — e
1= @) 22 _x( o T = 5 egwb (43)
0, Q=2 (ab (a d = bf)—»—(an
, Q= 2 (abe) — 3z, d9a, gab | + < (abe aﬂ/f agab,ef Jab, e

)
- —_—
X (abef) 5 {amf (agab,ef) d"gaz,g. Co . (44)

The last equation shows that

fd,QdS::O e . (4B)

it the variations 0g,, and their fixst derivativ es vanish at the boundary
of the domain of integration.

§ 35. Equations of ,the same form may .also be found if Q is

expressed in one of the two other ways mentioned in § 33. If e.g.”

we work with the quantities g2 we shall find

z (9Q) = (d,Q) + (4, Q)
where (4,Q) and (d,Q) are directly found from (43) and (44) by
1eplacmg Jabs Jabes Jabfs yar aNd dges. etc. by geb, gabe, ete. If the
variations chosen in the two cases correspond to each other we-
shall have of course

(0Q) = dQ.
Moreover we can show that the equalities
(6,Q) = d,Q, (0,Q) = 4,Q, .

exist separately. ?) /

1) Suppose that at the boundary of the domain of integration 3gus = 0 and
3gabe = 0. Then we have also 3920 =0 and Jgabe =0, so that

\f(d,Q)dSz 0, fd,Q‘dS—_: 0

and from
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The decomposition of d€) into two parts is therefore the same,
whether we use gqs, g% or g ‘

It is further of importance that when the system of coordinates
is changed, mnot only JQdS is an invariant, bul that this is also
the case with d,QdS and d,QdS separately.*) -

We have therefore

) e 9 L e

—q —y

§ 36. For the calculation of d, we shall suppose @ to be
expressed in the quantities 3*® and their derivatives. Therefore
(comp. (43)

0.Q=3 (ab) My dge>, . . . . . . (47
if we put
0Q 0 0Q 0* 0Q
a—_’gg—z(e)a—mgw-i-z‘(ef)mw

Now we can show that the quantities My ave exactly the
quantities Gy defined by (40). To this effect we may use the
following considerations.

Moy =

1
We know that ( Y g“b) is a contravariant tensor of the second
—9

- ﬁdQ) dS = | dQ dS _
we infer ) -
f(dl Q) dS = | 0,Qds.

As this must hold for every choice of the variations 3gab (by which choice the
variations 3qeb are determined too) we must have at each point of the field-figure
(d1 Q) - de

%) This may be made clear by a reasoning similar to that used in the preceding note.
We again suppose 3gab and 3gabe to be zero at the boundary of the domamn of
integration. Then 3¢’ab and J¢’ad,e vanish too at the boundary, so that

fd,Q’dS’:O , fd,QdS:O.
Jf Qds = f 6Qds

we may therefore conclude that

) f ¢,Qds' = f 9,d8.

As this must hold for arbitrarily chosen variations 3gab we have the equation

J,QdS = d,QdS.

From
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order. From this we can deduce that ——__dgﬂb) is also such a
—g v
tensor.
Writing for it e we find according to (46) and (47) that
2 (ab) Myp gob ™

is a scalar for every choice of (s%).
This involves that (M,s) is a covariant tensor of the second order
and as the same is true for (G,5) we must prove the equation
Hab — Gab
only for one special choice of coordinates.

§ 37. Now this choice can be made in such a way that at the
point P of the field-tigureg,, =¢,, =9y =—1.9,=+1, 986 =0
for a=|=06 and that moreover all first derivatives gas, vanish. If
then the values gus at a point () near P are developed in series
of ascending powers of the differences of coordinates @q (Q) — x4 (P)
the terms directly following the constant ones will be of the second

order. It is with these terms that we are concerned in the calcula-:

tion both of M, and of G, for the ’point P. As in the results
the coefficients of these terms occur to the first power only, it is
sufficient to show that each of the above mentioned terms separately
contributes the same value to Mas and to Gas.

From these considerations we may conclude that

0,Q==(ad) Gepdg® . . . . . . . (48

Expressions containing instead of dg® either the variations dgab
or dges might be derived from this by using the relations between
the different variations. Of these we shall only mention the formula

ab 1 gab
dg o ‘/—___ SCLI) -_ — 2 (Cd) gcd dSCd . . . (49)

—g 2 V——g

§ 38. In connexion with what precedes we here insert a con-
sidevation the purpose of which will be evident later on. ILet the
infinitely small quantity § be'an arbitrarily chosen continuous funec-
tion of the coordinates and let the variations dg,, be defined by
the condition that at some point P the quantities g, have afier the
change the values which existed bgfore the change at the point @,
to which P is shifted when 2; is diminished by §, while the three
olher coordinates are left constant. Then we have

d:9al:: = — gJab,h g
and similar formulae for the variations dgeb.
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If for d,Q and d,Q the expressions (48) and (44) are taken, the

equation ’
dQ—d,Q=dQ. . . . . . . . (50
is an identity for every choice of the variations. - {

It will likewise be so in the special case considered and we shall
also come to an identity if in (50) the terms with the derivatives
of & are omitted while those W1th § itself are preserved.

When this is done d@Q reduces to

0Q
_mg
and, taking-into consideration (44) and (48), we find after division
by §
0Q 0Q 0 / 0Q
—— 4+ 2 3" ga a
a + (abe) e(agab,eg b’h) + z(abef) a»’” (agab feg b’fh)
0 {-0 0Q
—_ N -2 — ab,h
= (abef) 5o a«’”f(agab, ef) Jab,hp = — = (ab)Gasg . (5]
In the second term of (44) we have interchanged here the indices
¢ and f.
If for shortness’ sake we put, for e=j=1~2
e 0Q 0Q 0 / 0Q
— ab,h Z(ab — Ja o a 2
8, E(ab)agab ~Jab + > (e f)(-j gan, 7S E(“bf)aw,(a oo e)g 5,H(52)
and for e="%
h— Q 0Q
$i=—0Q+ E(Gb) gab r+ E(abf) o Jabfh—
0Q
— Z(abf) — abhy  » o« o+ o« . (D3
> (abdf) 527 (agab,hf)y b, (53)
we may write B
08%
2()63’ = 3 (ab) Gas 9% . . . . . (54)

The set of quantities 8; will be called the complex ¢ and the set
of the four quantities which stand on the left hand side of (54) in
the cases h=1, 2, 3, 4, the diwvergency of the complex.’) It will
be denoted by diw 8 and each of the four quantities separately by
div, 8.

The equation therefore becomes

divig=— Z(@)Gar gt . . . . . . (5B)

1) EmsteN uses the word “divergency” in a somewhat different sense. It seemed
desirable however to have a name for the left hand side of (54) and it was diffi-
cult to find a better one,
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If we take other coordinates the right hand side of this equation
is transformed according to a formula which can be found easily.
Hence we can also write down the transformation formula for the
left hand side. It is as follows
d'18' = p E(m)pmpdivad — QZ(a)pah%% + 2pZ(abo)parc 8¢ Gy . (86)

§ 39. We shall now consider a second complex 8, the com-
ponents of which are defined by

geop = — G2 (a)g% gar + 2= (@)% G . . . (37)

Taking also the divergency of this complex we find that the

difference -
div'p8'o — p = (m)pmp divado \
has just the value which we can deduce from (56) for the corre-
sponding difference
div'y 8'— p = (mn)pppdivnd
It is thus seen that
div'38'—div'18'o = p =2 (M)pur(divns — divnso)

and that we have therefore

div8=divd . . . . . . . . (58
for all systems of coordinates as soon as this is the case for one
system.

Now a direct calculation starting from (52), (53) and (57) teaches
us that the terms with the highest derivatives of the quantities
gab, (viz. those of the third order) are the same in div; 8 and div; 8,.
Further it is evident that in the system of coordinates introduced in
§ 37 these terms with the third derivatives are the only ones. This
proves the general validity of equation (58) It is especially to be
noticed that if 8 and 8, are determined by (52), (53) and (57) and
if the function defined in § 32 is taken for (7, the relation is an
identity. ‘ .

§ 40. We shall now derive the differential equations for the
gravitation field, first for the case of an electromagnetic system. ')
For the part of the principal function belonging to it we write

deS,

where L is defined by (35) (1915). From I we can derive the
stresses, the momenta, the energy-current and the energy of the

1) This has also been done by DE DoNDER, Zittingsverslag Akad. Amsterdam,
25 (1916), p. 153.

™~ -
,’.‘%l, t 7
a0y,

3
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electromagnetic system; for this purpose we must use the equations
(45) and (46) (1915) or in EmsTEIN’s notation, which we shall follow
here, )
¢e=—L+4+ T @V Wyer . . . . . . (89
[ a’=l:c ac
/
Th= ? @Y, e . . . . . .. (60)
a=|=c¢
The set of quantities I> might be called the stress-energy-complex
(comp. § 38). As for a change of the system of coordinates the
transformation formulae for € are similar to those by which tensors
are defined, we can also speak of the stress-energy-fensor. We have
namely

- 1 3 1 !
V—g V=g ( )Z{c Tk

and for b=|=c

§ 41. The equations for the gravitation field are now obtained
(comp. §§ 13 and 14, 1915) from the condition that

o@des_;-% des_—_o L. (Y

for all variations dg,; which vanish at the boundary of the field
of integration together with their first derivatives. The index ¥ in
the first term indicates that in the variation of L the quantities yq,
must be kept constant.

If we suppose L to be expressed in the quantities ¢°° and if (42),
(45) and (48) are taken into consideration, we find from (61) that
at each point of the field-figure

oL 1
S(eb) (59—,,;)#69"6 LS Gah=0 . . ()
If now in the first term we put

1) The notations ¥, ¥, and ¥}, (see (27), (29) and § 11, 1915), will however

be preserved though they do not correspond to those of EmwsTem. As to
formulae (59) and (60) it is to be understood that if p and ¢ are two of the
numbers 1, 2, 8, 4, p’ and ¢’ denote the other two in such a way that the order
p ¢ » ¢ is obtained from | 2 3 4 by an even number of permutations of two
ciphers.

If %, 2, @3, %, are replaced by z, ¥, 2, ¢ and if for the stresses the usual
notations Xz, Xy, etc., are used (so that e.g. for a surface element de perpendicular
to the axis of x, X is the first component of the force per unit of swface which
the part of the system situated on the positive side of ds exerts on the opposite
part) then %;!= Xa, $;° = Xy, etc. Further —%;%, —%p*%, — T3* are the components
of the momentum per unit of volume and %,1, %,% T,3 the components of the
energy-current. Finally &4 is the energy per unit of volume.
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LY - -
(W)¢=§V_9Tab, e e £63)

and if for dge® the value (49) is substituted, this term becomes
1 5 (ab) Tap d3% — 1 3 (abed) g gog Tai dged,
or if in the latter summation @, 6 is interchanged with ¢; d and if

the quantity '
T=Z(d)ygdTeg . . . _. . . (64

!

is introduced, N

3 Z (ab) (Tas — 4 gab T) dgh.
Finally, putting equal to zero the coefficient of each d3® we
find from (62) the differential equation required
Gav=—2(Tat—39asT) . - . . + . (65)
This is of the same form as EmsteiN’s field equations, but to see
that the formulae really correspond to each other it remains to
show that the quantities T,y and $5 defined by (63), (59) and (60)
are connected by EinsteIN’s formulae

. V=V 5@ g Tee - - . . . . (66)

We must have therefore ) -

L
2 2(a) goc (a ) =—L4+ Z(@etPyr . -~ . (67)
ag“f " a=|=¢

and for b==c

« -

oL . .
2 Z(a) got (a ac) = Z (@Y Paer . . . . (68)
97 /¢

a=j=c

§ 42. This can be tested in the following way. The function L
(comp. § 9, 1915) is a homogeneous quadratic function of the Wgs’s
and when differentiated with respect to these variables it gives the

quantities Wqs. It may therefore also be regarded as a homogeneous
quadratic function of the Wgs. From (35), (29) and (32)1), 1915 we
find therefore .

L =3V=g Z (pgrs) (g7 g% — g7 g") pg Wrs - - - (69)
Now we can also differentiate with respect to the g"”’s, while not
the wu’s but the guantities W, are kept constant, and we have e.g.

(BL . oL
o)y (W)Ta'
According to (69) one part of the latter differential coefficient is

1) The quantities y,, in that equation are the same as those which are now
denoted by gsb.

-10 -
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obtained by differentiating the factor V'—g¢ only and the other part
by keeping this factor constant.
For the calculation of the first of these parts we can use the
relation
§Blog(l/::q-) .
) OJgac -
and for the second part we find

V=9 2 (pg) 972 Wep Weg-
_If (32) 1915 is used (67) and (68) finally become

> (q) ‘chlﬁq + = (a) Wazlpa’c’ = 2L,

a=|=¢

~$gace - o o o o . (70)

S (g) Weog Wig + Z(@bah Y = 0.
a=}=c

These equations are really fulfilled. This is evident from : 9., = 0,
Wag = 0, Pso = — Wep and P, = — Pgs; besides, the meaning of Wjs -
(¢ 14, 1915) and equation (35) 1915 must be taken into consideration.

§ 43. In nearly the same way we can freat the gravitation field
of a system of incoherent material points; here the quantities w,
and u, (§§ 4 and 5, 1915) play a similar part as wes and ¢g in
what precedes. To consider a more general case we can suppose
“molecular forces” to act between the material points (which we
assume to be equal to each other); in such a way thatin ordinary
mechanics we should ascribe to the system a potential energy
depending on the density only. Conforming to this we shall add
to the Lagrangian function L (§ 4, 1915) a term which is some
function of the density of the matter at the point P of the field-
figure, such as that density is when by a transformation the matter
at that point has been brought to rest. This can also be expressed
as follows. Let do be an infinitely small three-dimensional extension
expressed in natural units, which at the point P is perpendicular to
the world-line passing through that poir;t, and ¢do the number of
points where do intersects world-lines. The contribution of an element
of the field-figure to the principal function will then be found by
multiplying the magnitude of that element expressed in natural units
by a function of . Further calculation teaches us that the term
to be added to L must have the form

!/qcp(—‘/—%).......(n)

n

-11 -



12

where P is given by (15) 1915. As the Lagrangian function defined
by (11) 1915 equally falls under this form and also the sum of this
function and the new term, the expression (71) may be regarded as the
total function L. The function ¢ may be left indeterminate. If now
with this function the calculations of §§ 5 and 6, 1915 are repeated,
we find the components of the stx'éss-enel'gy-tenspl* of the matter.

The equations for the gravitation field again take the form (65).
o5 15 defined by an equation of the form (63), where on the left
hand side we must differentiate while the w,’s are kept constant.
Relation (66) can again be verified without difflculty.

We shall not, however, dwell upon this, asthe following consider-
ations are more general and apply e.z. also to systems of material
points that are anisotropic as regards the configuration and the
molecular actions. .

§ 44. At any point P of the field-figure the Lagrangian function
L will evidently be determmed by the course and the mutual
situation of the world-lines of the matemal points in the neighbour-
hood of P. This leads to the assumption that for constant g,s’s the
variation JL is a homogeuneous linear function of the virtual dis-
placements dz, of the material points and of the differential coefficients

00z,
05

these last quantities evidently determining the deformation of an
infinitestmal pari of the figure formed by the world-lines ?).
The calculation becomes most simple, 1if we put
L=y —gH . . . . . . . . (1%
and for constant gas’s
0dx
SH=3 (a) Usdira+3 (ab) V) b
&5
Considerations corresponding exactly to tbose mentioned in §§ 4
—6, 1915, now lead to the equations of motion and to the follow-
ing expressions for the components of the stress-energy-tensor

C=—L—_py—gV. . . ... (19

c

(73)

and for b==c
o g Y (4

[

The differential equations again take the form (65) if the quantities
Ty are defined by

1) In the cases considered in § 43, 3L can indeed be represented in this way.

-12 -

~
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g oL
- W)’_l‘/ 9Taby

in the differentiation on the left hand side the coordinates of the
material points are kept constant. To show that T, and T2 satisfy
equation (66) we must now show that

—L -y =230 (5
¢ agac %
and for b==¢
— Y —y Vb=22(a)gab(aL>
¢ agac =

If here the value (72) 1s substituted for L and if (70) is taken
into account, these equations say that for all values of & and ¢ we
must have

22(a)gab(aaﬂ)+ Vi=0 . . . . . (16

9“6

Now this relation immediately follows from a condition, to which
L must be subjected at any rate, viz. that LdS is a scalar quantity.
This involves that in a definite case we must find for I always
the same value whatever be the choice of coordinates.

§ 45. Let us suppose that instead of only one coordinate 2, a
new one x,/ has been introduced, which differs mﬁmtely little from
&, with the restriction that if

dle = we + &
the term §, depends on the coordinate ; only and is zeto at the
point in question of the field-figure. The quantities g2 then take
other values and in the new system of coordinates the world-lines
of the material points will have a slightly changed course.

By each of these circumstances separately A would change, but
all together must leave it unaltered. As to the first change we
remark that, according to the transformation formula for go°, the

variation dg*® vanishes when the two indices are different from ¢, while
£

0s.
docc — 2qcb S _
7= Sy

-

and for @ —=|=¢

08,
, Oay
The change of H due to these variations is

dgac = dg¢ — g“ab

b§c = (a) gob

6

LA

-13 -
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Further, in the new system of coordinates the figure formed by
the world-lines differs from that figure in the old system by the
variation dz, = § which is a funetion of @ only. Therefore accord-
ing to (73) the second variation of H is

0%,

Vb

N aa’b -

By putting equal to zero the sum of this’ explessmn and the
preceding one we obtain (76).

§ 46. We have thus deduced for some cases the equations of
the gravitation field from the variation theorem. Probably this can
also be done for thermodynamic systems, if the Lagrangian function
is properly chosen in connexion with the thermodynamie functions,
entropy and free energy. But as soon as we are concerned with
irreversible phenomena, when e.g. the energy-current consists in a
conduction of heat, the variation principle cannot be applied. We
shall then be obliged to take KinsTEIN's field-equations as our point
of departure, unless, considering the motions of the individual atoms
or molecules, we succeed in treating these by means of the gene-
ralized principle of HamiLTON. .

§47. Finally we shall consider the stresses, the energy etc. which
belong to the gravitation field itself. The results will be the same
for all ‘the systems treated above, but we shall confine ourselves to
the case of §§44 and 45. We suppose certain external forces K, to
act on the material points, though we shall see that strictly speakmg
this is not allowed. .

For any displacements dz, of the matter and variations of the
gravitation field we first have the equation which summarizes what

we found above .

dL + — dQ -+ E(a)Kadva = V——g S(a)Uudzy +
+ Z(ah) 5 (l/—g Ve dig) — E(ab\—(l/—g V2) g -

—T— 2(ab) (@a—[));fg“b 4 o d,Q + ﬂ 6,Q + =(a) Koba.

In virtue of the equations of motion of the matter, the terms
with dz, cancel each other on the right hand side and similarly,
on account of the equations of the gravitation field, the terms with
dge® and J, Q. Thus we can write *) g

\

1) To make the notation agree with that of § 88 b has been replaced by e.

"\

-14 -
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S(@) Kbz, = — OL + Z(as) % (V=g Vg dzg) —zlx(dQ - 4,Q). '('77)

Let us now suppose that only the coordinate z; undergoes an

infinitely small change, which has the same value at all points of
the~field-figure. Let at the same time the system of values g, be
shifted everywhere in the divection of z, over the distance da.
The left hand side of the equation then becomes Kjdz, and we
have on the right hand side
JL—= — ?Ed'.'v/,, J9Q = — ~a£ day,.
Oz | Ozg -~
After dividing the- equation by dz; we may thus, according to
(74) and (75), write- )
— X 0%e = — div,&.
Oz,

By the same division we obtain from JQ—d,() the expression .

occurring on the left hand side of (51), which we have repre-

sented by .
A 08¢ B
S(e)— = divy8,

. oz,

where the complex 8 is defined by (52) and (53). If therefore we
introduce a new complex t which' differs from 8 only by the factor

~

1

— that

2x,sc? ha _ }
te——8%, . . . . . . . . (78)

we find - ’
K= —din® —divgt. . . . . . . (79

The form of this equation leads us to consider t as-the stress-
energy-complex of the gravitation field, just as T is the stress-energy-
tensor for the matter. We need not further explain ‘that for the
case Kj; =0 the four equations contained in (79) express the
conservation of momenfum and of energy for the total system, matter
and gravitation field taken together.

§48. To learn something about the nature of the stress-energy-
complex.+ we shall consider the stationary gravitation field caused
by a quantity of matter without motion and distributed symmetri-
cally around a point 0. In this problem it is eonvenient to introduce
for the three space coordinates x,, a,, 2,, (#, will represent the time)
“polar” coordinates. By &, we shall therefore denote a quantity r
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which is a measure for the ‘“distance” to the centre. As to z, and
x,, we shall put z, =cos9, 2, = ¢, after first having introduced
polar coordinates 9, ¢ (in such a way that the rectangular coor-
dinates are 7 cos9, 7 sin & cos ¢, sin & sinp). 1t can be proved that,
because of the symmetry about the centre, gu =0 for a =/=9,
while we may put for the quantities g,

w
' Jag="—"1u (1—"”1-)1 s =— — " 94 = W, (80)

I = — 1—-—.2/'12

where u, v, w are certain functions of r. Differentiations of these
functions will be 1epresented by accents.We now find that of the complex
t only the components ¢t t,° and t,* are different from zero. The
expressions found for them may be further simplified by properly
choosing r. If the distance to the centre O is measured by the
time the light requires to be propagated from O to the point in
question, we have w =wv. One then finds

uv'  wp"
—— 2 ——
( N )

1 u't u
r,=:_(—2v+ + ) 1)

e —(——&v—————}—2" —)

§ 49. We must assume that in the gravitation fields really exigting
the quantities gos have values differing very little from those which
be]ong to a field without gravitation. In this latter we should have

u = 7, v=w=1,
and thus we put now
=17 (1 4 ), v=—=w=1+n,
where the quantities u and » which depend on r are infinitely small,
say of the first order, and their derivatives too. Neglecting quantities
of the second order we find from (81)

1
= 5; (2 + ZM + 67‘(1’ + 2r*u "o gt u)

1
=_—@—r+ ' - '),

1
(= o Gy — 2v + 6ru' + 207" 4 »B"),

For our degree of approximation we may suppose that of the
quantities T,; only T,, differs from 0. If we put
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Ty=¢ye « « « « o v .. (82)
a quantity which depends on # and which we shall assume to be
zero ouiside a certain sphere, we find from the field equations

r 7 H
2 (dr (| 1 }2
[I3==F" el vl I gdr—-;[w odr —|—f¢=gd7's,
0 0 0 @
? ?
1
v —~fr’gd¢+fr9dr‘.
r
0 @

We thus obtain

? ?
1 1 1 L 'S !
t,! :——+ffrgdr——-fr*gdr— Yo%, . . . . (83)
® P
w 0
, . 7’2

(=0, ti=—1rg . . . . . . (84)

§ 50. If first we leave aside the first term of t,', which would
also exist if no attracting matter were present, it 1s remarkable
that the gravitation constant  does not occur wn the stress t,', nor
in the energy ¢t the same would have been found i1f we had
used other coordinates. This constitutes an important difference
between EINsTEIN’s theory and other theories in which attracting or
repulsing forces are reduced to “field actions”. The pulsating spheres
of BikRkNES e.g. are subjected to forces which, for a given motion,
are proportional to the density of the fluid in which they are imbedded;
and the changes of pressure and the energy in that fluid are likewise
proportional to ths density. In this case we shall therefore ascribe
to the stress-energy-complex values proportional to the intensity of
the actions which we want to explain. In EINsTEIN’s theory such a
proportionality does not exist. The value of t* 15 of the same order
of magmtude as Z,* in the matter. To our degree of approximation
we find namely from (82) T,*=r'.

§ 51. If we had not worked with polar coordinates but with
rectangular coordinates we should have had to put for the field
without gravitation ¢,, = ¢,, = ¢,, =—1, 9,, = 1, gas = 0 for a == b.
Then we should have found zero for all the components of the complex.
In the system of coordinates used above we found for the field

1
without gravitation t,* = —; this 15 due to the complex ¢ being no
®

tensor. If 1t were, the quantities t,* would be zero in every system
ot coordinates if they had that value 1n one system.
A 2
Proceedings Royal Acad. Amsterdam Vol. XX.

~
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"It is also remarkable that in real cases the first term in (83)
can be much larger than the following ones. If we consider e.g.
a point P outside the attracting sphere, we can prove that the
ratio of the first term to the third is of the same order as the
ratio of the square of the velocity of light to the square of the
velocity with which a material point can describe a circular orbit
passing through P.

The following must also be noticed. In the system of polar coor-
dinates used above there will exist in the field without gravitation

1
the stress ;' = —. If a stress of this magnitude were produced by
%

means of actions which give rise-te-a sfress-energy-fensor, the passage
to-~recfangular coordinates would give us-a stress which becomes
infinite at the pomnt O. In those coordinates we should namely have
gn’d 1
tl—= —
1

- r %

§ 52. Evidently it would be more satisfactory if we could ascrbe
a stress-energy-tensor to the gravitation field. Now this can really
be done. Indeed, the guantities 8¢, determined by (57) form a tensor
and according to (58), (79) may be replaced by .

) Ky= —din, T —divgto, . . . . . . (89)
if t, 15 defined by a relation similar to (78), viz.
e 1 .
=g 8k« - . o . . . (86)

Equation (85) shows that, just as well as t¢, we may consider the
quantities e, ag the stresses etc. in the gravitation field. This way
of interpretation is very simple. With a view to (41) we can namely
derive from the equations for the gravitation field (65)

T G ==xT

and ~

isal 1 -~

Top=— ; (Gab—§ gabG)» ’

Further we find from (66)
. 1 - 1
sh = '2_,‘ GE(“)Baegah - —““ E(a)é}“eGah
and from (57) and (86)
th=—%h - - . . . . . . (87

At every point of the field-figure the components of the stress-
energy-tensor of the gravitation field would therefore be equal to

~

&
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the corresponding quantities for the matter or the electro-magnetic
system with the opposite sign. It 1s obvious that by this the condi-
tion of the conservation of momentum and energy for the whole
system would be immediately fulfilled. It was in fact this circum-
stance that made me think of the tensor {, = — . The way in
which 8, was introduced in §§ 38 and 39 has only been chosen in
order to lay stress on (58) being an identity, so that equation (85)
is but another form of (79).

At first sight the relations (87) and the conception to which they
have led, may look somewhat startling. According toit we shounld have
to imagine that behind the directly observable world with its stresses,
energy ete. therve is hidden the gravitation field with stresses, energy
etc. that are everywhere equal and opposite to the former; evidently
this is in agreement with the interchange of momentum and energy
which accompanies the action of gravitation. On the way of a light-,
beam e.g. there would be everywhere in the gravitation field an
energy current equal and opposite to the one existing in the beam. If
we remember .that this hidden energy-current can be fully described
mathematically by the quantities g.; and that only the interchange
just mentioned makes it perceptible to us, this mode of viewing
the phenomena™ does not seem unacceptable. At all events we are
foreibly led to 1t if we want to preserve the advantage of a stress-
energy-tensor also for the gravitation field. It can namely be shown
that a tensor which is transformed in the same way as the tensor
t, defined by (57) and (86) and which in every system of coor-
dinates has the same divergency as the latter, must coincide with t,.

Finally we may vemark that (78), (86), (58), (87) give

dvt=divt, = —div T,
so that we have, both from (79) and from (85), £, =0.

The question is this, that, so long as the-gravitation field 1s con-
sidered as given, we may introduce ‘“‘external” forces, but that m
the equations for the gravitation field itself we must also take into
consideration the stress-energy-tensor of the system by which those
forces are exerted.

Yk
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