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Physics. - "On EINSTEIN'S ~ T1w07'Y oJ g1'avitation". Ul. By Prof. 

H. A. L-URENTZ. 

, 
(Communicated in the meeting of April 19] 6.) 1) 

§ 32. In the two \ preceding papers 2) we have tried so far as 
possible to present the fundamentat princlples of the new gravitation 
theory in a simple form. 

We shall now sbow how EINSTEIN'S differential equations for the 
gl'a:vitation field can be derived from HAMJJ.TON'§.. principle. In this_ 
ronnexion we shall al~o have to consid~r tbe enel'gy, the stres&es, 
momenta and energy-currents in that field. 

We shall again intl'oduce the quanhties gab fOl'merly used and we 
shall also use the "inverse" system of qllantities for which we shall 
now write gab. It is found usefnl to intl'oduce besldes these the 
quanhties 

"ab = V g gtlb. 

DIfferentlal coefficients of all these variables with respect to the 
coordinates wiU be repl'esented bJ the indices belonging to these 
lattQr, e.g. 

ogab o2gab 
gab,p = -~ - , gab,pq = ~. 

u:vp UlVqUlVp 

We shall use CHRISTOI!'FEL'S symbols 

[acb] = i (ga:. b + gbc, a - gab, c) 

and RIEMANN'S symbol 

(ik,'lm) = t (gUII, kl + gkl,1II1 - gtl, km - gkm, iI) + 

Fm'ther we put 

GIm = ~ (kl) gkl(ik, lm). • 

G = ~ (im) gim Gun . • 

(40) 

(41) 

This latter quantity is a measme for the CUl'vature of the field­
figul'e. The principal function of' the gravitation field is 

1) Published September 1916, arevision having been found desÎl'able. 

2) See Proceedings Vol. XIX, p. 1341 and 1354. 
I 

. , 
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whel'e 

Q= V-gG. 
In the integral dS,- the element of the field-figure, is expressed m 
,v-units. The integration has to be extended over' the domain within a 
certain rlosed surface (J ~ " is a positl ve constant. 

§ 33. Wben we pass from the system of coordinátes x., .... x4 to 
anothei', the val~e qfG pro vee; ,ta remaiu unaltel'ed, it is a scalar quamity. 
This may be vel'Îfied by first provmg that the quanhties (ik, lm) 
farm a C'ovarlant tensor of the fourth order 1). Next, (gkl) bemg a 
contra varIant tensOl; of the seeond order 2), we ean deduee from (40) 
that (GI1I1) IS a eoval'Ïant tensor of the same order 3). Aceordmg to 
("U) G je; then a scalar. The same is true 4) fOl' Q cl S. 

We l'emark that gba = gab 5) and gabJ'e = gab,ef. We shall suppose 
Q to be wntten in such a way (hat its farm is not altel'ed by 
intel'ehanging gba and ,qab or gabfe and gab,ef. If originally this eondl­
tión is not fulfilled it is easy to pass to a "symmetl'ical" farm óf 
this kind. 

It is clear' th at Q mayalso be expressed m the quan tities gab and 
their first and s~cond derivatives and in the same way in the gab's 

and fh"st and E>econd de1'ivatives of these quantities. 
If the necessary substitutions are execnted with due care, these 

new farms of Q will also be symmetrical. 

§ 34. We shall first expl'ess the quantity Q in the gab's and thel1' 

1) This means that the transformation fOlmulae for these quantities have the form 

(ik,lrn)' = .2 (abel') PatpbkPclPem (ab,ce) 
See for the notations used here and for -some others to be u!>ed latër on my 
commllntcation in Zittingsverslag Akad Amsterdam 28 (1915), p. 1073 (translated 
in Proceedings Amsterdam 19 (1916), p. 751). In referring to the equatJOns and 
the artJCles of this paper I shall add the indication 1915. 

2) Namely: 

g'kl=:S (ab) Halc 3lbl!lab. 

The symb61 (glei) denotes the complex of all the quantities gH. 

S) Namely: 

G'UII = .2 (ab) patPbm Gab, 

4) On account of the relatJOn "-
V _,q'dS'=V _gdS. 

Ii) Similarly: 

,\ 

1* 
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derivatÏ\'e~- and we shall determine the variation it undergoes by 
al'bitral'ily chosen mriations ógab, these latter being continuous functions 
of the coordin"ates. We have evidently 

aQ aQ aQ 
óQ = 2(ab) -a - Ógab + 2(abe) -a - Ógab,e + .2 (abel) -a - Ó,9ab ef. 

gab 9al>,e 9ab,ef 
By means of the equations 

a a 
ógab,ef= ~ ógab,e and Ógab,e = a ógab 

. ) u/v) lUe 

this may be decornp05ed into two parts 

óQ = óI Q + ó~ Q, . . • . . . J' (42) 
narnely 

I aQ 0 aQ 02 oQ \ 
ó1 Q=2(ab) a- -.2 (e)-a o--+:E(ej)-a ::. -0 -- (19ab.(43) 

9ab /Ve 9ab, e _ /VeulUf gah, ef 

dzQ=::B(abe)-aa (aaQ 
d9ab) + 2(abej)-aa (aa.Q Ó9ab,e)-

/Ve gab,e (lJf gah,ef 

- ::E(abej)-aa f_aa (a oQ )Ógab~' .... (44) 
/Ve (, iVf gab,ef ~ 

The last equation shows that 

Jó~QdS= 0 . . . . . . . . (45) 

if the val'iations dgab and iheir first derivati, es vanish at the boundary 
of the domain of integl'ation. 

§ 35. Equations of \ the same form may .also be found jf Q is 
expressed in one of the two other ways mentioned in § 33. If e.g.-.... 
we work with the qllantities gab we shall tind 

(óQ) = (dl Q) + (ó~Q), 
( 

w here (ól Q) and (d2 Q) are directly fOllnd ft'om (43) aud (44) by 
replarIng gab, ,gab,e, gab,ef' d!Jau and ógab,e etc. by gab, gab,e, etc. If tlJe 
val'Ïations chosen in the two cases rOl'l'espond to eaeh other we­
shall have of rOUl'se 

(óQ) = <fQ. 
Moreovel' we eau show that the eql1alities 

(dl Q) = dl Q, (ó~Q) = ó~Q, 
exist separately. 1) I 

1) Suppose that at the boundary of, the domain of integl'ation dYab == 0 and 
ógab,e = O. Then we have also ~qab = 0 and agab,c = 0, so that 

and from 
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Tbe deéomposition of óQ into two pa,rts is tberefore tbe same, 
wbetber we use gab, gab or gab. 

It is further of importance th at when the system of coordinates 
I 

is changed, not only dQclS is an invariant, buL that thi5 is also 
tbe case with ó1 QdS and ó2 QclS separately. 2) 

Webave therefore 

ólQ' ólQ 

V-g' -V g 
(46) 

§ 36. For the calculation of ó I Q we shall suppose Q to be 
expressed in the qnantities !lab and their derivatives. Therefore 
(comp. (43)) 

0l Q = ~ (ab) Mab dgab , (47) 
if we put 

aQ a aQ a2 aQ 
lvIab = - - ~ (e) - --+ ~(ef) ----a ia~ a'Ve ogab, e a,'IJeOXf ogab, ef 

Now we can show that the qnantities Mab are exactly the 
quantities Gab defined by (40). To this effect we may use the 
following considerations. 

We know th at ( 1 gab) is a contravariant tensor of the second 
V-g 

, f oQ) dS JÓQ dB , 

we infer .. 
j(oIQ)dS jÓ1 Q dS. 

As this mu!:.t hold for every choice of the variations Jgab (by which choice the 
variations Jqab are determined too) we must have at each point of the field-figure 

(ó1 Q) = °IQ 
2) This may be made clear by a reasoning similar to that used in tbe preceding note. 

We again suppose Jgab and !gab,e to be zero at the boundary of tllP domam of 
integration. Then Jg' ab and ag' ab,e vanisb too at the boundary, so that 

f ó2Q'dS' = 0 , f 02QdS= O. 

From 

J óQ'dS' =J óQdS 

we may therefore conc1ude th at 

f 61 Q'dS' = f ol[.JdS .. 

As this must hold for arbitrarily chosen variations Jgab we have the equation 

01 Q' dB' = dl QdS. 
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order. From this we ean deduce that is also sueh a 

tenóor. 
Writing for it liab we find according to (46) and (47) that 

2 (ab) Mab li ab ~ 

is a scalar for every choice of (liab). 

This involves that (Mab) is a covariant tensor of the second order 
and as the same is trlle for (Gab) we must prove the equation 

.J.lIab = Gab 

only for one special choice of-coordinates. 

§ 37. Now this choice can be made in sueh á waJ that at the 
point P of the field-tigure gil = .qu = .qss = -1, g44 = + 1, gab = 0 
fol' a =1= band that moreover all. first derivatlves gah,e vanish. If 
then the values gab at a point Q near Pare deveJoped in series 
of ascending powers of the differences of coordinates .'Ca (Q) -.va (P) 
the terms drrectly following the constant ones wi1l be of the second 
order. It is wIth these terms that we ar~ concerned in the calcula-'( 
tion both of Mab and of Gab for the point P. As in the l'esults 
the eoefficients of these terms occnr to therfirst power only, ft is 
sutlicient to show that each of the above melltioned terms separately 
contrlbutes the same value to 1J1ab and to Gab. 

From these cönsiderations we may conclude th at 

ó l Q = 2(ab) Gab d'gab • • (48) 

Expressions rontaining instead of dgab either the yariations ógab 

or Ó,qab might be' derived froU! this by using the l'elations between 
the different variations. Of these we shall only mention the formula 

1 gab 
ógab = -= ógab - ~ (cd) fJcd ógcd •• (49) 

V -g 2V-g 

§ 38. In connexion with what pl'ecedes we here insert a con­
sideration1 the purpose of which wllL be evident later on. Let the 
intlnitely small quantity S be' an arbitrarily chosen continllOus func­
ti on of the cOOl'dinates and let the variations Ó,qab be defined by 
the condition th at at some point P the quantItieR gab have aftel' the 
change the values which existeu be/m'e the change at the point Q, 
to which P is shifted when XI! is diminished by S, while the three 
01her coordinates are left çonstant. Then we have 

ÓfJab = - gab,1! 6 
and similar fOl'mulae for the varÏations ógab • 

------------------------------------------~----------~-----------
-. 
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If for dl Q and d2 Q th~ expressions (48) and (44) are taken, the 
equation 

. . (50) 

is an identity for every choice of the variations. ' 
It will likewise be so in the special case considered and we shall 

also come to an identity if i.tt (50) the terms with the deri~atives 
of gare omitted while those with 6 itbelf are preserved. , 

Wh en this is done 0 Q reduces to 

_ aQ~ 
aO:A 

and, taking-into consideration (44) and (48), we_find aftel' division 
by g 

-aa~ +2(flbe)-aa (aaQ 9ab'h) + k(abef)-aa (-a~9ab,fh)-
.VI! {Ce 9ab,e {Ce 9ab,fe 

-~(abef) aa. I"aa (a aQ ) flab,h I = - ~ (ab)'Gabgab,h. (51) 
Xe I IVf 9ab, ef. \ 

In the second term of (44) .we have interchanged here the indices 
e and f. 

If for shortness' sake we put, for e =1= h 

e aQ aQ a ( aQ ) 
f5h= 2(ab)-a -9ab,Tt + 2(abf)-a -- 9ab,fh -2(abf)-a -a- 9tth,h(52) 

gab, e. gab, fe XI 9ah, er , 

and for e = lt 
li - aQ aQ 

13k = - Q + 2(ab) -a - 9ah,h + 2(abf) -a - gahfh--
9ah,h gab,fh 

- 2(abf) -aa (a aQ ) gah,h, .... (53) 
Xf 9ab, hf. 

we may wl'ite 

. (54) 

The set of quantities 13k will be called the complex 6 and the set 
of the four quantities which stand on the left hand si de of (54) in 
the cases h = 1, 2, 3, 4, the dive1YJency of the complex. l

) lt win 
be denoted by div 6 and each of the fonr quantities separately by 
divh 6. 

'rhe equation therefore becomes . 

divh13 = - 2(ab)Gab gah,h .... (55) 

1) EINSTEIN uses the word "divergency" in a somewhat different sen se. It seemed 
desirabIe however to have a name for the left hand side of (54) an,d it was diffi· 
cult to find a beUer one. 
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Tf we take oth~r coordinates the right hand side of this equation 
is transfol'med according to a formuJa which can be found éasily. 
Hence we ran aIso write down -the transformation fOl'mula fol' the 
Jeft hand side. It is as foUows 

div'fts' = p2(m)Pmltdiv11ls - Q2(a)pafta
ap + 2p2(abe)Pah c gbcGab. . (56) 
ma 

§ 39. We shall now consider a second complex 13 0 , the com­
ponents of which are defined by 

SeOh = - G2 (a)gae gah + 22 (a)gaeGah . (57) 

Taking also the dlvergency of this complex we find that the 
difference 

div'hS'O - P 2 (m)p11lh divmso 

has just the value which we can deduce from (56) for the corre­
sponding difference 

It is thus seen that 

div'h13'-div'fts'o = p2(m)p11lh(div11l5 - divlllso) 

and that we have therefol'e 

div ti = div tlo • • (58) 

for all systems of coordinates as soon as this is the case for one 
system. 

Now a direct calculation starting from l52), (53) and (57) teaches 
us that the terms with the highest derivatives of the quantities 
gah, (viz. those of the third order) are tlle same in divA 13 and divh 13 0 , 

Further it is evident that in the system of coordinates introduced in 
§ 37 these terms with the thil'd -derivatives are thc only ones. This 
proves the general validüy of equatIon (58) It is especially to be 
noticed that if ti and 50 are determined by (52), (53) and (57) and 
if the function defined in § 32 is taken for G, the l'elation is an 
identity. 

§ 40. We shall 1I0W derive the differential equations for the 
gravitation field, first for the case of an ele,ctromagnetic system. 1) 
For the pat't of the principal fllnction belonging to it we write 

JLdS, 
where L is defined by (35) (1915). Froni IJ we can del'Ïve the 
stresses, the momenta, the energy-cllrrent and the energy of the 

1) This has also been done by DE DONDER,' ZIttingsverslag Akad. Amsterdam, 
25 (1916), p. 153. 
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electrornagnetic system; for this lJlll'pOSe we must use the eql1ations 
(45) and (46) (1915) or in EINSTEIN'S notalion, WhlCh we shall follow 
here, 1) 

and for b =)= c 

:tc = - L + 1) (a) t/,* t/'a' C' 

c =\=c ac 
! 

(59) 

~b = 2 (a) t/'-b t/'a' c' 
, c a=\=c a 

(60) 

The set of qllantities :tc
h might be caIIed the stress-energy-complex 

(comp. § 38). As fol' a change of the system of coordinates the 
transformation formulae fol' ~ are slmilal' to those by which tensors 
are defined, we can also speak of the stress-energy-tens01'. We have 
namely 

1 'b 
---~ 
V-rl c 

§ 41. The equations fol' the gmvitation field are now obtained 
(comp. §§ 13 and 14, 1915) from the condition that , 

ö", J Ld S + L ö fQ d S = 0 . . " (61) 

fol' all variations ögab which vanish at the boundary of the field 
of integration together with theÏt' first derivatives. The index tp in 
the first term indicates that in the variation of L the quantities tPab 

must be kept constant. 
ff we suppose L to be exptessed in the quantities gab and if (42), 

(45) and (48) are taken into consideration, we fiod from (61) th at 
at each point of the fieId-figure 

2(ab) (aL) ögnb + ~ ."S(ab) Gab ögab = 0 (62) 
àgnb '" 2x 

lf now in the fil'st term we put 

1) The notations I!,. ab' "'ab and "'~b (see (27), (29) and § 11, 1915), wiII however 

be preserved though they do not correspond to those of EINSTEI:t-.. As to 
formulae (59) and (60) it is to be understood that if pand q are two ot the 
numbers ], 2, 3, 4, pi and q' denote the other two in sueh a way that the order 
p q pi q' is obtained from 1 2 3 4, by aD even number of permutations of two 
eiphers.-

If Xl' X2' xs, X4 are replaced by X, y, z, tand if for the stresses the lIsual 
notations Xx, X'I, ete.~ are used (so that e.g. for a surface element drr perpendicular 
to the axis of x, Xx is the first component of the force per unit of sm face which 
the part of the system situated on the positive side of d~ exerts on the opposite 
part) then ~11 = Xx, ~12,= X y, etc. ~'urther -~14, -~24, - ~é are the components 
of the momentum per unit of volume and ~ 1, ~42, ~4S the eomponents of the 
energy·eurrent. Finally ~44 is the energy per unit of volume. 
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(aL) - -
agab '1'= ~ V -g Tab, . '; (63) 

and if for ógab the value (49) is substituted, this term beeomes 

t:2 (ab) Tab ó!lab -t:2 (abcd) gab gcd Tab ógcd , 

or if in the latter summation a, b is interehanged with c; d and if 
the quantity 

T:::;::: :2 (cd) gcd Tcd • . (64) 

is introdueed, 
i I (ab) (Tab - 1 gab T) ógab. 

Finally, putting equal to zero the coefficient of each óJab we 
find from (62) the differential equation required 

Gab / -~(Tab-!gabT) . .•• .' . (65) 

This is of the same form as EINSTEIN'S field equations, but to see 
that the formulae really eOl'l'espond to earh other it remains to 
show th at the quantities Tab and ~cb defined by (63), (59) and (60) 
are conneeted by EINSTEIN'S formulae 

b V-~c = -g :2(a) gab T ae • (66) 

We mu&t have theref-ore 

2 :2(a) gae (aaL) = - L + 2 (a) ll':Xcl/Ja'e' 
gac 'I' a=/=c 

(67) 

and for b =/= c 

(aL) . 
2 2(a) gab -a = lJ (a) l~~b l/Ja'c' . . 

gae '" a=/=c 
. (68) 

~ 0:1:2. This ean be tested in the following way. The function L 
(cornp. ~ 9, 1915) is a homogeneous quadratie funetion of the l/Jaó's 
alld when differentiated with respect to these variables it gives the 

quantities ;Pab. It may therefore also be regarded as a homogeneOlls 

quàaratir 'fllnction of the "\Pab. From (35), (29) and (32) 1), 1915 we 
find therefore / 

L = i V -g lJ (pqTS) (gprg9 S - gqrgp~) l/Jpq t~/"s' • • (69) 

Now we can also differentiate wUh respect to the g'16'6, while not 

the l~ab 's but- the quantities tPaó are kept constant, and we have e.g. - / 

(:g:c)'f ~ (~:c)~' 
According to (69) one part of the latter differential coefficient is 

1) The qU1l:.ntities r ab in that equation are the same as those which are now 
denoted by gab. 
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obtained by differentiating the factor V g onIy and the other part 
,by keeping this factor constant. 

Fo)' the calculation of the first of these parts we can use the 
relation 

-alog(V g) 
a = -- t gac • gac 

and for the second part we find 

~ v=g ~ (pq) gPq lPap lPcq. 

If (32) 1915 is used (67) and (68) finally become 

~ (q) 'l/'cq'l/'cq + ::i (a) 'l/'a~'l/'a'c' = 2L, 
a=l=c 

~ (q) 'l/'cq 'l/'bq + .2(a)'l/'ab tf'a'c' = 0 . 
a=l=c 

. (70) 

These equations are really fulfilled. This is evident from : 'l/'aa = 0, 

lPaf.! = 0, 'l/'óa = - 'l/'aó and lPóa = - lPaó; besides, the meaning of 'l/'~ó -
(~ 1j, 1915) and equation (35) 1915 must be taken into consideration. 

~ 43. In nearly the same way we ('an tI'eat the gravitation field 
of a system of incoherent material points; here the quantities Wa 

and Ua (§§ 4 and 5, 1915) play a similar part as 'l/'aó and "'ab in 
what precedes. To consider a more general case we can suppose 
"molecular forces" to act bet ween the material points (which we 
assume to be equal to each other); in such a way that in ordinary 
mechanics we should ascribe to the system a potential energy 
depending on the density only. Conforming to this we shall add 
to the Lagrangian function L (§ 4, 1915) a term which is some 
function of the density of the matter at the point P of the field­
figure, such as that density is when by a tt'ansfol'mation the matter 
at th at point has been brought to rest. This can also be expressed 
as follows. Let d('j be an infinitely small three-dimensional extension 
expressed in natural units, which at the point P is perpendicnlar to 

the world-line passing through that poi~t, and Q d(J the number of 
points where da interse('ts world-lines. The ('ontribution of an element 
of the field-figure to the principal function will then be found by 
multiplying the magnitude of that element expl'essed in natural units 

by a function of Q. Further calc'ulation teaches us that the term 
to be added to L must have the form 

V-gcp(V
P 

) ....... (71) 
, g 

" 
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wh ere P is given by (15) 1915. As the Lagrangian functlon defined 
by (11) 1915 equally falls under th is fOl'm and a!so the su m of this 
functlOn and the new term, the expression (71) may be regarded as the 
total funetion L. The function cp may be left indetel'minate. If now 
,wIth this funetion the calculahons of §§ 5 and 6, 1915 are repeated, 
we find the components of the stl'éss-energy-tens,Pr of the matter. 

The equation& for the gravitation field agam take the form (65). 
Tab IS defined by fin equation of the form (63), where on the left 
hand SI de we must clifferentiate while the wa's are kept constant. "­
Relation (66) can again be verified WIthout dlffleulty. 

We shall not, however, dweIl upon this, as the following eonsider­
ations are more general and apply e.g. also to systems of material 
points that fire anisotropic as regards the configurahon and the 
molecular actions. 

v 

§ 44. At any point P of the field-figure the Lagrangian function 
IJ will evidently be determmed by the course and the mutual 
sltuatlOn of the worId-lines of the materla! points in the neighbour­
hood of P. ThlS leads to the assumption that for constant gah 'R the 
variation dL is a homogeneous linear function of the virtual dlS­
placemen t8 dXa of the material points and of the differen tia! coefficien ts 

odxa 

i),'lJb ' 

these last quantIties evidently determming the defol'mation of an 
infiniteslmal part of the figul'e formed by the worId-lInes 1). 

The calculation beromes most simple. If we put 

L = V - gH ., .... (72) 

and for constant ,qab 's 

b od,'lJa 
~H =~ (a) Ua (~,lJa +2 (ab) Va -;:. - (73) 

lJ,'lJb 

Considerations correspondmg exactly to tbose menhoned in §§ 4 
-6, 1915, now lead to the equahons of motIOn and to the follow­
ing expressions for the eomponents of the stress-enel'gy-tensol' 

~~ = - L - V -g V: . (74) 

and fol' b =1= c 
~~= - V=--gV; . (75) 

The dlfferential equations aga.in take the form (65) If the quantities 
Tab are defined by 

1) In the cases consldered in § 43, ~L can indeed be represented In th IS way. 
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\ (:g~h)X=! V -g Tab; 

in the differentiation on the left hand side the coordinates of the 
material points are kept comtant, To show that Tah and r:tch satisfy 
equation (66) we must now show th at 

- c (aL) - L - V -g v = 2 2 (a) gac -
c agae x 

and for b =1= c 

- h (aL) - V-g v = 2 ::E (a)gab -::\-
c ug ClC x 

If here the valne (72) IS substituted for Land if (70) is taken 
into account, these equations say th at for all values of band c we 
must have 

(aH) b 2 .2 (a) gab ::\- + V = 0 
ugllC X C 

, (76) 

Now this relation immediately follows from a condition, to which 
L must be subjected at any rate, viz, that LdS is a scalar quantity, 
This involves that m a definite case we must find for H always 
the same value whatever be the choice of coordinates, 

§ 45, Let us suppose that instead of only one coordinate Xc a 
new one .'rc' has been intl'oduced, which differs infinitely little from 
Xc, with the restrH~tion that if 

tIJIC = tlJc + ge 
the tel'm §~ depends on the cool'dinate Xh only and is zelO at the 
point in question of the field-figure, The quantities gab then t~ke 

other values and In the new system of coordmates the world-lines 
of the matel'ial pOll1ts wiII have a slightly changed course, 

Byeach of these circumstanres sepal'ately H would change, put 
all togethel' must leave it unaltered. As to the first change ,we 
l'emark that, according to the transformation formula for gah, the 
val'iation ógah vanishes whell the two indices a.re different from c, whiie 

and for a =I=c 

i 

aSe 
d,qec = 2geb -

a,Vb 

The change of H due to these variatIons is 

a~c (aH) 2 - :E (a) gab - , 
a.vb àgac It 
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Further, in the new system of coordinates the figure fOl'med by 
the world-lines difters from that figur~ in the old system by the 
variation oXe = ge which is a f'unctioll of Xó only, Thlwef'ore aréord­
ing to (73) the second variation of H is 

V b a~e .~ 
e aan, 

By putting equal to zero the sum of this' expression and the 
preceding one we obtain (76). 

§ 46. ,",ve have thus deduced for some cases the equations of 
the gl'avitation field from the val'iatio,n theorem. Pl'obably this can 
also be done fol' thm'modynamic systems, if the Lagl'angian function 
is properly chosen in connexion with the thermodynamic functions,­
entropy and free energy. But as soon as we are concel'ned with 
irreversib~e pheno.mena, when e.g. the enel'gy-current ronsists in a 
ronduction of heat, the variation principle cannot be applied. We 
shalt then be obliged to take ErNsTEIN'S field-equations as our point 
of departure, unIess, considering the motions of the individual atoms 
or molecules, we sue('eed in treating these by means of the gene­
ralized principle of HAMILTON. 

§ 47. Finally we shaH cèmsider the stresses, the eneî'gy etc. w hich 
belong to the gravitation field itself. The results will be the same 
for ~ll 'the systems treated above, but we shall confJne oUl'selves to 
the case of § § 44 and 45. We suppose certain external forces Ka to 
act on the material points, though we shall see that strictly speaking­
this is not allowed. 

For any displarementil óXa of the matter and variations of the 
gravitation field we first have the equation which summarizes what 
we found above 
- 1 ' 
dL 4- -óQ + 2(a)Kaó.'ca = V -g 2(a)UuóaJa + 

. 2" I 

a v- h a v-·~..b + 2(ab) ~( -g Va óaJa) - ~(ab) ~ ( -g Va) ÓaJa + 
vmó uaJb 

-+ ~(ab) (~Lb) ógaó + ~ Ól Q + ~ ó2 Q + ~(a) Kaóma. 
uga.c 2" 2" -

In virtue of the equations of motion of the matter, the terms 
with ó'xa cancel eaéh other on the l'ight hand side a.nd sll~ilal'ly" 
on account of the equations of the gravitat~on field, the terms with 
o~qaó and ä l Q. Thus we cao write I) 

\ 

1) To make the notation agree with that of § 38 b has hee~ replaced hy e. 
°l 

/ 
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a v- e 1 
2(a)Kaóxa = - óL + l:(ae) -a ( -g Va óxa) --(óQ - Ó~Q). (77) 

Xe 2~ 

Let us )lOW suppose that only the coordinate ,1'1t undergoes an 

infinitely small change, which has the same value at all points of 
thë--'fiefd-figure. Let at the same time the sJ stem of \'alues gab be 
shifted . every~here, !n the dit'ection of XIt over the distance (~x!t. 

The left hand side of the eq uation then becomes KMJX/t and we 
have on the I'ight ha~4 side 

aL aQ 
óL = - -a Ó.'1J/1l óQ = - -a óX/t. 

te/t • ,'lJh -

Aftel' dividing the· equation by (~x!t we may thl1s, arcOl'ding to 
(74) and (75), write. 

ai: e 
- IJ (e) _It = - div/i. 

a,'lJe 

By the same division we obtain from óQ-ó~ Q the expression . • 
occurring on the left hand side of (51), "'hich we have rept'e-
sented by \ 

\ a5lte • 
' .. 2,(e) aX

e 
= dWlds, 

, 
wh ere the complex 5 is defined by (52) and' (53). If thel'efore we 
introduce a new co'inplex t which' differs from S only by the factor 
1~ 

2~' so that I 

we find 

1 e 
te=-è, 

Tt 2~, ft 
. . (78) 

Kh = '- div{i -/divl;t. . . . (79) 

The form of this equation leads us to consider tas" the stress­
energy-complex of the gradtation field, just as ~ is the stress-eI1ergy­
tensor for the matter. We need not further explain 'that for the 
case Kit = 0 {he four equations contained in (79) express the 
conservation of momenlum and of energy for the total system, matter 
and gravit~.tion field taken together. 

§ 48. To leal'n something about the nature of the stl'ess-enel'gy­
com plex. t we shall cOllsider the stational'Y' gravitation field caused 
by a quantity of matter without motion and distl'ibutE'd symmetri­
cally around a point O. In this problem it is gönvënient to introdnce 
fol' the thl'ee space coordinates Xp ,'1.'2' :VS ' (x4 will represent the time) 
"POl~l'" coordiIlates. By ,1'3 we shall therefore denote a q lIantity l' 
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which is a mE'asure for the "distance" to the centre. As to Xl and 
.'1.'2' we shall put Xl = COS {Jo, IV2 = cp, aftel' fh'st having introduced 
polar coordmates {Jo, cp (in such a way thai the rertangular <'001'­

dinates are l' cos {Jo, l' sin ,90 cos (P, l' sin {Jo sin rp), lt can be proved that, 
berause of the symmetl'y about tbe centre, ,qah = 0 for a =/=b, 
while we may put for the quantities fJaa 

U 

911 = - -1--2 ' 922 = - U (l-x I
2
), 988 = - V, 944 = 'W, (80) 

-XI 

whel'e u, v, 'LV are certain functions of 1'. Differentiations of these 
functions wiIl be represented by acrents.We now find that ofthe complex 
t only the components ti \ t 8 3 and t/ are different from zero. The 
expressions found fol' theru may be further simplified by properly 
choosing r. If the di stance to the centre 0 is measured by !he 
tlme the light reql1ires to be propagated from 0 to the point in 
question, we h~ve 'LV = v. One then finds 

1 (U'2 UV'2 UV") I 
ril =- -- + 2tt"--+- I 

2x 2u v2 V 

1 ( . U'2 U't/) 
t.

3

=- -2v+-+- I \' 2x 2u V 

1 ( U'2 UV") t4
4 = - - 2v - - + 2u" + - . 

2x 2u V J 

. (81) 

§ 49. We must assume that in the gravitatlOn fields really exi~ting 
the quauhties gaó hare values differing vel'y little from those which 
belong to a field without gravitation. In this latter we shonld ha\'e 

U=T', v=w=l, 

and thus we put now 

tt = '1'2 (1 + [.t), v = w = 1 + v, 

Whel'e the quantlties ~t and v which dE>pend on rare infinitely ama1l, 
say of the th'st order, and theiI' derivatives too. Neglecting quantitres 
of the second order we find from (81) 

1 
til = - (2 + 2[.t + 6T[.t' + 21,2[.t" + T2V"), 

2" 

1 
t4

4 = - (2p, - 2v + 6T[.t' + 2'1'2(.1." + TJV"). 
2x 

For OUl' degree of approximation we may suppose that of the 
I quantities Tab only TH diffel's from O. If we put 

-
'" 
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-. 
\ 

, (82) 

a quantity whirh depends on l' and which we shall assume to be ') 
zero outside a certain sp here, we find front the field equations 

We thl1s obtall1 

(83) 

(84) 

~ 50, If first we leave aside tbe first term of tI \ wlllch would 
also exist if no attl'acting matter were present, it IS remarkable 
that the gravItatlOn constant x does not oCC'Ul' 111 the stress tI t, nor 
in the energy t 4 \ the same would have been found lf we had 
used other coordmates, '1'his eonstitutes an important dIfference 
between EI~STEIN'S theory and other theones in wlllch attractmg or 
l'epulsing forces are reduced to "field actions". '1'he pulsatmg spheres 
of BJÉRKNES e.g. are snbjected 10 forces WhlCh, fol' a given ÎnotlOn, 
al'e proportional to the density of the flmd in which they are 1mbedded; 
and tbe changes of pressUI'e and the energy m that flmà are likewlse 
pl'oportlOnal to, thls denslty. In thls case we sbaH therefore ascribe 
to the stress-eneI'gy-complex values proportional to the intensity of 
the achons which we want to explain. In EINSTEIN'S theory sneb a 
proportionality does nOL exist. The value of t4

4 IS of the same order 
of magmtllde as ~4 4 in the matter. '1'0 our degree of approxImation 
we fjnd namely from (82) :t4

4 = 1,2(1. 

~ 51. If we had not worked with poIar coordll1ates but wlth 
l'ectangular coordinates we shonld have had to put for the field 
without gl'avltatlOn gll = g22 = gS3 = -1, g44 = 1, gab = 0 fol' a =1= b. 
'1'hen we should have fOl1nd zel'O fol' all the components of the complex. 
In the system of coordinates used above we found for the field 

without gl'avitatlOn tIl =~; tl1lS IS due to the complex t being no 
x 

tensor, If lt wel'e, the qllantities tab wonld be zero in every system 
of coordll1ates if the}! had that vallle m one system. 

.. ~ 2 
Proceedin~s Royal Acad, Amsterdam Vol. XX. 

, , 
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- It is also l'emal'kable th at in real caRes the ihst term in (83) "­
can be IIUlch larger than the following ones. If we considel' oe. g. 
a point P outside the attracting sphere, we can prove that the 
ratio of the fh'st term to the third is of the same order as the 
ratio of the square of the velocity ~ of' Jight to the square of the 
velocity with which a material point can descdbe a circular orbit 
passing through P. 

The following must also be noticed. In the system of poJar coor­
dinates used above there wi\! exi~t in the field without gl'avitation 

1 
the stress tIl = -. If a stress of this magnitude were produced by 

~ . 
means of actions whiclL give:. rise-tO'R' Sfress-energy-tensor, the passage 
tQ<- ~ recfanguTal: cOOl'dmates would give us -a stress which becomes 
infimte at the pOlIlt 0, In those coordinates we should namely have 

, I _ sin~{t 1 
tI ---.-

r 2 ~ 

§ 52. E\'idently it would be more satisfactory if we could ascrlbe 
a stl'ess-energy-tensol' to the gt'avitation field, Now th is can l'eaIly 
be done. Indeed, the qnantities seOIt determined by (57) form a tensor 
and according to (58), (79) may be l'eplaced by 

Kit = - divl! ':t - divlt to, • . . . . . (85) 

if to IS defined by arelation similar to (78), viz. 

e 1 e 
tolt = - 601t. • • • • • (86) 

2~ 

Equation (85) sho~vs that, just as weIl as tC11> we may consider the 
quantities teOh a§ the stresses etc, in the gravitation field. This way 
of interpretation is very simpie. 'Vith a view to (41) we can namely 
derive from the equations for the gravitation field (65) 

G=~T 

and 

Flll'ther we find .from (66) 

r.-e 1 G - 1 
:t.h = -2 2(a)~aegah - - 2(a)ijaeGah 

~ x 

and from (57) and (86) 

. . . . (87) 

At every point of the field-figure the components of the stress­
enel'gy-tensol' of the gravitation field would therefore be equal to 

"-
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the corresponding quantities tbr the matter or the electro-magnetic 
system with the opposite sign. It IS obvious that by this the condL­
ti on of the conservation of lllomentum and energJ for the wlwle 
system would be immediately fultllled. It was in fact this circum­
stance that made me think of the tensor to = -~. The way In 

which 60 was introduced in §§ 38 and 39 has only been chosen in 
order to lay stress on (58) being an identity, so that equation (85) 
is but another form of (79). 

At first sight the relations (87) and the conception to which they 
have led, may look somewhat stal'tling . .Accol'ding to it we should have 
to imagine that behind the directly obsel'vable world with its skesses, 
energy etc. thel'€' is hidden the gravitation field with stresses, energy 
etc. that are everywhere equal and opposite to the fOl'mei' ; evidentl)" 
this is in agreement with the interchange of momentum and energy 
which accompanies the actlOn of gl'uvitation. On the way of a light-, 
beam e.g. thel'e would be evel'ywhel'e in the gl'avitaiion field an 
energy Cllrrent equal and opposite to the one existing in the beam. If 
we remember .that tllis hidden energy-Cl1l'l'ent can be fully desrribed 
mathematlcallJT by the qnantities gab and that only tlle interchange 
just mentioned m.tkes it perceptlble to US, this mode of viewing 
the phenomena- does not seem unacceptable . .At all events we are 
forcibly led to lt if we want to pl'eserve the advantage of a stress­
energy-tem01' also fOl' the gravitation field. It can namely be shown 
that a tensor which is transfOl'med In the same way as the tensor 
to defined by (57) and (86) and which in every system of COOl'­

dinates has the same divergency as the latter, must coincide with t o' 

Finally we may l'ema~'k that (78), (86), (58), l87) give 

div t = div to = -.div:t, 

so that we have, both from (79) and from (85), J(h = O. 
The question is this, that, so long as the -gravitation field IS con­

sidered as given, we may introduce "extel'nal" forces, but that In 

tbe eqllations fOl' the gl'avitation field itselt' we must also take into 
consideration the stress-energy-tensor of the system by which those 
forces are exerted. 

2* 


