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Physics. - "On EINSTMN'S 1'lteo1',1/ of gmvitation." IV. By Prof. H. 
A. LORENTZ. 

(Communicáted in the meelIlIg of Oclobel' 28, 1916). 

~ 53. The expressIOns fol' the stress-enel'gy-com]Jonents of the 
gravitation field found in the pl'eceding pttper call for some fUl'thel' 
remarks. If by Öhe we denote a quantity ha\;ing tlle /value 1 fol' 
e = h ttnd being 0 for e =1= h, those expresslOns _call be written in 
the form (comp. equati.ons (52) and (78) 

1 j aQ aQ 
the = - - (f;/ Q + ~ (ab) a-- gab, I! + ~ (a~f) -a - gab lil -

2" ,clah, e gab, Ie 

a ( aQ )' : - YJ(abf)-a, -a - ga",;' •••• 
tVf gah, el. • 

. (88) 

They contain the first and second derivatives of the quantities gab, 
EINSTEIN on the rontl'al'y has gl ven values for the stJ'ess-energy­
components which contain the first derivati\'es onIy and whirh 
thel'efol'e are 111 many respects much more fit for application, 

It wiII now be shown how we can a]so find formulae without 
second denvati\'es, if we start from (88), 

~ 54. For this purpose we shall consider the complex u defined by 

11// = ~ 1 ó/le Q - ~ (abf) a~ (a aQ gab,/) I. . . (89) 
2" _ :VIt gab,fe \ 

and we shall seek lts di vel'geney , 
We have -

(d1V n)1! = :E (e) UUh
e = ~ I uQ - :s (abfe) ~-(~- gab,/)! 

ame 2" I a,'lJ1! a.'lJea.'lJh agab,fe \ 
or 

if we put 

~ 1 aR 
(div Uh=--a 

2" .'lJ1t 
(90) 

R = Q - 2,' (a~fe) -aa (~~ gab,!) • , . • (91) 
·'lJe ugab, fe 

Now Q = V g G can be divided intd two parts, the first of 
which Ql eontains differential coeffieients of the quantities ga~ of the 
first ol'der only, whiJe the seeond Q2 is a homogeneous linear fllnction 
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of the serond derivatives of those quantities. This latter involves 
that, if we replace (91) by 

R = QI + Q2 -:2 (abfe) (;) aQ gab,fe) - :2(abfe) .:- (;) aQ ) gab,!, 
vgab, re vXe VYab, re 

the second and the third term annul earh other. Thus 

R = QI - :2 (abfe) "a, (;) aQ ) gab,f ." (92) 
vXe VYab,je 

If now we define a complex 1.1 by the equation 

1 
I.W = - - óheR, • (93) 

,:;' 2~ 
we have 

If finally we put 

1 àR 
(div t1)h = --~. 

2" vtVh 

t' = t + u + t" 
we infer from (90) and (94:) 

(94) 

div I' = div t. . . . . . . . . (9~) 

and from (88), (89), (93) and (92) 

1 l . aQ a ( aQ ) r'hh=- - QI + :2 (ab)-;)-Yab,,,-:2(abf):;- -;)-- gab,f-
2~ vYuo, It vtVh VYab,jh 

:!; (abf)':- (a aQ ) .qab, h + :2 (abfe) -aa (a aQ ) gab,) (96) 
V{/Jj gab,h f iVe gab,fe I 

and for e =1= ft 
r'he = ~ \.2 (ab) aaQ 

gab, h - II (abf) -aa (;) .aQ_) gab,j-
2~ I gab,e tIJh vgab,je 

_ :2 (abf) ~ (-aQ ) .qah, hl. . . . . (97) 
aXj agah,ej \ 

Formula (95) shows that the quantities r'lIe can be taken jUflt' a; 
weIl as the expressions (88) fol' the stress-enel'gy-component& and we 
see from (96) and (97) that these new expressions contain only the 
first derivatives of the coefficients gah; they are homogeneolls quadratic 
funrtions of these di fferen tial roeffirien tso 

'rhis becomes clear when we remember that QI is a flll1ction of 
this kind ~lnd that only QI contriblltes something to the secOlld 
tel'm of (96) and the first of (97); further that the del'lvatives of Q 
occurring in the fol1owing terms contaln on\y the qnantihes gah and 
not theil' deri vati ,·es. 

§ 55. EINSTI!lIN'S stress-energy-components have a form widely 
different from that of the above mentioned ones. They al'e 

( . 
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1 1 
_ (e(Ejlz = - Óhe :2 (abef) gab racf lbf -- :2 (abc) gab race f'bl/, 

2x _ x 
-

where for the sake of simplicity it has been assumed that V g-i. 
Further we have 

rabc = - fa:; = - :2 (e) gce {~J . 
If now our formulae (96) und (97) are hkewise simplified by the 

assumption V g=i (so that Q becomes equal to -G), we may 
expect that t' will become identieal with ttb). ThlS is really so in 
tbe ca~e gah = 0 for a =/= b; by wbich lt seems very probable that 
the agreement will exist in genera\. 

In the pl'eceding paper lt was shown _al ready that the stress­
energy-.components tl/ do not form a: "tensor", but what was called 
a "complex". -The same may be said of the quantities t'he deflned 
by (96) and (97) and of the expressions given by EINSTEIN. If we 
want a stress-energy-ten801', thel'e are only left the quantities teOh 

defined by (811) and (57), the values of which are always equal and 
opposite to the eouesponding stJ"ess-energy-romponents ~h'e fol' the 
matter or the eleetrornagnetic field. 
- It must be nO,ticed th at the four equations 

o e 0-

:2 (e) a,v
e 
(~h + ~e('l)h ) = 0 

always express the same relationb, whethel' we choose teOh, tl!c, (, hC 

or (e(E)h as stl'ess-enel'gy-components ~e(g)h of the gravitatioJl field. 
If however in a definite case we want to use the equations morder' 
to calrulate how the momentum and the energy of the matter and 
the electromagnetic field change by the gravitational achons, it is 
pest to use t' eh or te(E)h, j ust because these q uantiti~s are homo­
geneous quadl'atic functions of the derivatives gab, c. 

Experience namely teachês US that the gl'avitation fields occul'ring 
in nature may be regarded as fee bie, in ihis sense- that the values 
of the gab's are little different fl'orn those whieh might be assumed 
lf no gravitation field èJusted. For these latter values, whieh wlll be 
called the "normal" ones, we may- write in ol'thogonal coordinates 

gl1 = 922 = g83 = - ], g44 = c2, gab = 0, for a ==1= b'. (98) 

In a first appt'oximation, which most times wiJl be sufficient. the 
deviations of the values of the gab'S fl'om these normal ones may 
be taken proportional to the gravitatio~ constant~. This factor 
also appeal's in the differential coefficients qah, c; henee, aceol'ding to 
the chal'actel' of tbe functions t' f/ mentioned above (and on account 

) 
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1 
of the facto)' - in (96) and (97») these funetions b~eome proportional 

x 

to if, 50 tbat in a feeble gravitation field they have Iow vaIues. 

§ 56. Because of the complicated form of equations (96) and (97), 
we shall confine ours~Ives to the calculation for some cases of t' /, \ 

i.e. of the energy pel' unit of volume. This ealeulation is eonsiderably 
sim plified if we consider stationary fields on ly. Then aH differen ti al 
coeffieients with respect to ,1'4 vanish, so th at we have according 
to (96) .. 

I 4 I! 0 ( oQ ') t r 4 = n - QI + ~ (abfe) ~ -;\,-- 9ab.! 
;::IX uXe U9ab, Je 

(99) 

We shall WOl'k out the calculation, first for a field without gravita­
tion and secondly for the case of an attracting sphel'ieal body in 
which the matter is dish'ibuted symmetrically round the centre. 

lf there is no gl'~vitation field we may take for the qllantities 
gab tbe "normal" values. For tbe case of orthogonaI coordinates these 

, are given by (98). When we want to use the polar coordmates 
intl'oduced into § 48 we have the corresponding formulae 

~ \ 
911 = - -1 -2' 9n = - 1,2 (1- ,'lJ1

2
), 938 = - 1, 944 = c\ ( 

-,'IJl .(100) 

9ab = 0, for a =/= b. ) 

lf, using polar coordinates, we have to do with an attracting sphere 
and If we take its centre as urigin, we may put 

U 
911 = - --.' 922 = - (1 - x t

2
) U, 933 = - V, 944 = w, (101) 

I-xl-

where u, v, ware functions of r. The gab's which- belong 10 an 
orthogonal system of eoord/nates may be expressed in the same 
funetions. 

These gab 's are 

911 = U X l
2 (U ) t -. - - v ,etc. 

'1'2 1'- '1'2 

912 = ,'lJ
I

,'lJ
2 (~ - v), etc. 

1,2 '1'2 

914 =9u = 984 = 0, 944 = w. 

The "etc." means that fm' 992' g88 we have similal' expressions 
as fol' gil and fOl' g28' g81 simi)ar ones as for g12' 

§ 57. In order to deduce the diffel'ential equations determining 
'lt, v, 'W we lDay arbitl'al'ily use rectangular or polal' eoordinates-; 
the latter ho wever are here to ue pl'efel'l'ed. lf diffel'entiatiolls 

\ I 
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with respect to l' are indicated by accents, we have according 
to (40) and (101) 

G =-- -1+---+-1 ( u" u'v' u'w') 
11 1-,'1:12 2t, 4v2 4vw 1 

G =!l_mZ) -1+---+-( 
u" u'v' u'W') 

22 1 2u ~4V2 4uw' 

u" !t'2 u'v' v'w' W ff W'2 
GS3 = -:;;: - 21(2 - 2uv - 4vw + 2w - 4w2 ' 

u'']JJ' v'~o' W" W'3 

GH = - 2uv + 4v' - 2v + 4vw' , 
Gab = 0, f01' a=/=b. 

80 we have found the left hand sides of the field equations (65). 
Before considermg these, equations more closely we shall introdllcf' 
the Silnplification that the gttb'S are very little dIfferent fl'om the 
normal values (100). Fot' these latter we have 

(102) 

and thel'efore we now put 

U=1,2 (1+),) , v = 1 + f1, , w= c2 (1 + v) (103) 

The quantities l, (J., v, which depend on 1', wil I be l'egarded as 
infinitely smal! of the fil'st order and in the field' equations we 
shall neglect quantities of second and higher orders. 

Then we may wl'ite fol' GIl etc. 

1 
G --- (À. + 21'A' + 1.1'21," -" - 11'11.' + 1.1'V') IJ -1 2 2' r 1I r 2 , 

-.'lil 

G22 = (l-a:/)(À. + 21').' + !1,2l" - (J. - !1'(J.' + !rJ."), 
2 1 

Gu = - )..' + 'l" - - (.t' + iv", 
l' l' 

GH = - C2(~ v' + iV"} 
On the J'Ight hand-sides of the field equatlOns (65) we may take 

JOl' gab the nOl'mal value; moreovel' we shall take for Tab and T 
the values which hold for a system of incoherent matel'ial pomts. 
We may do so if we assume no other internal stresses bilt those 
callsed by the mutIlal altractIOns; these stl'esses may be neglected 
in the present approximation. 

/ As we supposed the attl'acting mattel' to be at rest we have 
accol'ding to (10), (16) and (15) (1915) 'lOl = '1.0 2 = 'WS = 0, '1.0 4 = Q, 

?tI = u2 = Us =,0, 'u 4 = c2Q, P = Cf}. 

In the notations we are 1I0W using we have fllrther, accOl'ding 
to (23) (1915), 

/ 
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'r;- lthWe 
,teh=p' 

SO that of the stress-energy-components of the matter only one is 
different from zero, namely , 

:t. 4 = c~, 

_ FUl'thel' (66) involves that, also of tile quantities Tah, only one, 

namely Tw is not equal to zero, As we may put V .q = C1,2, we 
have namely 

1· 
T=-Q' 

'1" 

Finally we are led to the three differential equations 

}. + 2 '1'}.' + ! 1,2 J." - [.t - 1 r r-' \- -k l' v' = - ! x ft, (104) 

2 1')! + 1,2 J." - l' [.t' + ! 1,2 v" = - ! x~, .' (105) 

'1'V'+-!-1,2 V"=t X (J' (106) 

It may be remarked that Qd.v1 cl.1Vlx3 represents the "mass" present 
in the element of volume clx1dx2d,va• Because of the meaning of 
,V1 ,X2 ,Xg (§ 48) the mass in the shell between spheres with radiI 
l' and r + eb, is found when Qd,v1 cltIJ2d,'lJ a is lI1tegl'ated wUh respect to 
'~'l between the hmits - j and + j and wlth respect to '/]2 bet ween 
o and 2:rr. As Q dapends on l' only, thlS latter mass becomes 47Qcl1', 
so that Q is connect~d wlth thE' "densIty" 10 the Ol'dinary sen se of the 

word, which WIJl be called Q, by the equahon 

Q =1,2 Q. 

The differential equations also hold outside the sphere if Q is put 
equal to zero. We can first imagine !! to change gradually to 0 
near the surface and then treat the abL'Upt chang'e as a limrting case. 
, In all the preceding considel'ations we have tacitly supposed the 
second derivahves of the quanhtiesgab to have evel'ywhere tinite values. _ 
Therefol'e v and v' will be contmuous at the sUl'face, even in the 
case of an abrupt change. 

§ 58. Equation (106) gives 
1 

XJ" 1" =...::... Il d .. n ~ I, . .. . 
1" 

(107) 

o 

where the integratlOll constant IS determined by the consideratlOJl that 
for l' = 0 all the quantities gab and theil' derivatives must be finite, 
so that for l' = 0 the product 1,2V' must be zero. As it is natUl'al to 
suppose that at an infinite distance l' vanishes, we find f'ul'thel' 
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r 1 

V = ~ J~:'f Qdr • . . '(108) 

Cf) 0 

The quantIties À and f1 on the contl'ary are not completely determined 
by the dlfferential equations. If namely equations (105) and (106) are 
added to (104) aftel' having been Illultiplied by - k and + -k respecti­
vely, we find 

) + rÀ' - f1 + rl" = 0 . . . . . . (109) 

and It is clear that (104) and (105) are satisfied as soon as thi& is 
the case with this conditIOn (109) and -with (106). So we have only to 
attend to (l08) and (109). The inde9niteness remainmg In À and (J is 
inevitable on account of the covariancJ" of the field equations. It does 
not give rise to any difficulties. 

Equation (107) teaches. us that near the cenh'e 

• v' = 1. ~;;1' , • J "0 
\ 

if Qo ie;; the density at the centr'e, whereas from (108) we find a 
finite value fol' vitself. This éontirms what has been said above 
about the values at the centre. We shaH assnme that at that pOInt 
)., (.t and their delWatlves have Iikewise finite values. Moreover we 
sllppose (and this agl'ees with (109)) that À, {À-, À' and (.t' are 
continuolls at the surface of the sphere. 

If a is tbe radius of the_ sphere we find from (108) for an ex ter­
nal point 

a 

v=-; j Qd1" 

o 

Without contradicting (109) we may assnme that at a great 
1 

dlstance from the centre). and ij, are likewise pl'oportional to - ,so that ).' 

1 
and (.t' deCl'ease pl'oportionally to -. 

r 2 

l' 

§ 59. We can now continue the calculation of 1'/ (§ 56).­
Substituting (101) in (99) and using polar cool'dinates we find 

1 V; (U'2 U'W') t'/=--u - ~-+- , 
2~ V u2 uw 

whence by substituting (102) we-derive fol' a field withont gravitation . -

'. _ C t 4 - --. 

" 
Thi~ equation shows that, working with polar cool'dinates, we 

L _. 
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should have to ascl'ibe a eertain negative value of the energy to a 
field without gravitation. in sueh a way lcomp. § 57) that the 
energy in the shell between . the spheJ'es deseribed round the origin 
with radii l' and l' + eb, becomes 

4.1l'c 
--dr. 

~ " 
The density of the energy in the ordmary sen se of the word 

would be- inversely proportionat to 1,2, so that it would beeome 
infinite at the centre. 

1t is hardly necesbary to remark that, llsing rectangular COOl'­

dmates we find a vaIlle zero for Ihe same case of a field without 
gravitation. The normal values of gab are then constants and theit' 
derivatives vanish. 

§ 60. Using rectangular coordinates we shall now indicate the 
form of t'\ fol' the field of a spherical body, with the approximation 
specified in § 57. Thus w,e put 

ml ,'U, 
g12 = -- (l-tL), etc. 

r' 
g14 =iJu =ga4 = 0 , 

B,r (109) and (110) we find 1) 

I 
g .. = ,'(l-! .). \ 

(110) 

1) Of the laborious calculation it may be remarked here only that it is convenient 
to write the values (110) in the form 

02~ 
gll = - 1 + a + ~, etc. 

u·'U l -

o'~ 
g12=~' etc. 

um l u,'U, 

where " and (3 are mfinitesimal functions of r. Wethen find 

t'.4 == 2
c \-t2 (a) (~a)2 + :!J(a) ~~ ~a + 
" ~ uma UiVa uma 

- . [oaa oS{1 (08~ )'J t +t2 (azk) ----- ---
omao,'UI ' omaomk' amaom l amk 

(a, i, k = 1, 2, 3) 

which redüces to (111) if the relations between :t, (3 and )" p., viz. 

a + ~~'= - À -~{J' + {J"=).-tL 
r r 

" and the equality ,,' = v' illvolved in (109) are taken into cOllsidel'ation. 
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t': = :" IV'I +~(À-fL)[~(À-fL)+2(1/-fL/)Jt . . (1~1) 
Thus we see (comp. ~ 58) th at at a" distance from the attl'acting 

1 
sphere t ' / decreases pl'oportionally to -. Flll'thel' it is to be nohced 

1,4 

that on account of the indefiniteness pointed out in ~ 58, there 
l'emall1S some uncel'tainty as to the distrlbutlOn of the enel'gy over 
the ~pace, but that nevertheless the total energy of the gl'avitation field 

CIQ 

E = 431' ft' .. 1': dr 

o 
has a definite value. 

II\deed, by the integl'ation the last term of (111) vamshes. Aftel' 
multiplicatlOn by 1,2 thls te~m becomes namely 

1 I d 
(A - fL)2 + 21' (1 - fL) (1' - fL') = dr [r (À - fL)2]. 

The Illtegral of this expression is 0 because (comp. ~~ 57 and 58) 
1'{I-fL? is continnol1s at the surface of the sphere and vanishes 
both fol' l' = 0 and for l' = 00. 

We have thus 

E = :oJ ;21~2dr,. . . . . . . . (112) 

o 
where the value (107) can be substitutE'd for v'. If e.g. the density 
- I I 
~ is everywhel'e the same all over the sphere, we have at an internal 
point 

v' = t,,"Qr 
and at an external point 

From this we tind 

§ 61. The general equatlOn (99) found for t'\ can be trauSfOrllled 
in a simple way. We have name!y 

,:E (abfe) ;, a, (::I. aQ ) gah,f = ~ (abjè) ;, a, (~~ gah,f) -
UXe vgah, Je Vale vgab, J~ 

dQ 
- :2 (abfe) ~- gab,fe 

vgab,fe 

and we may write - Q2 (~ 54) fOl' the last tel'm, Henre 
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t'4 4 = 2
1 I - Q + :2 (abfe) aa, (-0 a~ gab'f) f, . , (113) 

I ~ I 'Ve gab,fe 

where we must gi\'e the values 1, 2, 3 to e and f. 
The gravitation energy lying within a closed surface con SI 'lts therefore" 

of two parts, the first of which lS 

El = - ~fQ dlV l dtv 2 dm» ..,.. (114) 
2~ 

whIle the second call be represented by snrface integrah,. Ifnamely 
qu q2' ga are the direction constants of the nornial drawn outward 

1 1< aQ E 2= - ~ (abfr:,) -a - gab,fqe d(J • , • • (115) 
2~ gab,fe 

In the case of the infinitely feebIe gravitation field l'epresented 
uy J., ~t, 'V (~ 57) both expresslO1~s El and E 2 contain qnantities of 
the first order, but lt cau ensily be verified that these cancel eaeh 
other in the sum, so that, as we knew all'eadJ, the total energy 
IS of the second order. 

From Q = V g () nnd the eqnatlOns of § 32 we 'tind namely 

aQ ---= 1 V -g (2gab .gfe_gbf gae_gaf gbe), . , , (116) 
agab,fe 

SO that we ean write 

1 r. -E 2 = 4~J V -g ~ (abfe) (2[1ab [lfc-gl>f gae -gaf [lbe) [lah,f qe d(J. 

The factor Nab,f IS of the tirst order. Thus, If we confine ourselves 
to th at order, we may take for all the othel' quantities these normal 
values. Many of these ,are zero and we find 

E 2 = ~ ;x .2(ae) faa (gaa,e - [lae,a )qed(J. • • ' (117) 

Here we must take a = 1, 2, 3,4; e = 1,2,3, while we remal'k 
that fol' a = e the expresslOn bet ween brackets vanishes. For a = 4 

the integral becomes r;;av qe d(J, whlCh aftel' summation wIth respect J O,'I1e 

to e gives 
if' 

, , (118) 

n repl'esenting the normal to the sUl'face. If a and e differ from 
each other, while neithel' of them IS equal to 4, we can dednce 

from (110) and (109) " 

,gaa,e - [lae.Cl =~, 
utve 
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, }" 

::so 

Each value of e occurring twice, i.e. combined with the two 
values different from e which a can take, we hare in addition to (118) 

- 2f ~v do, 
, un 

so that (117) becomes 

c JdV E~ = - î"" d(J. 
2" un 

As now outside. the sphere 

" 
v=--- odr "f , 'I' " 

o 

we' have fol' every closed surface that does not sUlTound the sphere 
E2 = 0, but for every surface that does 

, 

a 

E2 = 2Jr cJ Q d", , , , , , , (119) 

o 

As to El we remark tbat substituting (65) in (41) and taking 
into considel'ation (6,*) we find, 

G = "T , Q = " V --g T ,," (120) 

From this we conclude that El is zero if thel'e is no matter 
inside the surface 6, In order to detel'mine El in the opposite 
case, we remember tbat G is independent of the choice of coordinates, 
To calculate this quantity we may therefore use the vallle of T 
indicated in ~ 56, which is sufticient to calculate El as fal' as the 
terms of the first order, We have therefore 

and if, using fllrther on rectangular coordinates, we take for V g 
the normal value c, 

cx 
Q=-Q, 

1,2 

Froin this w-e find by substitution in (114) for the 
closed surface (J sUl'rounding ~ the sphe~e 

ct 

El = - 2Jrcj Qdr. 

o 

~ 

case of the 

This equation together with (119) shows that in (113) when 
integrated over the whole space the terms of the first Ol'del' really 
cancel ëach other, 1n ordel' to calculate those of the second order 

-," 
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and thus to derive the result (1J 2) from (113), we should have to 
determine the quantity T (romp. 120)), accurately to the order ". 
The surface integrals in (fI5) too would have to be considered 
mOl'e closely. We shalI not however d weU u pon this. 

~ 62. F,'om thé expression for t'/ given in (113) and the value 

E=El +E2 
derived from ie, it can be inf'erl'ed that, though t' is no tensor, we yet may 
change a good deal in the system of coordinates in WhlCh the pheno~ 
meJ)~are--deseribe<t;: withemt ttltering- fne- vahre- or the- totttl energy. 
Let us suppose e.g. that ilJ 4 is left unchanged but that, instead of the 
rectangular coordinates Xl' ,'C2 , X a hitherto used, other quantities 
x'p .'IJ'2' ,'IJ's are introduced, which are some cOlltinuous function of 
.v1) X 2 , {}Ja' with the restrietion that X'l = .vI' ,V'2 = X 2 , ,'C's = X s ontside 
a cerrain closed surface surrounding the attracting matter at a 
sufficient distance. 1f we use these new coordinates, we shaH have 
to inh'oduce other quantities lah instead of gab. As however outside 
the closed surface the quantities gah and their derivatives do not 
change, the value of E2 wil! approach the same limit as when we 
used the coordinates ''Cl' ,1]2' lI's, if the surface (J for which it is calculated 
expands indefinitely. The value which we find for El aftel' the 
transformation of coordinates wlll also be the same as before. Indeed, 
if eb: -is an element of \'olume expressed in Xl' Xi) /lIa-units and elT' the 
same element expressed in .'IJ'1' X'2! x's-units, while Q' represents the 
n~w value of Q, we have 

Qdr = Q'df:'. 
Ît is clear that the -total energy will also remain unchanged if 

,v'u x' 2' .'IJ'. differ from ,tl' xs' Xa at all points, provided only that these 
diffel'ences decrease so rapidly with increasing distance from the 
attracting body, that they have no infl uence on the limit of the 
expl'ession (115). 

The result which we have now found admits of another inter-
w pretation. In the mode of description which we first followed (llsing 

Xp Xi' Xa), Q 1) and gab are certain functions of Xl' x2 , IV,; in the Ilew 
one Q', g'ab are cel'tain other functions of x\, X'2' /lI'a. If now;' without 
leáving the system of coordin'àtes .'lJ.p Xi' Xa, we ascribe to the density 
and to the gravitation potentials vallles which. depend on XI' X s ! a'a 
in the same way as (/, g'ab d~pended on X'l' X'i' x', jm.t now, we 1 

shaH obtain a new system (consisting of the attracting body and 
the gravitation field) which is different from the original systel1l 

l) By Q we mean here what wa!:l denoted by Q in § 56. 
I 
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because othel~ fnnetions öf the eoordinates oeellr i.n it; but which never­
theless no observation will be able to discel'n from it,the indetiniteness 
which is a' necessal'y conseqnence· of t11e covariancy of thefteId' 
eq uations, again presen ting itself. . 

W bat luts been said shows that· the· total g!'avitation energy 
in . tb is new/ system will ~ have tlre same 'value as. in thE\' 
odginal one, as has been' found already in ~ 60 with the restrictions 
th en in{roduced. 

~ 63. If)' ,~W€lre .. a ·.ten~oJ'",y~ ·sh9l!Jd. h8;\'e for,.all s,lib§titutions'. 
the tl'ansformation formulae' given. at the end ·of ~ 40.' :in'"'~:e~Ïi(Y"! 
this is not the case 'now, but from .. (96) and (97) wecan still 
deduce thaf those fOl'ffiu]ae hold' foi" linea?' substitutions .. Tuev 
may :likewise be applied . to the stress~energ'J~components of H;e 
matter or of an electroinagnetil~ system. Rence, if :tirepl'eseritsthe . 
total stress-energy-components, i. e. quantities in ,~hichthe COl'l'es­
panding components for the, gravitation field, fhe rnattei, .and the' 

. electromagnetic field are tal~en together, . we have for any -Iineal'. 
transformàtion 

, 1 . . 1 ' 
---....: :t'i = -=:2 (kl) Pkc Jr/6 rs-k' • (i 21) 

V -g' V--g : 

We shall' apply this to the case of a relativity transfol'mation" 
which can be represented by the' èquations 

wlth the relation 

/. . b. -, , 
tIJ 4 = atIJ 4 + - .'lJ l , (122) 

C 

. a2_~b2 = 1. . '. (123) 

, In doing sa we shal) assume that rhe system, when described in 
the reètangular coordinates Xl' x2 ; ,l's and with. respect to the time aJ;1l 

is iIl. a stationai'Y stàte. and at rest.., 
Then we derive from (97) 1) 

1) We have ,g14 = g24 = g34 = O,whill? aH the other qmintities gab are independent..' 
of ~4' Thus. -\ve can say that 'thc quantities gab and ,ga6,c are equal to zero' whe!). 
among tlieir indices tne number 4. oCCUJ'san . odd number of times: Thc' same may' 

be said of ga~, gnh,c,::. aQ_ (according 'to (irs)),::.a, (::. a,Q ') and '~ls~ 'of pro:' 
, ugab, cd . u.'vk "gab, cd 

duels of two or more' of ilucl{ quantities.· As in tbe last two terms of (97) the' 
. indices· a,' b anc!. f occur twice, 'these terms wi1l vanish when only one of the 
, indices e and h has the value 4.' ., 

As, to the first term; of (97) we i'eli1ark thàti according to the formulae 'of § 32, 
each of tbe indices a, band e Occurs only oncè in the differential· coefficient· of 
Q ,vith resp~ct to gah, e, while other indices are repeatecl. As' to the, llumber ,of 

- .. :' 
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t' .1,-- t'4 '_'t'4: - 0" t' 1 -'-- th2 ._ t' a ~ 0 
, ,1 - 2 - 3 -, 4 - 4' ~ 4 - , 

. whicll means, that in ,thesyste~ (011'01 2 , X 3: m.j)t1iere are neithel; 
.momenta nor èn,ergy curl'entsln thegravitation fie!d. 

We' may ,assum~ the' same fo~' the matter, so thai' we have for 
the tötal stl'ess-energy-cQ.mponents in the system,(xp ,'1:

2
, .1!3' .'1:

4
) 

,'r 

Let ,usnow considel' especialJythe components~'l4, ~'/ and t'/ 
in t~e system (:1/1' ,1:'2' tV's, a/ 4). For these ''',e find from (121) and (122) 

. ~ ab ab 
~'14 '= - !t l

l 
--:- - ':t 4

4 i: !t'/ = -'-abc'J: l
1 + abc ':t/ (124) 

. ,c c 

J (125) 

, Tt 'is thus seen in' t.he first, place:that bet ween tlle momentum in 
the dil'ection ~ öf ,VI (....:...~: I 4) . and 'the enel'gy-mn'rent in 'th at direction ' 
(~'/) the're e;iststhe' l'elation . 

. ,:.!',,1 = _~ c2 ~'l:t 

weil known from the theory of' reiativity. " , 
Fm'ther we have fol' Uie total enel'gy in the sy~tem (~'1' .'1/ 2 , x'a, '~'4) 

.E'ft ' /. d.v' 1. dm' 2 d,v' 3' 

, where' the integration has ,to be, performed for adefinÜe value of 
the time ,'V'4' Ón account of (122) we may write fOl'this 

'E' ~~ j'~,/ d~ld.'1:2 dm a, 

'whel'~ we have to k~ep in' view a definite value of the time ,x4 • 

lf the valile'~(125) 'issllbstitnted here änd .if ,ve take 'into con-, 
sideration that, the state being stationarjr in the system (a:1' .'v2' .'1:3 ' ,v4), ' ' 

" J~~ l,d.v I dms d~a . ' 0 

'we have 

E'=aE,' 
if Eis'the energy ascl'ibed' to thesystem in thecoordiuates (Xl' x

2
, ,'1:a, I/)~) . 

. By irltegl'ation or' the fil'stof the expl'essfons (124) we find in: t.he 
,'same walt for' thè totaJ momentu'm in the .dil'ection ot 'mI' 

,'" ,b" 
G'=-E; ,.r-

c 

times ,which e, Ti: and . the' olher indices. occur we can therefo;e say the same of 
thè' first term of (97) as of the other, terms, The first term alsois therèfore zero, 
ie ~o more than one of the two indièes, e a~d h has thevalue 4.· 

That t',le vànishes for e=l= 4 is seen immediately. ' . 
" ',,' _eP 

3 
PI'oceedings,'Royal Acad., Amst~rdam. Vol. XX . 
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§ 6.J:. Equations (122) show that in the coordinates (a/ l , ,'I:'~, lIJ'a, 1IJ'4) 

~1.. ," bI) ~ 
we- system has a velocity of translation - in the direction of tC' • a ~l 

If this velocity is denoted by v, we have according to (123) 

1 , 

a=Vl_~' 
1)2 

If therefore we put 

we find 
.lJtI1)2 };Iv 

E' G'= --- (126) 

V/1-~' Vl- v
2 ~ 

I)~ 1)2 

When the system moves as a whole we may therefore ascribe 
to it an energy and a momentum whirh depend on the veloeity of 
translation in the way known fl'om the theory of relativity. The 
quantity At, to whieh the enel'gy of the gravitation field also con­
tl'ibutes a cel'tain part, may ?e calIèd the "mass" of the system. 
From what has been said in § 62 it follows· th at within certain 
limits it depend& on the way in whieh the system and the gravita­
tion field are deseribed~ 

1t must he remarked howevet· that, if for the gravitation field we 
had chosen the stress-enel'gy-tensor t 0 (§ 52), the total enel'gy of the 
system even when in motion would be zero. The same would be 
true of the total momentum an~ we should have to put 31 = O. 

At fiJ'st sight it may beem stmnge that we may arbitrarily aseribe 
to the moving system the momentum determined by (126) or a momen­
tum 0; one might be inclined to tbink that, wh~n a definite system 
of cool'dinates bas been chosen, the momentum must have a definite 
\'alue, whieh might be determined by an experiment in which' the 
system is brought to rest by "external" fOl'ces, We must remember 
however (comp, § 52) that in the theory of gravitation we may 
intJ-odure no "extemal" forces without considel'ing also the matel'Ïal 
system 8' in w hich they ol'iginate. This system S' together with 
the system S with which we were ol'iginally concerned, ·will form 
an entity, in which there is a gravitation field, pal't of which is 
due to 8' (and a part al':!o to, the simultaneous existenee of S and 8'), 
Thel'e is no doubt that we may apply the above considerations to 
the tota! system (S, 8') without heing led into contradiction with 
an)' obsel'vation. 

- I 


