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Physics. — “On BinstuN’s Theory of gravitation.” 1V. By Prof. H.
A. Lorenrtz. -

(Communicated in the meeling of October 28, 1916),

§ 53. The expressions for the stress-energy-components of the
gravitation field found in the preceding paper call for some further
remarks. If by d¢ we denote a quantity having the “value 1 for
e=~h and being O for ¢==1/, those expressions can be written in
the form (comp. equations (52) and (78))

1 ?
the = |— ¢ Q + = (ub) Q “gab, i+ = (abf) 5 Q
2 e 09

0Q
- abf afl,f(agab ef)gabll N

They contain the first and second derivatives of the quantities gqs.
ENsTEIN on the contrary has given values for the stress-energy-
components which contain the first derivatives only and which
therefore are in many respects much more fit for application.

It will now be shown how we can also find formulae without
second derivatives, if we start from (88).

9ab Sh—

(88)

§ 54. For this purpose we shall consider the complex u defined by

0
uzﬁ-:—:dn Q— E(bf)aw( ¢ gabf)

89
agab e ( )

and we shall seek 1ts dlvengency.

We have
. buh BQ
(o= 3 () 3 = () g (s )|

or
", 1 dR
(dZ’D u)]l = 'é;; a‘—'c/l . . . . B . . (90)

if we put .

, 0Q
’ R = Q——s(bfe)a 5 gabf) N (28
Te Jab, fe

Now Q=V""g G can be divided into two parts, the first of
which @, contains differential coefficients of the quantities go of the
fivst order only, while the second @, is a homogeneous linear function
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of the second derivatives of those quantities. This latter involves
that, if we replace (91) by

0
R=0Q, + @ — = ) (o) — S0 5 (o ) g

a“,7(11), fe
the second and the third term annul each other. Thus
R=0Q,— @5 (agaaff)gabf N )
If now we define a complex v by the equation
o= — R, . . . . (93)
- 2x .
we have
_ 1 0R L
(dwb)/l__——Z;aM. e e e 94)
If finally we put .
U=t+u-un,
we infer from (90) and (94)
div'=divt. . . . . . . . . (%)

and from (88 ), (89), (93) and (92)
3Q
P , Q‘ + = (ab) a Guo, b gab, P (nbf a"”L (agab,fh) Jab.f—

0Q 0Q
) S dxy (agab tf) gab,n + = (@bfe) - 0, (aga ,fe>gab‘/ (9)
and for ¢ —|._ h
. — 0Q 0 0Q
s — 32 (ab) gab,egab B E(abf) 5o (agab f)ga b f—
] 0Q
— 3 (a bf)ad?f(agabe )Qab },2 e e (97)

S A

Formula (95) shows that the quantities 1';¢ can be taken just as
well as the expressions (88) for the stress-energy-components and we
see from (96) and (97) that these new expressions contain only the
first derivatives of the coefficients ¢,s; they are homogeneous quadratic
functions of these differential coefficients.

This becomes clear when we remember that @, is a function of
this kind and that only @, contributes something to the second
term of (96) and the first of (97); further that the derivatives of Q
. occurring in the following terms contain only the gnantines gu and
not their derivatives.

§ 55. EnsteN’s stress-energy-components have a form widely
different from that of the above mentioned ones. They are .

1

-
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1 1
_ Ie(E‘)h = —2—' d}le = (abcf) gab T'acf ['[)fo —_3 (abc) gab Pace Fbkby
® <%
where for the sake of ;implicity it has been assumed that V:é:i.
Further we have

Typ¢ — — gacbg = — E(e)g“{aeb] .

If now our formulae (96) and (97) are likewise simplified by the
assumption V' —g=1 (so that Q becomes equal to~G), we may
expect that t° will become identical with tz. This is really so in
the case gqso = 0 for a=/=0; by which 1t seems very probable that
the agreement will exist in general.

In the preceding paper 1t was shown _already that the stress-
energy-components ;¢ do not form a “tensor”, but what was called
a “complex”.-The same may be said of the quantities t’z¢ defined
by (96) and (97) and of the expressions given by EmsreiN. If we
want a stress-energy-tensor, there are only left the quantities teg,
defined by (86) and (57), the values of which are always equal and
opposite to the corresponding stress-energy-components Tue for the
matter or the electromagnetic field. .

- It must be noticed that the four equations

0 e o
) 2 (9 5 En A+ L) =0

always express the same relations, whether we choose tey, tze, t/;¢
or (&g as stress-energy-components ‘ie/g)h of the gravitation field.
If however in a definite case we want {o use the equationsin order
to calculate how the momenturmn and the energy of the matter and
the electromagnetic field change by the gravitational actions, it is
best to use ¢, or tqgy, just because these quantities are homo-
geneous quadratic functions of the derivatives g, c-

Experience namely teaches us that the gravitation fields occurring
in nature may be regarded as feeble, in this sense-that the values
of the ge’s are little different from those which might be assumed
1f no gravitation field éxisted. For these latter values, which will be
called the “normal” ones, we may write in orthogonal coordinates

I =G =gn=—1, g,=¢ gas=0, for a==b. (98)

In a first approximation, which most times will be sufficient. the
deviations of the values of the g.;’s from these normal ones may
be taken proportional to the gravitation constant x. This factor

also appears in the differential coefficients g .; hence, according io
the character of the functions t’;¢ mentioned above (and on account
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1 .
of the factor ” in (96) and (97)) these functions become proportional

to %, so that in a feeble gravitation field they have low values.

§ 56. Because of the complicated form of equations (96) and (97),
we shall confine ourselves to the calculation for some cases of t',¢,
i.e. of the energy per unitof volume. This calculation is considerably
simplified if we consider stationary fields only. Then all differential
coefficients with respect to ., vanish, so that we have according
to (96) - -

1 0 [/ 0Q - )
= —{— 2 (bfe) — | —— | ga .. (99
fmglm e T@n (e o0

We shall work out the calculation, first for a field without gravita-
tion and secondly for the case of an attracting spherical body in
which the matter is distributed symmetrically round the centre.

If there is no gravitation field we may take for the quantities
gub the “normal” values. For the case of orthogonal coordinates these
are given by (98). When we want to use the polar coordinates
introduced into § 48 we have the corresponding formulae

72
= g, = — (L —a%), = —1, :’,)
911 1_‘,013 92 ( 1) gaa g“ ¢ .(100)
- gas =0, for a=|=b. )
If, using polar coordinates, we have to do with an attracting sphere
and 1if we take its centre as origin, we may put -
u
I=—1 9= (=8 u gu=—uv g,=w (10)
1
where w, v, w are functions of ». The g.’s which belong to an
orthogonal system of coordjnates may be expressed in the same
functions.
These gq’s are

$u=9u=0n=0, g,=w
The ‘“ete.” means that fov g¢.,,g,, we have similar expressions
as for ¢,, and for g,,,g,, similar ones as for g,,.
§ 57. In ovder to deduce the differential equations determining
uw, v, w we may arbitrarily use rectangular or polar coordinates;
the latter however are here to be preferred, If differentiations

.
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with respect to 7 are indicated by accents, we have according
to (40) and (101) . g

G — 1 1 u' u'w') -
R % Lo dw)’

u' Y W
Gu:(l '_""'12) —1 +2*v“—+ _)v

“4p? 4w

@ u' W Y Y w" W
8y — T T T T T = = T
20 2w dow 2w 4w
G ulw’ ’D’wl w” 1012
44— T 5T 35

2uvr | 4v® 20 | dow'
Gop =0, for a=f=b.

So we have found the left hand sides of the field equations (65).
Before considering these.equations more closely we shall introduce
the sunplification that the g.’s are very little different from the
normal values (100). For these latter we have -

v=r* , v=1 , w=¢ . . . . . (102
and therefore we now put
v=r'(1+24) , v=14pg , w=c1+2»). . (103)

The quantities 2, u, », which depend on », will be regarded as
infinitely small of the first order and in the field" equations we
shall neglect quantities of second and higher orders.

Then we may write for G, etc.

6y = g (L B0 s — o )
“1

G = —2,)A + 20N + 22" — p — frt’ + 4,
2 1

Gga — _)’! + zll - _M, + é_vn’
» P

1
- G,=—7 (; v 4 év”).

On the right hand-sides of the field equations (65) we may take
for g5 the normal value; moreover we shall take for 75 and T
the values which hold for a system of incoherent material points.
We may do so if we assume no other internal stresses but those
caused by the mutual attractions; these stresses may be neglected
in the present approximation. )

As we supposed the attracting matter to be at rest we have
according to (10), (16) and (15) (1915) w, = w, = w, = 0, w, =9,
u, = u, =u, =0, u, = ¢’o. P = co.

In the notations we are now using we have further, according
to (23) (1915), '
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el tEWe
L= —5"
so that of the stress-energy-componenis of the matter only one is
different from zero, namely ,
g4 = co.

Further (66) involves that, also of the quantities Tgs, only one,

namely T,,, is not equal to zero. As we may put V——g =cr*, we
have namely

2

¢ ; 1.
- T‘4:;;Q, f:—"().

r

Finally we are led to the three differential equations

A 2rd 2 —p- brg birv=—4}xg, . (104
22 4+ ) —rp At = —%xo. . . . (105)
ry Aty =%xg. . . . . . . (106)

It may be remarked that odx,dx,dz, representsthe “mass’” present
in the element of volume dz,dz,dx,. Because of the meaning of
.22, (§ 48) the mass in the shell between spheres with radi
r and r 4 dr is found when odz,dz,d», is integrated with respect to
2, between the limits — 1 and -1 and with respect to «, between
0 and 2. As ¢ depends on r only, this latter mass becomes 47odr,
so that o is connected with the “density” n the ordinary sense of the
word, which will be called o, by the equation

' Q:r‘"_@. .

The differential equations also hold outside the sphere if ¢ is put
equal to zero. We can first imagine o to change gradually to O
near the surface and then treat the abrupt change as a limiting case.
. In all the preceding considerations we have tacitly supposed the
second derivatives of the quantities gq; to have everywhere finite values.
Therefore » and »' will be continuous at the surface, even in the
case of an abrapt change.

§ 58. Equation (106) gives

? 1

x "
v'=7Jgdr, . ... .o

?
0

where the integration constant i1s determined by the consideration that
for 7 =10 all the quantities ¢go; and their derivatives must be finite,
so that for =10 the product »*»' must be zero. As it is natural to
suppose that at an infinite distance » vanishes, we find further

~

L
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d'7
v:xf—:f@dr.. e 1)
r -

® 1]

The quantities A and u on the contrary are not corpletel y determined
by the differential equations. If namely equations (105) and (106) ave
added to (104) after having been multiplied by — 4 and - } respecti-
vely, we find )

P+ —p+'=0 . . . . . . (109)
and 1t is clear that (104) and (L05) are satisfied as soon as this is
the case with this condition (109) and-with (106). So we have only to
attend to (108) and (109). The indefiniteness remaining in 4 and p is
inevitable on account of the covariancy of the field equations. 1t does
not give rise to any difficulties.

Equation (107) teaches, us that near the centre

1 »
© P =3 %O

o, is the density at the centre, whereas from (108) we find a
finite value for v itself. This confirms what has been said above
" about the values at the centre. We shall assume that at that point
2, and their derivatives have likewise finite values. Moreover we
suppose (and this agrees with (109)) that 4, g, A' and ' are
continuous at the surface of the sphere.

If @ is the radius of the sphere we find from (108) for an exter-

X

if o

nal point
a

‘ v::-—if@do-.
r

0
Without contradicting (109) we may assume that at a great

1
distance from thecentredand p are likewise proportional to —, so that 2’
. ”
. 1
and y' decrease proportionally to —.
r

§ 59. We can now continue the calculation of ¢ (§ 56).
Substituting (101) in (99) and using polar coordinates we find

"y 1 [/1; Lu" n u'w' -
= ——u e+ —

! 29 v \ uw

whence by substituting (102) we derive for a field withont gravitation -
[

«®
This equation shows thal, working with polar coordinates, we

LI S
o=




should have to ascribe a certain negative value of the energy to a
field without gravitation, in such a way (comp. § 57) that the
energy in the shell between: the spheres described round the origin
with radii » and r 4 dr becomes

4dave

—_——anr.

.~ %

The density of the energy in the ordinary sense of the word
would be- inversely proportional to !, so that it would become
infinite at the centre. <

It is hardly necessary to remark that, using rectangular coor-
dinates we find a value zero for the same case of a field without
gravitation. The normal values of g, are then constants and their
derivatives vanish.

§ 60. Using rectangular coordinates we shall now indicate the
form of t'*, for the field of a spherical body, with the approximation
specified in § 57. Thus we put ’

==+ D+ 20—, oo ,
' (110)

N
—2 (A—p), etc,

g1n = \
7

914 =0 =9.=0 , g, ,=c(1+2).!

By (109) and (110) we find?')

/

1) Of the laborious calculation it may be remarked here only that it is convenient
to write the values (110) in the form
: 2

g, =—1 4 a4+ —, e
0z, *
0B
= — élc.
Irs 0z,0z, ’

where z and § are nfinitesimal functions of 7. We then find

| 5 da \? - v Oc -
—3 (“)(a-a;)-f- (a)ﬁaz-l-

) . 33 33 '8 2
+ {-E(a ZL) [awaamzi amaawkﬂ - (a-ﬁaaml amk) ]‘

@ik=1229)

which reduces to (111) if the relations belween -, 8 and 2, g, viz.

1 1
a-—l—;—ﬁ':—l ' —;—ﬁ'—’r—‘.‘f”:}.———y

' 4

t, = —

22

" and the equality &’ = 4 involved in (109) are taken into consideration.
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’ ¢ ! 1 1 ! !
te =g o st somw 2w ||
4z | r r .
Thus we see (comp. § 58) that at a distance from the attracting
1
sphere t',* decreases proportionally to —. Further it is to be noticed
7.4

that on account of the indefiniteness pointed out in § 58, there
remains some uncertainty as to the distribution of the energy over
the ppace, but that nevertheless the total energy of the gravitation field

| 0

E = 4.7tft"‘ r® dr

0
has a definite value.
Indeed, by the integration the last term of (111) vanishes. After
multiplication by r* tis term becomes namely

, d
L Gt @—) =2 [ (=),

The 1ntegral of this expression is O because (comp. §§ 57 and 58)
r(?—u)* is continuous at the surface of the sphere and vanishes
both for » =0 and for » = .

We have thus

© -
Jrc

E::——fv”rzdr,. R ¢ )

«®
0

where the value (107) can be substituted for »'. If e.g. the density
o is everyw'here the same all over the sphere, we have at an internal
point ' i

and at an external point

From this we find

°

) — 2 o ab
E=g reng a°,

§ 61. The general equation (99) found for t'*, can be transformed
in a simple way. We have namely

N N
- (abfe) -a;; (m) Jab, f =— 2 (Cbbfe) —é—a-:-e (’aab,fbgal),f)

0
-2 (abfe) 5‘9_& Jab, fe  ~

ab, fe

and we may write —@Q, (§ 54) for the last term. Hence
\

-10 -
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1 , 3 [ 3Q
2 —2—”§—Q+z(abfe>m(a—g;;;gaa,):, L)

where we must give the values 1, 2, 3 to ¢ and S
The gravitation energy lying within a closed surface consists therefore
of two parts, the first of which 1s

1
Elz—?qudmxdw,dms B (A YY)

while the second can be represenied by surface integrals. If namely
1, §s» 95 ave the direction constants of the normal drawn outward

1 0Q
—— 3 (ab — ah, FGedc . . . .
= 3 @) f o7 o 9040 (115)

In the case of the infinitely feeble gravitation field represented
by 2,u,» (§ 57) both expressions E, and E, contain gunantities of
the first order, but 1t can easily be verified that these cancel each
other in the sum, so that, as we knew already, the total energy
1s of the second order. )

From Q=V—¢ G and the equations of § 32 we find namely

0Q
agab,fe
so that we can write

1 -
E, = Ef V' —g = (abfé) (29 gfe—g'f goe—gof gb¢) gas, 1 ge do.

The factor gq,r 15 of the first order. Thus, 1f we confine ourselves
to that order, we may rtake for all the other quantities these normal
values. Many of these are zero and we find

=1 |/ —g (g gfe—gtf gre—gif gbe), . . . (116)

’

¢
B, =— 2% > (ae)faa (9ae,e — gaza)gedo. - . . (117)

Here we must take a=1,2,3,4; ¢=1, 2,3, while we remark
that for @ = ¢ the expression between brackets vanishes. Fora =4

op .

the integral becomes f 5o ¢e do, which after summation with respect
Ze

to e gives”

B a—nda,........(IIS)

n representing the normal to the surface. If ¢ and ¢ differ from
each other, while neither of them 1s equal to 4, we can dedunce
from (110) and (109) ~

op

9aae ~— Joe,a — 0
e T Joe, Oz,

-11 -
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Each value of ¢ occurring twice, i.e. combined with the two
values different from e which a can take, we have in addition to (118)

— 2 92 do
/ on
so that (117) becomes -
¢ o
.E2 fomee _2—;: Ez do.
As now outside the sphere p

d

%
v="—— § odr
T

., 0

we™have for every closed surface that does not surround the sphere
E,=0, but for every surface that does

a

E’,::2nofgdr. e e o .. (119
. 0
As to E, we remark that substituting (65) in (41) and taking
into consideration (64) we find,

G=xT , Q=xV_—9gT . . . . (120)
From this we conclude that E, is zero if there is no matter
inside the surface o. In order to determine E, in the opposite
case, we remember that G is independent of the choice of coordinates.
To calculate this quantity we may therefore use the value of 7
indicated in § 56, which is sufficient to calculate £, as far as the

terms of the first order. We have therefore

%
G:;;g

and if, using farther on rectangular coordinates, we take for I/:__,f
the normal value ¢,

R
t Q:;;Qc
A

From this we find by substitution in (114) for the case of the

closed surface o surrounding the sphere
a

E, =-—-2m:fqdr,

0
This equation together with (119) shows that in (113) when
integrated over the whole space the terms of the first order really
cancel éach other. In order to calculate those of the second order

-12 -
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and thus to derive the vesult (112) from (113), we should have to
determine the quantity T’ {comp. 120)), accurately to the order =.
The surface integrals in (115) too would have to be considered
more closely. We shall not however dwell upon this.

§ 62. From the expression for t',* given in (113) and the value
E=E 4+ E,
derived from it, it can be inferred that, though ¢' is no tensor, we yet may
change a good deal in the system of coordinates in which the pheno-
mena- are~deseribed; without altering- the- value- of the total energy.
Let us suppose e.g. that z, is left unchanged but thai, instead of the
rectangular coordinates ,, x,, #, hitherto used, other quantities
&, @', &'y, are introduced, which are some continuous function of
&,, &, &, with the restriction that o/, = »,, ¥, = ,, 2, = 2, outside
a certain closed surface surrounding the attracting matier at a
sufficient distance. 1f we use these new coordinates, we shall have
to introduce other quantities ¢'.s instead of gas. As however outside
the closed surface the quantities g5 and their derivatives do not
change, the value of E, will approach the same lLimit as when we
used the coordinates x,, a,, o, if the surface ¢ for which it is calculated
expands indefinitely. The value which we find for E, after the
transformation of coordinates will also be the same as before. Indeed,
if dv is an element of volume expressed in a,, 2,, #,~units and d' the
same element expressed in ', 2,, #';-units, while @' represents the
new value of Q, we have
Qdr = (Q'dr'.

It is clear that the “total energy will also remain unchanged if
2,2,y differ from a,, 2, 2, at all points, provided only that these
differences decrease so rapidly with increasing distance from the
attracting body, that they have no influence on the limit of the
expression (115).

The result which we have now found admits of another inter-
pretation. In the mode of description which we first followed (using
&y By, .z,) o) and g.» are certain functions of 'c,, &y, & ; in the new
one ¢, g'as are certain other functlons of 2/, 'y, ;. If now; without
leaving the system of coordinates &y, &gy Ty, WE ascube to the density
and to the gravitation potentials values which depend on z,, «,, «,
in the same way as @, g dg,pended on &', a',, &, just now, we
shall obtain a new system (consisting of the attracting body and
the gravitation field) which is different from the original system

) By ¢ we mean here what was denoted by ¢ in § 56.
/ -

!

-13 -
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because other functions of the coordinates occur in it; but which never-
theless no observation Wﬂl be able to discern flom it, the indefiniteness

which is a necessary consequence - of' the covauanC) oi the ﬁeld' '

equations, again presenting itself. -
What has been said shows that- the- total glavmtlon energy

in this new  system will have the same -value as.in the

original one, as has been’ found aheady in § 60 with the restuctlons
then 111t10duced :

§ 63. If ¢ Wele a tensm, we should have for all substltutlons -

VT sy

the transformation foxmulae given. at the end of § 40. In 1ea,11ty""

this is not the case mow, but from (96) and (97) we can still
deduce that those founu]ae hold for linear substitutions. They

may ‘likewise be applied to the stress- -energy-components of the
matter or of an electromagnetic system. ‘Hence, it T,5represerits the -

total stress-energy -components, i.e. quantities in which the corres-

ponding components for - the gravitaton field, the matter and the
_electromagnetic field are taken togethe1 We have for any linear '

transformation ,

1
[
V=TS

We shall- apply this to the case of a relativity twnsfmmatxon ‘

»whlch can be represented by the equatlons

o . b .
.1:', = cm:, —{— bew,, - .1;2 =, =, &, =a,+ = (122),

"with the relation

In doing so we shall'ass’ume that “the system, when deseribed in

the rectangular coordinates z,, ,, x, and w1th 1espect to the time a;,,,

" is in a stationary state and at rest._
Then we derive from (97)')

) We have ¢14 = gy = g3 = 0, -while all the other qua'ntities Jab ave independentlf
of z,. Thus we can say that the quantities gab and .gas,c are equal to zero when ~
among their 1nd1ces the numbe1 4 .oceurs an- odd number of times. The same may"

9Q ) and also of pro:,

- be sald of gab, gabse, dQ_ (accordmg 10 (11 )), 9
dg b ¢ a 3 0 Fab,cd

l

. ducts of two or more- of such’ quantltles As in the last two terms of (97) the’
indices @, b and “f. occur twice, these terms wdl vanish when only one of the

“indices ¢ and & has the value 4.

As.to the first term.of (97) we rerark lhat accordmg to the formulae 0f§32‘
each of the indices @, b and e occurs only once in the differential. coefficient of

Q with respect to gah,e, while other indices are repeated. As to the number of

-14 -

vZ'b:~——2(/cl)7okcmz>ék1 - (121,

@b =1 . . .. .. .. (129)




; r"—-—t"‘ 3—:;:0 t’f—t"";._“ =0, _
‘whlch means that in -the s_ystem (aJ ,, #,, x;) there are neither
momenta nor enexgy currents in the gravitation field. :
- We may  assume the same f'01 the -matter, so tha,t we have fon
~ the total stless -energy components in the system (2, «,, @y, a,)
T rER=E ——0 =37 =% =0.
Let -us now consider espeual]y the components ¢',4, ¢! and ¢
" in the' system (v, 2',, 'y, 2',). For these we fmd from (121) and (122) B

4

i bo, @b
oove=2g __‘“_34~ T = —abe ) —r—abcw . (124) :
: © - [ . ‘ :
S ‘3'4“:-'.—1)2" Vet L L o (125) -

Tt is thus seen in the first place that between the momentum in
the direction_ of 2, (—%',%). and the enelgy-cuuent in that dnectlon‘
: (‘3’41) thele exists the relation :

. o ,'3'41:— ¢ T'l"
well known from the theory of 1elat1v1ty o
Fmthel we have for the total enelg) in the s_) stem (w' !, &, al)

. 'E":fLA,A .rl‘d:v,da:a,.

~where " the 1ntegxat10n has. to be. pelfoxmed for a deﬁmte value of
~the tlme a',. On account of (122) we may write for ‘this

=—j""‘dw dw, d.'vs, . -

- whele we have to keep in‘ view a definite value ‘of the time Zye
If the value-(125) is substituted here and if we take ‘into con-
‘sideration that, the ‘state being stationary in the system (,, z,, z,, &,), -

| _fl;‘ da, dw, dz, =0
. E —=qaE, - »
1f E is t;he energ) ascubed to the system in the coordinates (w R, By, ).

'-By 1ntegratlon of the first of the expressions (124) we find in -the
:'same wa; for the total momentum 1n the . dlrecnon of &)

_'we have

——E . » - -

¢

times . which - e, I and’ the other mdlces occur we can thelefore say the same of
the’ ﬁrst term of (97) as of the other terms. The first term also is therefore zZero,
if no more than one of the two indices e and % has the value 4.

'l‘hai\t ¢y vanishes for e=j=4 is seen ir_nmediater. o ' .
" Proceedings Royal Acad.. Amsterdam. Vol. XX.
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§ 64. Equations (122 show that in the coordinates (', #',, «',, &',)
. v . be o, N v
the system has a velocity of translation — in the direction of .
2 2

If this velocity is denoted by v, we have according to (123)

1.
a4 = — .
[/ -2
[ N
If therefore we put .
E
M e 2
c
we find
‘ L M My

= S (126)
= [/1—;3 > -
When the system moves as a whole we may therefore ascribe

to it an energy and a momentum which depend on the velocity of

translation in the way known from the theory of relativity. The
quantity M, to which the cnergy of the gravitation field also con-
tributes a certain part, may be called the “mass” of the system.

From what has been said in §62 it follows™ that within certain

limits it depends on the way in which the system and the gravita-

tion field are described.

It must he remarked however that, if for the gravitation field we
had chosen the stress-energy-tensor t, (§ 52), the ¢otal energy of the
system even when in motion would be zero. The same would be
true of the fotal momentum and we should have to put M = 0.

At first sight it may seem strange that we may arbitrarily ascribe
to the moving system the momentum determined by (126) or a momen-
tum O; one might be inclined to think that, when a definite system
of coordinates has been chosen, the momentum must have a definite
value, which might be determined by an experiment in which' the
system is brought to rest by ‘“‘external” forces. We must remember
however (comp. § 52) that in the theory of gravitation we may
introduce no ‘‘external”’ forces without considering also the material
system S in which they originate. This system &’ togethel with
the system S with which we were orviginally concerned, Will form
an entity, in which there is a gravitation field, part of which is
due to & (and a part also to_the simultaneous existence of Sand S,
There is no doubt that we may apply the above considerations to
the total system (S, S) without heing led into contradiction with
any observation.
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