Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J.J. van Laar, On the Critical Temperature and Pressure of Mercury and Phosphorus, in: KNAW, Proceedings, 20 I, 1918, Amsterdam, 1918, pp. 138-148

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Physics. - "On the Critical I'emperature and Pressure of Mercury and Phosphorus." By Dr. J. J. van Laar. (Communicated by Prof. H. A. Lorlntz).
(Communicated in the meeting of April 27, 1917).

A. Mercury.

1. In a previous paper ${ }^{1}$) I calculated the value 1260° abs. $\left(987^{\circ} \mathrm{C}\right.$.) for the critical temperature of mercury, and 192 atm . for the critical pressure.

We namely calculated as most probable value from the densities of the compounds $\mathrm{HgCl}_{2}, \mathrm{HgBr}_{2}$ and HgI_{2} (loc. cit. p. 7-8)for \dot{b}_{k} for mercury per Gr. atom the value 150.10^{-5}, and further for $V a_{k}$ fiom the values of T_{k}, found by Rotinjanz (Z. f. ph. Ch. 87, p. 153) for these compounds, the mean value (likewise per Gr. atom) $11,0.10^{-2}$. (loc. cit. p. 8). With these values of $V a_{k}$ and b_{k} we further calculate from the formulae

$$
R T_{k}=\frac{8}{27} \lambda \frac{a_{k}}{b_{k}} \times n \quad ; \quad p_{k}=\frac{1}{27} \lambda \frac{a_{k}}{b_{k}^{2}},
$$

with $R=1: 273,1, i={ }^{27} / 28=0,964, n=2$, the values

$$
T_{k}=1260 \quad ; \quad p_{k}=192 \mathrm{~atm} .
$$

All this on the supposition that (saturated) mercury vapour at T_{k} is bimolecular ($n=2$); a supposition, to which the course of the vapour tensions between 0° and $500^{\circ} \mathrm{C}$. leads us necessarly. (Cf. also loc. cit. p. 12-16).
2. Since then the vapour pressure observations of Cailletet, Colardeau and Rivière (1900) have become known to me, which go up to $880^{\circ} \mathrm{C}$. With

$$
\log \frac{p_{k}}{p}=f\left(\frac{T_{k}}{T}-1\right), \quad \text { or } \quad f+\log p_{k}=\log p+\frac{f T_{k}}{T}
$$

we calculate for $f T_{k}$ the values $3004,2979,3233,3107$ (mean 3080). from the values $8,0,22,3,50,102,162 \mathrm{~atm}$. at resp. $500^{\circ}, 600^{\circ}$, $700^{\circ}, 800^{\circ}$, and $880^{\circ} \mathrm{C}$.; always from a corresponding couple of

[^0]values of T and p. (f between two observations supposed to be constant). And for $f+\log p_{h}$ the values $4,789,4,760,5,022,4,905$; evidently the value 4,880 for $f+\log p_{k}$ corresponds with the mean value 3080 found just now for $f I_{k}^{\prime}$.

The correction quantity λ is represented (compare also loc. cit. p. 4) by the expression $\lambda=\frac{27}{8 \gamma-1}\left(\frac{\gamma}{\gamma+1}\right)^{2}$. And as γ, the coefficient of direction of the straght connecting line between D_{k} and D_{0}, is given by the approximative formula $2 \gamma=1+0,04 \vee T_{k}$, we find, with about $V T_{k}=34,5$, for 2γ the value 2,38 (which at the same tıme indicates the ratio $b_{k}^{\prime}: b_{0}$), i. e. 1,19 for γ. Therefore λ becomes $=0,936$, i.e. somewhat smaller than we assumed formerly (0,964 , see above).

If now x is the dissociation degree of the Hg_{2}-molecules at T_{k}, there are on an average $n=2:(1+x)$ atoms available per molecule (the association degree of Hg_{1}), and we have evidently:

$$
\left.\begin{array}{l}
\left.T_{k}=273 \times \frac{8}{27} \times 0,936 \times \frac{(11(1-x)+36 x)^{2} \cdot 10^{-4}}{150 \cdot 10^{-5}} \times \frac{2}{1+x}\right) \\
p_{k}=\frac{1}{27} \times 0,936 \times \frac{(11(1-x)+36 x)^{2} \cdot 10^{-4}}{(150)^{2} \cdot 10^{-10}}
\end{array}\right\},
$$

becanse the quantity $V a_{k}$ is $=11.10^{-2}$ per Gr. molecule for Hg molecules bound to Hg_{2}; much higher on the other hand for the free mercury atoms, viz. 36.1^{-2} (ef. IV in These Proc. Vol. XIX, p. 317, where we found for bismuith, which stands in the same horizontal row as mercury, 35,6), so that $V a_{k}$ becomes on an average $=11(1-x)+36 x$ per Gr. atom.

Hence we find:

$$
\begin{gathered}
T_{k}=10,10 \times \frac{(11(1-x)+36 x)^{2}}{1+x} \\
\log p_{k}=0,1877+2 \log (11(1-x)+36 x)
\end{gathered} ;
$$

with $f T_{k}=3080, f+\log p_{k}=4,880$ therefore (see above):

$$
f=4,692-2 \log (11(1-x)+36 x),
$$

so that x can be found from

$$
\frac{10,10()^{3}}{1+x}=\frac{3080}{4,692-2 \log (\quad)},
$$

or from

$$
[4,6922 \log (11(1-x)+36 . x)] \times(11(1-x)+36 x)^{2}:(1+x)=305 .
$$

If now $v=0$ for T_{k}, i. e. everything bimolecular, this becomes with $10^{2} \cdot V a_{k}=11$:

$$
316=305
$$

which, considering the uncertainties in the values of b_{k} and $V a_{k}$ calculated from the halogen compounds, is already very fair agreement. With $V a_{k}=10,8$ we should have found $306=305$.
With $x=0,1$ we should find $393=305$ with $V a_{k}=9,7+3,6=13,3$, which therefore does not agree at all. And for still higher values of x the difference would have become greater and greater.

The least dissociation of Hg_{2} to Hg_{1} for T_{k} is accordingly quite excluded, so that we must assume that the mercury is perfectly bimolecular there. The liquid mercury is à fortiori bimolecular, the saturated mercury vapour on the other hand will be $\hat{H g}_{1}$ only at lower temperatures (where the large volume prevails); at higher temperatures, however, in consequence of the decreasing volume, it will become Hg_{2} in ever ancreasing degree (cf. also loc. cit. p. 3-4).
3. With the somewhat lower value for λ, viz. $\lambda=0,936$, and with $b_{k}=150 \cdot 10^{-5}, V a_{k}=10,8 \cdot 10^{-2}$ we now find:

$$
T_{k}=10,10 \times 116,6=1178^{\circ} \text { abs. }=905^{\circ} \mathrm{C}^{-}
$$

It is therefore seen that at 880° Cailletht c.s. have been exceedingly near the critical temperature of mercury, viz. $\pm 900^{\circ} \mathrm{C}$.; it lies possibly scarcely 20° higher-than the highest temperature at which they have still carried out a rapour pressure determination (880° C.).

Would it not be desirable in virtue of this fact to determine the critical temperature of mercury at last experimentally? As it was possible to Rotinjanz to determine those of the mercury halides, which lie resp. at $.976^{\circ}, 1011^{\circ}$ and 1072° abs., it may also be possible to come to $\pm 1200^{\circ}$ abs. (at the melting point of silver, viz. 960° C., we are already far above the critical temperature of mercury).

The only scientist that calculated a fairly plausible value for T_{k} for Hg, was Happei (Ann. der Ph. (4) 13, 351 (1904)), who gave 1370° abs., i. e. only 100°.higher than was calculated by me in 1916 (1260° abs.). But the values of Königsberger (1912), viz. 1270° C. (1543 abs.) and of Bender (1915), viz. $>1500^{\circ} \mathrm{C} .\left(>1773^{\circ}\right.$ abs.) are very certainly too high. As $f T_{k}$ not far below T_{k} amounts only to $=3080$ (this follows with absolute certainty from the vapour pressure observations, see above), the value of the factor f would at bigh temperatures be only $=2$, or even 1,7 , instead of approaching 2,8 (see below), whereas this factor is already about 2,7 or 2,6 between 0^{\prime} and $100^{\circ} \mathrm{C}$. - still apart from the fact that
then we should find quite improbable values for a_{k} and $b_{k}{ }^{1}$).
We calculate for p_{k} :

$$
\log p_{k}=0,1877+2,0668=2,2545
$$

i. e.

$$
p_{k}=180 \mathrm{~atm}
$$

In order to get somewhat more certainty concerning the values of T_{k} and p_{k}, and also of $V a_{k}$ and b_{k}, we can still make the following calculation.

From $f T_{k}=3080, f+\log p_{k}=4,880$ follows namely with f resp. $=2,5,2,6$ and 2,65 :

$$
\begin{array}{r|r|r|r}
f=2,50 & T_{k}=1232 & \log p_{k}=2,380 & p_{k}=240 \\
2,60 & 1185 & 2,280 & 191 \\
2,65 & 1162 & -\quad 2,230 & 170
\end{array}
$$

From $8 n \cdot b_{k}=R T_{k}: p_{k}$ follows then with $n=2, R=1: 273$ for b_{k} (per Gr. atom) $b_{k}=T_{k}: 4370 p_{k}$, i. e. b_{k} resp. $=117,142$ and 156.10^{-5}.

With these values for b_{k} we get then π_{k} resp. $=95,2,111,3$, $119,6.10^{-4}$, i. e. $V a_{k}$ (per Gr. atom) resp. $=9,76,10,55$ and 10,94.10-2, from $T_{k}=151,5 a_{k}: b_{k}$.

It appears from, this most convincingly that - as b_{k} must lie in the neighbourhood of $150.10^{-5}, V a_{k}$ in that of 11.10^{-2} - the value 1232 abs. is pretty well excluded for T_{k}, and that we have therefore the choice between from 1185 to 1162. Retaining $b_{k}=150.10^{-5}$, we get $V a_{k}=10,77 \cdot 10^{-2}$, as we assumed above (rounded off 10,8), and further:

$$
T_{k}=1172 \text { abs. }=899^{\circ} \mathrm{C} . ; \quad p_{k}=179 \mathrm{~atm} .
$$

But it is also possible that T_{k} becomes somewhat higher, e.g. 1185°, to which corresponds $p_{k}=191 \mathrm{~atm}$ Then the value of $V a_{k}$ would, however, be still lower than that which we calculated from Hg_{1}, viz. $10,7 \cdot 10^{-2}$ (loc. cit. p. 8), and that of b_{k} would become $=142.10^{-5}$, i. e. equal to that which was calculated from this same compound. But these were the very lowest values. Those which were calculated from $\mathrm{Hg} \mathrm{Cl}_{2}$ and $\mathrm{Hg} \mathrm{Br}_{2}$, were both higher (loc. cit. p. 8).
${ }^{1}$) With regard to the value of a, I have convinced myself that from the compressiblity of mercury at $0^{\circ}, 110^{\circ}$, and $192^{\circ} \mathrm{C}$. follows about the same value of a as was calculated from the mercury halides for $a h$. And with regard to b_{k}, even on the supposition that Hg_{g} for liquid mercury has the stoechiometric properties of mercuro compounds, a value would follow from the densities of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Hg}_{2} \mathrm{Br}_{2}$ for Hg (per Gr . atom) in Hg_{2}, which is only little less than was found for Hg in the mercuri compounds. (viz. aboul 140.10^{-5} instead of $150^{\prime}, 10^{-5}$),
4. For the successive values of fan der $\mathrm{W}_{\mathrm{anj}}$ ' vapour pressure factor f we now tind between 0° and $880^{\circ} \mathrm{C}$. from the following vapour pressure observations (at lower temperatures mean values) $\begin{array}{cccccccccc}0^{\circ} & 100^{\circ} & 200^{\circ} & -300^{\circ} & 400^{\circ} & 500^{\circ} & 550^{\circ} & 600^{\circ} & 650^{\circ} & 700^{\circ} \\ p=24.10-5 & 0,2775 & 17,13 & 246(\mathrm{~mm} .)^{\circ} & 2,05 & 8,0 & 13,8 & 22,3 & 34 & 50\end{array}$ $\begin{array}{llll}750^{\circ} & 800^{\circ} & 850^{\circ} & 880^{\circ} \mathrm{C} .\end{array}$ $\begin{array}{lllll}72 & 102 & 137,5 & 162 & \text { (atm.) }\end{array}$
the following values.

$\log \frac{p_{k}}{p}=8,7534$	5,6903	3,8998	2,7427	1,9410	1,3497	1,1129
0,9045	0,7213	0,5538	0,3955	0,2442	0,1145	0,0433
$\frac{T_{k}}{T}-1=3,2930$	2,1421	1,4778	1,0454	0,7415	0,5162	0,4241
0,3425	0,2698	0,2045	0,1457	0,0923	0,0436	0,0165
$f_{10}=2,66$	2,66	2,64	2,62	2,62	$\begin{aligned} & 2,61 \\ & (\mathrm{~min}) \end{aligned}$	2,62
2,64	2,67	2,71	2,71	2,65	2,63	2,62
$f_{e}=6,12$	6,12	6,08	6,04	6,03	6,02	6,04
6,08	6,15	6,24	6,25	6,09	6,05	6,04

The value of p at $0^{\circ} \mathrm{C}$. has probably been taken still somewhat too high; we assumed 0,00024 for it (Hertz gave 0,00019 , v. d. Plaats 0,00047). And especially for the values at the higher temperatures the slghtest error in the vapoùr pressure will make itself greatly felt in the calculated values of f; the same thing bolds with respect to only an minimum error in the calculated - values of p_{k} and T_{k}. If we assume e.g. $p_{k}=180 \mathrm{~atm}$. instead of $179 \mathrm{~atm} ., \log p_{k}$ becomes 24 units in the last decimal greater, which would cause the values of f at the bighest three temperatures to rise immediately to $2,67,2,68$, and 2,77 (with nep. log. $6,15,6,17$, $6,38)$. Then b_{k} would get the value 149.10^{-5} instead of 150.10^{-5}, and $V a_{l}$ would become 10,74 instead of 10,77 . But in any case the course of f is pretty regular; this quantity decreases from about 2,66 at $0^{\circ} \mathrm{C}$. to 2,61 (the minimun value) at $500^{\circ} \mathrm{C}$., after which it increases again to 2,7 or 2,8 at the critical temperature. The minimum hes at $T=0,66 T_{k}$.

The value of f at the critical temperature might have been expected ligher than 6,4 or 6,5 (nep: log.), since f_{h} is equal to 8γ. accordung to our former considerations, when neither a nor b are functions of the temperature. Now γ is about $=1,2$, hence 8γ would be $=9,6$. But we should bear in mind that exactly in the case of mercury a would be a temperature function in a high degree. For only through the predominant influence of the volume does Hg become $\mathrm{Hg}_{\mathrm{a}}^{\prime}$ at higher temperatures, whereas if the temperature influence only could malke itself felt, Hg_{9} would dissociate to Hg_{1},

$$
\%
$$

which would cause V a to rise from about 11 to 36 . The value of $\left(\frac{d a}{d t}\right)_{v}$ at T_{k}^{\prime} will, therefore, be very great positive, and this will lower the value of $\left(\frac{d p}{d t}\right)_{v}$ at the critical temperature considerably. Hence the value of $f_{h}=\left(\frac{I}{p} \frac{d p}{d t}\right)_{k}$ will also be considerably lower than the 'normal value. In our case the expected value is diminished from 9,6 to 6,5 .

As T_{k} is now found $=1172^{\circ}$ abs. instead of 1260° abs., as I calculated before, the ratios $T_{k}: T_{s}$ and $T_{k}: T_{n}$ will also be somewhat lower. For the former we find $1172^{\circ}: 630=1,86$, and for the latter 5,0 . So high a value for the ratio $T_{k}: T_{t}$ is only found for $\mathrm{He}(5,2)$ and for Bismuth $(5,5)$ of the elements calculated by us up to now. But we shall soon see (in a following paper'), that $T_{k}: T_{t}^{\prime}$ is also $=$ over 5 for tin, lead and the alkali metals. A pretty high value of $T_{k}: T_{s}(1$. e. $>1,7)$ is also found for Argon, Krypton; Xenon, Niton (1,73-1,79), for the Halogenides (1,75 to 1,72), for $\mathrm{O}_{2}(1,71)$, for P, Sb and $\mathrm{Bi}(1,75-1,77)$, but 1,86 was not reached yet. Among the compounds we mention $\mathrm{HCl}(1,71), \mathrm{HBr}$ $(1,78), \mathrm{HI}(1,79), \mathrm{H}_{2} \mathrm{O}(1,71), \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{Se}(1,77), \mathrm{PH}_{3}(1,75)$, $\mathrm{CS}_{2}(1,71), \mathrm{CH}_{4}(1,75), \mathrm{H} . \mathrm{COH}(1,97)$, while the three mercury halogenides, examined by Rotinjanz, give 1,69 to 1,71 .
5. - In conclusion I will still point out that $b_{k}=150 \times 10^{-5}$ does not only ensue from the densities of the mercury halogen compounds (see $\$ 1$), but also from the density of mercury itself. For it follows from Dewar's determinations (1902), who found the value 14,382 for the density at 188° C., and those of Marleft, who gave 14,193 for the density at -39°, that the limating density D_{0} at about -250° (below this no appreciable volume diminution takes place) will amount to $14, \pm 6$. 200,6 Gr. of mercury then occupy a space of $200,6: 14,46=13,87$ cem., i. e. $=13,87: 22412=61,9.10^{-5}$ in so called normal unities. This is, therefore, $b_{0}=v_{0}$. Now according to one of our formulae $b_{k}: b_{0}=2 \gamma$, hence $b_{k}=61,9: 10^{-5} \times 2,4=$ $=149.10^{-5}$, quite identical to the value which we found above ($\$ \overline{4}$) with $p=180 \mathrm{~atm}$. We may, therefore, put the valùe of b_{k} for mercury at 150.10^{-5} with great certainty.

The value of D_{k} is found from the formula $D_{k}=D_{0}: 2(1+\gamma)=$ $=14,46: 4,4=3,3$.

Recapitulating we probably have for mercury.
$T_{k}=1172^{\circ}$ abs. $\left(\pm 900^{\circ}\right.$ C.) , $p_{k}=180 \mathrm{~atm} \quad, \quad d_{k}= \pm 3,3$
$b_{k}=149 \cdot 10^{-5}, V a_{k}=10,74.10^{-2}, 2 \gamma=b_{k} b_{0}=2,4 ; f_{k}= \pm 6,4$
$T_{k}: T_{s}=1,86 \quad ; \quad T_{k} . T_{t}=5,0$.
These values are pretty certann, the critical temperature lies - taking the vapour pressure observations between 500° and 880° into consideration - almost as much as 100° lower than I had calculated in 1916, and only 20° Figher than the highest temperature at which Cathewiet c.s. have carred out therr vapour pressure determmations.

That it seems at lower temperalures that the critical temperature of mercury lies much lugher (as among others Kontgsberger and Bender supposed), is owing to this that the expansion of liquid mercury is abnormally small at those temperatures ($0^{\circ}-300^{\circ} \mathrm{C}$.). But this is to be attributed to still unknown disturbing curcumstances (association eg.). As little as we may conclude to entrely faulty critical values from the abnormal expansibility of water in the neighbourhood of $4^{\circ} \mathrm{C}$. (and stull far above it), or of Helium (where likewise a maxımum density was observed), may we do so for mercury. We shall come back to this later on.

B. Phosphorus.

1. From the vapour pressures of liquid phosphorus, found by himself between 169° and 634° (These Proc of Oct. 17, 1914 and Jan. 18, 1915; Z. f. ph. Chem. 88 (1914), 91 (1916)), Smits extrapolated the value $82,2 \mathrm{~atm}$. for the critical pressure, on the assumption of the value $695^{\circ} \mathrm{C}$., found by $\mathrm{W}_{\text {abl }}$ for the critical temperature of Phosphorus. It is easy to see that this valne is too low. If from the vapour pressure formula
$\log \frac{p_{k}}{p}=f\left(\frac{T_{l}}{T}-1\right)$ with $T_{k}=695+273,1=968,1$ we, namely, calculate the values of f at ten different temperatures, we find with $p_{k}=80$, resp. 90 atm .

From thas it is erident that the first row of values (which * correspond to $p_{k}=80 \mathrm{~atm}$.) cannot be correct. For then f would steadily decrease from the value 2,77 at 169° up to the critical temperature, where the value would even become $<2^{1}$, whereas it is known that f always passes through a mininuum at $T=$ about 0,7 or $0,8 T_{k}$, after whtch it increases ăgan to T_{k}. It is easily seen that also with $p_{k}=82 \mathrm{~atm}$. the decrease has not been checked up to T_{k}, and that not until 90 atm . 1 s reached a suitable and possible course for f is obtained. A further calculation, about which presently more, has even taught me that the correct value of p_{k} is still somewhat higher, viz. about 95 atm . - at least when we continue to assume $T_{k}=968,1$.

That Smirs extrapolated a too low value for p_{k}, is owing to this that he used an invalid formula for this extrapolation; a formula namely, which is only valid at temperatures that lie far from the critical temperature - and which can therefore not serve to extrapolate up to the critical temperature.

For in the well-known relation of Clapeyron

$$
\frac{d p}{d t}=\frac{\lambda}{T \Delta v}
$$

$\Delta v=v_{2}-v_{1}$ can be replaced by v_{2} only at low temperature, disregarding the liquid volume; and only at low temperatures $v_{2}=R T p$ may be put, on the assumption that the vapour follows the law of Boys, - so that only then this formula becomes:

$$
\frac{d \log p}{d t}=\frac{\lambda}{R T^{2}}
$$

In which λ represents the (total) heat of evaporation. In imitation of so many other authors, who are still of opinion that this last formula is of general validity, because van 'r Horf and others always used this limiting formula for researches where the above mentioned conditions are fulfilled, Smirs assumed that the formula with $d \log p$ would continue to be valid up to the critical temperature, when it was only assumed thas λ decreases linearly with the temperature up to T_{k}. This now is certainly pretty accurately fulfilled at lower temperatures, but near $T_{k} \lambda$ suddenly decreases rapidly and becomes $=0$ at the critical temperature. On Smits' assumption of linear decrease, however; λ would retain a large finite value still at T_{k} !

But we need not speak about this any longer, because, as we observed, the whole formula, the linear decrease of λ included, holds
only for lower temperatures. And this shows at the same time the incorrectness of the extrapolation carried out by Smirs.

At all temperatures, however, van der Waals' vapour pressure holds, which may be written in the form:

$$
\begin{equation*}
\log p=\left(f+\log p_{k}\right)-\frac{f T_{k}}{T}, . \tag{a}
\end{equation*}
$$

in which f is still a temperature function. When we compare this expression with the integrated formula $d \log p=$ etc., on the assumption of $\lambda=\lambda_{0}-\varphi R T$, i. e. with

$$
\begin{equation*}
\log p=C-\frac{\lambda_{0}}{R T}-\varphi \log T=C-\frac{\left(\lambda_{0}: R\right)+\varphi T^{\prime} \log T}{T}, \tag{b}
\end{equation*}
$$

it appears that in the formula used by Smirs, which - we repeat it - holds only for relatively low values, the constant C will be $=f_{0}+\log p_{k}$, and that $\lambda_{0}=f_{0} R T_{k}$. But though the form of the last formularshows resemblance with Van der Waals' formula, the numerator of the term with $1 / T$ will be in no connection at all with λ at higher temperatures, as λ will approach 0 at \mathcal{F}_{k}, while the numerator mentioned remains finite, and is virtually $=f T_{k}$, according to $V_{a n}$ der $W_{\text {alds' }}$ formula.
2. On the assumption of the quadratic relation

$$
f=f_{k}-\alpha \frac{T_{k}-T}{T_{k}}+\beta \frac{\left(T_{k}-T\right)^{2}}{T_{k}^{2}}
$$

for the portion of the vapour pressure curve between the minimum and the critical temperature, I calculated the values $\alpha=11,71$, $\beta=26,62, f_{k}=3,77, p_{k}=95,3$ for the four unknown quantities α, β, f_{k}, and p_{l} from the four vapour pressure observations at 504°, $550^{\circ}, 593^{\circ}$, and 634°.
However - neither the values $T_{k}=968,1, p_{k}=95$, nor even with the somewhat lower pressure 90 atm ., can satisfy us., It is namely almost sure that at $695^{\circ} \mathrm{C}$., according to the determinations of the density of Stock, Gibson and Stamm (1912), the phosphorus vapour is still quite normal, i.e. $=P_{4}$, even at the low pressure of $75 \mathrm{~m} . \mathrm{m}$. And this will à fortion be the case at a pressure of 80 à 90 atm . (i.e. at a total pressure, internal and external pressure combined, of $f_{k} \times 80$ or $90= \pm 640$ or 720 atm .). The same thing follows also from Preuner and Brockmòmer's determinations (Z. f. ph. Chem. 81, p. 159 (1912)).

From the formula $b_{k}=R T_{k}: 8 p_{k}$ the value 465.10^{-5} would now follow for b_{k} with $T_{k}=968,1, p_{k}=95,3$; and with $p_{k}=90$ the value 492.10^{-5}. Both most probably too low, as $4 \times 140=560.10^{-5}$ may be expected.

The only way out is that the critical temperature $695^{\circ} \mathrm{C}$. determined by $\mathrm{W}_{\text {AHL }}$ is about 20° or 25° too high, and that 675° or $670^{\circ} \mathrm{C}$. is perhaps the correct temperature.

When the above given calculation (with $f=f_{k}-\alpha$ etc.) is now repeated for different values of T_{k}, we find e.g.

$$
\begin{array}{r|r|r|r|r|r}
\tau_{k}=695^{\circ} \mathrm{C} & \boldsymbol{\alpha}=11,71 & \beta=26,62 & f_{h}=3,77 & p_{h}=95,3 & b_{h}=465 \\
680^{\circ}{ }_{h} & 10,31 & 25,80 & 3,485 & 83,6 & 522 \\
670^{\circ}{ }^{\prime} & 9,40 & 25,26 & 3,31 & 77,1 & 560
\end{array}
$$

Only the last ralue of T_{k}, viz. 670°, gives a plansible value of b_{k} with the corresponding value of $p_{k}=77,1 \mathrm{~atm}$. But as this value for phosphorus is not perfectly certain, it is also possible that an intermediary value, e.g. 675°. C., must be assumed. The value of p_{k} would then become about 80 atm ., and b_{k} a little more than 540.10^{-5}. With a value 2% lower, i.e. 948,7 abs. instead of 968,1 abs., or $675,6 \mathrm{C}$., and with $p_{k}=80 \mathrm{~atm}$. we should find the following values for f for the same ten temperatures as in $\$ 1$.

$\log \frac{p_{k}}{p}=3,3010$	2,6021	2,1707	1,7632	1,3143	1,0362	0,5376	0,3846	0,2577	0,1352
$\frac{T_{k}}{T}-1=1,1460$	0,9638	0,8068	0,6595	0,5088	03903	0,2209	0,1527	0,0954	0,0459
$f=2,88$	2,70	2,69	2,67	2,58	2,65	$\begin{aligned} & 2,43 \\ & (\mathrm{~min}) \end{aligned}$	2,52	2,70	2,95

The value at $409^{\circ}, 3$, still determined by Smirs with difficulty between the two series of observations, is rather divergent, as was to be expected. We find namely 2,65 instead of 2,50 about ; but the other values all form actually one single series, so that the liquid white phosphorus can be considered with perfect certanty as the melastable continuation of the liquid red phosphorus below the triple point at $589^{\circ}, 5$ - which has been proved irrefutably by Smits.

We have, therefore, with some probability for the critical data of phosphorus:

$$
T_{k}= \pm 948,1 \mathrm{abs} \cdot \pm 675^{\circ} \mathrm{C} \cdot ; \quad p_{k}= \pm 80 \mathrm{~atm} .
$$

- At T_{k} the value of f will then approach 3,4 (with nep. log. it will approach 7,8). For $b k$ we find 542.10^{-5}, i.e. 135.10^{-5} per
(Gr.atom ${ }^{1}$); and for $a_{k}=R T_{k} \times(27: 8 \lambda) \times b_{k}$ the value 0,0665 with $\lambda=0,955(\gamma=1,09)$; cf. also IV, These Proc. of June 24, 1916, p. 307), so that $V a_{k}$ becomes $=25,8$, i.e. 6,45 . 10^{-2} per Gr.atom.

The value 7,8 . found for f_{k} is somewhat lower than would follow from $f_{k}=8 \gamma$, viz. 8,7 , or 3,8 with ordinary \log.

The minimum lies at $\left(T_{k}-T\right): T_{k}=\alpha: 2 \beta=0,193$, i.e. at $T=$ $=0,81 T_{k}^{\prime}$, or 183° lower than $T_{k ;}^{\prime}$ hence at $492^{\circ} \mathrm{C}$., only slightly below 504°. C. And this minimum value of f will evidently be $=f_{k}-\left(\iota^{2}: 4 \beta\right)=3,40-(97,12: 102,1)=2,45$. We found above the slightly lower value 2,43 with the value of 80 atm. for p_{k}, which had been taken somewhat too low ($80,7 \mathrm{~atm}$. corresponds namely with $675^{\circ}, 6$).

Fontanivent sur Clarens, March 1917.

[^1]
[^0]: 1) On the Fundamental Values of the Quantities b and $V a$ etc. II. These Proc. of March 25, 1916, p. 4 and 9.
[^1]: ${ }^{1}$) From the critical data of PH_{3} would even follow 131. with $\mathrm{H}=34$. (cf. I; These Proc. of Jan. 29, 1916, p. 1224). But these data are possibly not absolutely accurate either.

