Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J.J. van Laar, On the Fundamental Values of the Quantities b and V a for Different Elements, in Connection with the Periodic System. VI. The Alkali Metals, in: KNAW, Proceedings, 20 I, 1918, Amsterdam, 1918, pp. 505-519

Physics. - "On the Fundamental Values of the Quantities b

 and $V a$ for Different Elements, in Connection with the Periodic System. V1. The Alkali Metals". By Dr. J. J van Laar. (Commmicated by Prof. H. A. Lorentz).(Communicated in the meeting of June 30, 1917)

1. After the group of the noble gases, the halogens, the elements of the oxygen and nitrogen groups, and those of the carbon group, we will, for practical reasons, first treat the group of the alkali metals, and not until after this can we treat the intermeduate Beryllium and Borium groups, and the remaining minor groups with some certainty.
The task undertaken by us to compute with some certainty the values of the critical quantities, and those of b_{k} and $V^{\prime} a_{k}$, with the required accuracy, gets more and more difficult. For the alkali metals e.g. compounds of which the boiling point or the critical temperature are known, are entirely wanting, and thus we are deprived of a valuable test. Nothing is known beforehand that could be used in any way as a foundation; everything must be calculated anew, estimated, weighed, and considered. For an element as recalcitrant as e.g. Carbon or Silicium, the critical temperature of which is quite inaccessible, we know at least the value of b_{k} from compounds, from which - in connection with other data - the values of a_{k}, T_{k} and p_{k} can be calculated with almost mathematical certainty.

This is not the case for the alkali metals. Here nothing is known bèforehand concerning b_{k}, and in most cases we shall therefore have to be satisfied with defining limits between which the required values of b_{k} and $V a_{k}$ must lie. Fortunately these limits are comparatively narrow, particularly when the course of the vapour tension curve is sufficiently known, so that the values calculated by us can yet lay claim to a satisfactory degree of accuracy.

It will appear that for the alkali metals we are very near the truth with respect to the critical temperature, when we multiply the absolute temperature of the melting point by $51 / 3$, and that of the boiling point by 1,7 . Thus we have the following survey.

Proceedings Royal Acad. Amsterdam. Vol. XX.

	$L t$	$N a$	K	$R b$	$C s$
$T_{t r}=$	4521	370,6	335,6	311,6	301,3 $T_{s}=$
$T_{t r} \times 5^{1 / 3}=$	-	1156,0	1035,3	971,1	943,1
$T_{s} \times 1,7=$	-	1977	1790	1652	1607
$T_{t r} \times 4^{2 / 3}=$	-	1965	1750	1651	1603
$T_{s} \times 1,5=$	-	1734	1554	1457	1415

And now we shall see in what follows that - at least for $N a$, $K, R b$ and $C s$ - the real values of T_{k} he between those obtained with the factors $5^{1} / 3$ and 1,7 , and those obtained with the factors $4^{2} / \mathrm{s}$ and 1,5 . Generally nearer to the first group. Besides we know already from former considerations that the factor by which the absolute boiling point temperature must be multiplied to obtain the absolute critical temperature, lies in the neighbourhood of 1,7. This factor can also be smaller, but it seldom becomes smaller than 1,5 . For Lithium, there is reason to suppose that T_{k} lies probably higher than would follow from $T_{t r} \times 5^{1} / 3$. The factor is there with pretty great certainty $=5,6$.

It is certainly rather remarkable that the ratio $T_{s}: T_{t r}$ is so constant for the alkali metals, viz. about $31 / 8$.
2. Lithium. The melting point lies at $1790^{\circ} \mathrm{O} .=452,{ }^{\circ} 1 \mathrm{abs}$. According to the above we may expect the critical temperature between $452,1 \times 5^{1 / 3}=2411^{\circ}$ and $452,1 \times 5=2713^{\circ}$ abs. We shall perform the subjoined calculations for both values of T_{k}, rounded off to 2410° and 2700°.

The value of γ follows from our formula $2 \gamma=1+0,038 \vee T_{k}$. It gives with $V T_{k}^{\prime}=49,09$ to 51,96 the values 2,865 and 2,975 , i.e. $\gamma=1,43$ to 1,49 . This is accordingly the (reduced) coefficient of direction of the straight diameter between D_{k} and D_{0}.

From formula $\lambda=\frac{27}{8 \gamma-1}\left(\frac{\gamma}{\gamma+1}\right)^{2}$, with $\frac{\gamma}{\gamma+1}=0,589$ or 0,598 , hence $\left(\frac{\gamma}{\gamma+1}\right)^{2}=0,3 \pm 7$ or 0,358 , and with $8 \gamma-1=10,46$ or 10,90 we further find the values $\lambda=0,895$ or 0,886 for the factor λ in $R T_{k}=\frac{8}{27} \lambda \frac{a_{k}}{b_{k}}$ and $p_{k}=\frac{1}{27} \lambda \frac{a_{k}}{b_{k}{ }^{2}}$. This renders $\varphi=\frac{8}{27} \lambda: R$ with
$R=1: 273,1$ resp. $=72,44$ to 71,67 (the value $\frac{8}{27}: R$ is $=80,915$).
Let , us now calculate the value of b_{k}. From $b_{k}: b_{0}=2 \gamma$ follows with $b_{0}=v_{0}=1: D_{0}$:

$$
b_{k}=\frac{2 \gamma}{D_{0}}, \quad \text { or }=\frac{2 \gamma \times A}{D_{0} \times 22412},
$$

when b_{k} is ralculated in "normal" units, and per Gr. atomic weight. We must, therefore, know D_{0}. From the relation for the ideal straight diameter (while namely the vapour density can be neglected) $D=D_{0}-2 \gamma D_{l k} \frac{T}{T_{k}}$ follows with $D_{k}=\frac{D_{0}}{2(1+\gamma)}$:

$$
D=D_{0}\left(1-\frac{\gamma}{1+\gamma} \frac{T}{T_{k}^{\prime}}\right) .
$$

Unfortunately, however, the liquid density for Lithium is unknown But $D=0,5935$ holds for solid Lithium at $15^{\circ} \mathrm{C}$. For liquid Lithium D is therefore slightly smaller than this value, perlaps 2% smaller. Thus we have:

$$
\left.\begin{array}{rl}
<05935 & =D_{0}\left(1-0,589 \times \frac{288}{2410}\right)=0,930 D_{0} \\
\text { or } & =D_{0}\left(1-0,598 \times \frac{288}{2700}\right)=0,936 D_{0}
\end{array}\right\}
$$

so that D_{0} becomes $<0,638$ or $<0,634$ (according as $T_{k}=2410^{\circ}$ or 2700° abs.) Hence

$$
\left.\begin{array}{r}
b_{k}>\frac{2,865 \times 6,94}{0,638 \times 22412}=\frac{19,88}{14310}=139 \cdot 10^{-5} \\
\text { or } b_{k}>\frac{2,975 \times 6,94}{0,634 \times 22412}=\frac{20,64}{14210}=145 \cdot 10^{-5}
\end{array}\right\}
$$

The value of b_{k} can therefore be at most 2% greater, i.e. from 142 to 148.10^{-5}. Now $b_{k}=55$ for $F,=70$ for $0,=85$ for N, $=100.10^{-5}$ for C.; we might, therefore, expect for B the value 115 , for $B e 130$, and for $L i$ the value 145.10^{-5}. If this last value is correct, T_{k} wonld have to lie between $\overline{2400^{\circ}}$ and 2700° for Lithium, e. g. it would be abont 2550°.

Now the value a_{k} follows from

$$
a_{k}=\frac{T_{k} \times b_{k}}{\varphi}
$$

in which $\varphi=\frac{8}{27} \frac{2}{R}$ (see above). This gives:

$$
\left.\begin{array}{rl}
a_{k}>\frac{2410 \times 13,9 \cdot 10^{-4}}{72,44}=\frac{33500}{72,44} 10^{-4}=462,5 \cdot 10^{-4} \\
a_{k}>\frac{2700 \times 14,5 \cdot 10^{-4}}{71,67} & =\frac{39150}{71,67} 10^{-4}=546,3 \cdot 10^{-4}
\end{array}\right\}
$$

from which we find:

$$
V a_{k}>21,5 \text { or }>23,4 \cdot 10^{-2}\left(\mathrm{e} . \mathrm{g} \cdot \underline{a_{k}}=21,7 \text { à } 23,6 \cdot 10^{-2}\right) .
$$

For p_{k} immediately follows from (as $8: R=8 \times 273,1=2185$)
the value

$$
\left.\begin{array}{c}
p_{k}=\frac{T_{k}}{2185 \times b_{k}} \\
\left.p_{k}=\frac{2410}{2185 \times 142.10-5}=\frac{2410}{3,103}=777 \mathrm{~atm} .\right)^{\prime} \\
\text { or, } p_{k}=\frac{2700}{2185 \times 148.10^{-5}}=\frac{2700}{3,234}=835 \quad n
\end{array}\right\}
$$

from which $\log ^{10} p_{k}=2,890$ to 2,922 follows, which we should want, when a series of vapour pressures above the melting point were known of Lithium. But of this exceptional element literally nothing more is known than the melting point and the density at $15^{\circ} \mathrm{C}$. Not even the boiling point or the density at the melting point. Still less the coefficient of expansion in solid and liquid state.
3. Sodium. Here we tread on firmer ground. The melting point lies at $97^{\circ}, 5 \mathrm{C} .=370^{\circ}, 6$ abs. The boiling point lies at $882^{\circ}, 9 \mathrm{C} .=$ $=1156^{\circ}$ abs. according to Heycock and Lamplough (1912). (Ruff and Johannsen gave $877^{\circ}, 5 \mathrm{C}$ in 1905). Hence the critical temperature lies in the neighbourhood of $370,6 \times 5_{1 / 2}^{1 /}=1977$, resp. $1156 \times 1,7=$ $=1965$, mean 1970° abs.; or, as lowest limit, in that of $370,6 \times 4^{2} / 3=$ $=1729$, resp. $\overline{1156} \times 1,5=1734$, mean 1730° abs. We carry out the calculations again at these two temperatures.

With $\vee T_{k}=$ from 44,38 to 41,59 , we find from our formula (see for Lithium) $2 \gamma=$ from 2,686 to 2,580 , yielding $\gamma=1,3 \pm$ to 1,29 . For $\gamma:(1+\gamma)$ we find further 0,573 to 0,563 , hence for $\gamma^{2}:(1+\gamma)^{2}$ the values from 0,329 to 0,317 , so that the factor λ becomes from $0,910^{5}$ to 0,919 , and φ from 73,67 to 74,38 .

Vicentini and Omodei (1888) found 0,9287 (liquid) for the density at the melting point $97^{\circ}, 6$, so that, D_{0} can be calculated from

$$
\left.\begin{array}{rl}
0,9287 & =D_{0}\left(1-0,573 \times \frac{370,7}{1970}\right)=0,892 D_{0} \\
\text { or } \quad & =D_{0}\left(1-0,563 \times \frac{370,7}{1730}\right)=0,879 D_{0}
\end{array}\right\},
$$

yielding $D_{0}=1,041$ to 1,056 .

Then b_{k} becomes:

$$
\left.\begin{array}{rl}
b_{k} & =\frac{2,686 \times 23,0}{1,041 \times 22412}=\frac{61,78}{23330}=265.10-5 \\
\text { or } \quad b_{k} & =\frac{2,580 \times 23,0}{1,056 \times 22412}=\frac{59,34}{23670}=251.10^{-5}
\end{array}\right\} .
$$

We tind for α_{k} :

$$
\left.\begin{array}{rl}
a_{k} & \left.=\frac{1970 \times 26,5.10^{-4}}{73,67}=\frac{52210}{73,67} 10^{-4}=708,7.10^{-4}\right) \\
\text { or } a_{k} & =\frac{1730 \times 25,1 \cdot 10^{-4}}{74,38}=\frac{43420}{74,31} 10^{-4}=583,8.10^{-4} 4
\end{array}\right\} .
$$

so that we have $V a_{k}=26,6$ to $24,2 \cdot 10^{-2}$.
We calculate for the critical pressure:

$$
\begin{aligned}
p_{k} & =\frac{1970}{2185 \times 265.10-5}=\frac{1970}{5,790}=340 \mathrm{~atm} . \\
\text { or } p_{k} & =\frac{1730}{2185 \times 251.10-5}=\frac{1730}{5,484}=315,5 \quad{ }_{.} .
\end{aligned},
$$

which renders $\log ^{10} p_{k}=$ from 2,532 to 2,499 .
The found values of γ, viz. 1,34 to 1,29 , may be tested, however little, by the experimentally found value of the coefficient of expansion a in liquid state. In order to reduce α to γ we can derive the following relation. From

$$
a=\frac{1}{v_{1}} \frac{v_{2}-v_{1}}{t_{2}-t_{1}}
$$

follows immediately:

$$
a=D_{1} \frac{\frac{1}{D_{1}}-\frac{1}{D_{1}}}{t_{2}-t_{1}}=\frac{1}{D_{2}} \frac{D_{1}-D_{2}}{t_{3}-t_{1}}
$$

so that the quantity γ^{\prime} in $D_{1}-D_{\mathrm{s}}=\gamma^{\prime}\left(t_{2}-t_{1}\right)$ is found from

$$
\gamma^{\prime}=a \times D_{2}, \text { or } a \text { from } \alpha=\frac{\gamma^{\prime}}{D_{2}}
$$

Now (reduced) $d_{2}-d_{2}=2 \gamma\left(m_{2}-m_{1}\right)$, when the vapour densities can be neglected, hence as $d=D: D_{k}$ and $m=T: T_{k}$, also $D_{1}-D_{2}=$ $=2 \gamma \frac{D_{k}}{T_{k}}\left(T_{3}-T_{1}\right)$, so that we have:

$$
\gamma^{\prime}=2 \gamma \frac{D_{k}}{T_{l_{k}}}
$$

and

$$
\alpha=2 \gamma \frac{D_{k}}{D_{2}} \frac{1}{T_{k}} . .
$$

But $D_{s}=D_{6}\left(1-\frac{\gamma}{1+\gamma} \frac{T_{2}}{T_{k}}\right)$, and $D_{k}=\frac{D_{0}^{-}}{2(1+\gamma)}$, so that

$$
\alpha=\frac{\frac{\gamma}{1+\gamma} \frac{1}{T_{k}}}{1-\frac{\gamma}{1+\gamma} \frac{T_{3}}{T_{k}}}=\frac{-\frac{\gamma}{1+\gamma}}{T_{k}-\frac{\gamma}{1+\gamma} T}
$$

T_{z} is therefore always the higher of the temperatures, between which the experimentally determıned expansibulity holds. When we now apply this to Sodum, where 278.10^{-6} has been found for a between 101° and 168 C . (Hagen), we calculate ($T_{2}=168+273=441^{\circ}$

$$
\begin{aligned}
\alpha & =\frac{0,573}{1970-0,573 \times 441}=\frac{0,573}{1717}=334 \cdot 10^{-6} \\
\alpha & =\frac{0,563}{1730-0,563 \times 441}=\frac{0,563}{1482}=380 \cdot 10^{-6}
\end{aligned}
$$

As the coefficient of expansion near the melting point will probably be stull somewhat too small (we need only think of water, mercury, etc.), the found value 278 is probably to be raised to 334 . If we have to make a choice, the higher of the two assumed critical temperatures, viz. 1970°, seems in any case to be nearest the truth.

If we assume that the determined coefficient of expansion really holds for the mean temperature $(101+168): 2=134^{\circ}, 5 \mathrm{C} .=$ $=408^{\circ}$ abs., we should have calculated the values from 330 to 375.10^{-6}, which are only slightly lower.

Also from Vanstone's density determinations we can determine the value of γ^{\prime}, bence also of α. Vanstone found namely at 110°, 184° and $237^{\circ} \mathrm{C}$. resp. the values $D=0,9265,0,9058$ and 0,8891 , yielding $\gamma^{\prime}=280 \cdot 10^{-6}$ between the two first, and $\gamma=315.10^{-6}$ between the two last. Or 295.10^{-6} between the first and the third. If we assume this last value to hold at the mean temperature $173^{\circ}, 5$, at which $D=$ about 0,909 , then
$\alpha=\frac{295 \cdot 10^{-6}}{0,91}=325 \cdot 10^{-6}$ follows from $\varepsilon=\gamma^{\prime}: D$ (see above), hence very near the above calculated, value 330 .

If we now assume the newer value $325 \cdot 10^{-6}$ to be more accurate than the much older value 278 , determined at somewhat lower temperatures, then the value calculated above from γ with $T_{k}=1970^{\circ}$ appears to be much nearer 325 than the too high value 380 , calculated with $T_{k}=1730^{\circ} . T_{k}$ lies therefore near 1970°, and (according to the density determinations) sooner somewhat higher than somewhat
lower than this temperature; e.g. $T_{k}=2000^{\circ}$ (extrapolated 1997°).
A second test is furnshed by the vapour piressure determinations. We owe the following data to Hackspili, (1912).

t	$=350$	355	365	390	397	$883 \quad \mathrm{C}$.
T	$=623$	628	638	663	670	$1156^{\circ} \mathrm{abs}$.
p	$=0,08$	0,12	0,15	0,21	0,26	760 mm.
$\log ^{10} p$	$=0,903(-2)$	$0,079(-1)$	$0,176(-1)$	$0,322(-1)$	$0,415(-1)$	2,881

According as $T_{k}=1970^{\circ}$ is assumed or 1730° abs., we find $\log ^{10} p_{k}=2,532$ or 2,499 (see above), and we have therefore, this being in $\mathrm{mm} .=5, \$ 13$ or $\mathbf{5}, 380$:

$\log ^{10} \frac{p_{k}}{p}$	$=6,509$	6,333	6,236	6,090	5,998	2,532
or	$=6,477$	6,301	6,204	6,058	5,965	2,499
\boldsymbol{T}_{k}						
$\boldsymbol{T}-1$	$=2,162$	2,137	2,088	1,971	1,940	0,7042
or	$=1,777$	1,755	1,712	1,609	1,582	0,4965
Hence f^{10}	$=3,02$	2,96	2,99	3,09	309	$3,60 \rightarrow 4,67$
or	$=3,64$	3,59	3,62	3,76	3,77	$5,03 \rightarrow 4,48$

We see, therefore, from this that the vapour pressure factor f is pretty well constant at the lower temperatures 350 to $400^{\circ} \mathrm{O}$., but at the boiling point (the values of the last column on the righthand side of the vertical line refer namely to the boiling point) it has considerably increased in both cases : from 3,1 to 3,6 , and from 3,8 to 5,0 . The latter increment is much too great, the more so as the limiting value at $\eta_{\bar{k}}$, viz. $f_{k}=8 \gamma=10,7 \pm$ or 10,32 , so $f_{k}{ }^{10}=4,67$ to 4,48 , would be smaller in the latter case than the value at T_{s}, viz. 5,03, which in riew of the great increase of f at higher temperatures is quite impossible.

We see from the above how exceedingly sensitive the method of the vapour pressures is, especially at higher temperatures. This is owing to this, that then $\left(T_{k}: T\right)-1$ is exceedingly variable on only a slight variation in the value of T_{k}. In our example from 0,70 to 0,50 for a decrease from 1970 to 1730 . And in consequence of this also the value of f is changed in the same degree (from 3,6 to 5,0).

We can therefore conclude from the vapour pressure determinations for $N a$ with great certainty that $T_{k}=1730^{\circ}$ will be out of the question, and that $T_{k}=1970^{\circ}$ will be near the truth.

Heidcock strll gave $\frac{d t}{d p}=0,153$ (p. in mm .) at the boiling point temperature $882^{\circ}, 9$ C. Now follows from

$$
\log \frac{p_{h}}{p}=f\left(\frac{\eta_{k}}{T}-1\right)
$$

when f^{\prime} represents $\frac{d f}{d T}$:

$$
-\frac{1}{p} \frac{d p}{d T}=-\frac{f^{\prime} T_{k}}{T^{2}}+f^{\prime}\left(\frac{T_{k}}{T}-1\right)
$$

hence at the boiling point:

$$
f_{s}=\frac{T_{s}^{2}}{T_{k}}\left[\frac{1}{p_{s}}\left(\frac{d p}{d T}\right)_{s}+f^{\prime}\left(\frac{T_{k}}{T_{s}^{\prime}}-1\right)\right]
$$

This gives with $T_{k}=1970^{\circ}, T_{s}=1156$:

$$
f_{s}^{10}=\frac{(1156)^{2}}{1970} \times 0,4343\left[\frac{1}{0,153 \times 760}+0,704 f^{\prime}\right]
$$

We can put in approximation $0,51: 486=0,00105$ for f^{\prime}, so that $f_{s}{ }^{10}$ would become

$$
f_{s}{ }^{10}=678 \times 0,4343(0,00860+0,00074)=295 \times 0,00934=2,76 .
$$

According to the above table, this value is too small, as it would be still smaller than the value of f^{10} at 397°, viz. 3,09 . We expect, indeed, a lower value than 3,60 , as the latter represents the chord in the curve $y=f(x)$, and 2,76 the tangent - but not a value so much smaller. The value $\frac{d t}{d p}=0,153$ given by Heijcock is therefore probably too high ${ }^{1}$) -- or else the value assumed for f^{\prime} is too low. Also the value $T_{k}^{\prime}=1970$ can have been assumed too low.
4. Potassium. After the above explanations we can be briefer, and simply repeat the same calculations as above.

The melting point lies at $62^{\circ}, 5 \mathrm{C} .=331^{\circ}, 6 \mathrm{abs}$. The bolling point at $762^{\circ}, 2$ C. $=1035^{\circ}, 3$ abs. (Hencock and L.). Ruff and Jon. give $757^{\circ}, 5$ C. The critical temperature lies, therefore, at $335,6 \times 5 \frac{1}{3}=$ $=1790, \quad 1035,3 \times 1,7=1750$, mean 1770°; or at $335,6 \times 4^{2} / \mathrm{s}=$ $=1566,1035,3 \times 1,5=1554$, mean 1560° abs. These will again appear to be the limiting values.

Thus $V T_{k}$ becomes $=42,08$ or ${ }^{\prime} 39,50$, hence $2 \gamma=2,599$ to $2,501, \gamma=1,30$ to 1,25 . This gives the value from 0,918 to 0,926 for the factor 1 ., and the value 74,29 to 74,90 for φ. For λ we have used $\gamma:(\gamma+1)=0,565$ to 0,556 .

[^0]Vicentini and Omodes found $D=0,8298$ (liquid) at $62^{\circ}, 1$. From ihis follows therefore:

$$
\left.\begin{array}{rl}
0,8298 & =D_{0}\left[1-0565 \frac{335,2}{1770}\right]=0,893 D_{0} \\
\text { or } & =D_{0}\left[1-0,556 \frac{335,2}{1560}\right]=0,881 D_{0}
\end{array}\right\}
$$

from which $D_{0}=0,929$ to 0,942 .
From this follows for b_{k} :

$$
\left.\begin{array}{rl}
b_{k} & =\frac{2,599 \times 39,1}{0,929 \times 22412}=\frac{101,6}{20825}=488 \cdot 10^{-5} \\
b_{k} & =\frac{2,501 \times 39,1}{0,942 \times 22412}=\frac{97,79}{21120}=463 \cdot 10^{-5}
\end{array}\right\}
$$

And further for a_{k} :

$$
\left.\begin{array}{l}
a_{k}=\frac{1770 \times 48,8 \cdot 10-4}{74,29}=\frac{86380}{74,29} 10^{-4}=1163 \cdot 10-4 \\
\text { or } a_{k}=\frac{1560 \times 46,3 \cdot 10^{-4}}{74,90}=\frac{72230}{74,90} 10^{-4}=964,4 \cdot 10^{-4}
\end{array}\right\}
$$

vielding $\underline{V a_{k}=34,1 \text { à } 31,1 \cdot 10^{-2} \text {. }}$
For p_{k} we find:

$$
\left.\begin{array}{rl}
p_{k} & =\frac{1770}{2185 \times 488 \cdot 10^{-5}}=\frac{1770}{10,66}=166 \mathrm{~atm} . \\
\text { or } p_{k} & =\frac{1560}{2185 \times 463 \cdot 10^{-5}}=\frac{1560}{10,12}=154 \quad,
\end{array}\right\}
$$

in consequence of which $\log ^{10} p_{k}=2,220$ to 2,188 .
From the formula for the calculation of the coefficient of expansion a from γ, derived above for sodium, we then find:

$$
\left.\begin{array}{rl}
\alpha & =\frac{0,565}{1770-0,565 \times 363}=\frac{0,565}{1565}=361 \cdot 10^{-6} \\
\text { or } \alpha & =\frac{0,556}{1560-0,556 \times 363}=\frac{0,556}{1358}=409 \cdot 10^{-6}
\end{array}\right\} .
$$

And as ${ }^{\prime \prime}=299.10^{-6}$ has been experimentally found by Hagen between 70° and $110^{\circ} \mathrm{C}$. (mean temperature $90^{\circ} \mathrm{C}=363^{\circ}$ abs.), it follows from this that the value, calculated from γ with $T=1770^{\circ}$, is nearer the truth than that value calculated with 1560°. (Just as for sodium the expansibility at $90^{\circ} \mathrm{C}$. will probably be lower than the normal value at higher temperatures, so that 299 will be too small. Indeed all Hagen's values seem to be too small. For Na 278 had to be raised to 325 through the later determinations of VANSTONE).

And now the rapour tensions. Hackspill has found:

t	$=264$	316		331	340	350	360	365
T	$=537$	589	1	604	613	623	633	638
p	$=0,1$	0,75	1,15	1,35	1,75	2,13	2,3	$7635^{\circ} \mathrm{abs}$.
$\log ^{10} p$	$=-1$	$0,875(-1)$	0,061	0,130	0,243	0,328	0,362	2,881

From the above found values of $\log ^{10} p_{k}$ we find in mm. $\log ^{10} p_{k}=$ $=5,101$ and 5,069 , so that we have:

$\log _{10} \frac{p_{k}}{p}=6,101$	5,226	5,040	4,971	4,858	4,773	4,739	2,220
of $=6,069$	5,194	5,008	4,938	4,826	4,740	4,707	2,188
$\frac{T_{k}}{T}-1=2,296$	2,005	1,932	1,887 ${ }^{\prime}$	1,841	1,796	1,774	0,7097
of $=1,905$	1,648	1,584	1,544	1,504	1,466	1,445	0,5067
yielding $f^{10}=2,66$	2,61	261	2,63	2,64	2,66	2,67	$3,13 \rightarrow 4,52$
of $=3,19$	3,15	3,16	3,20	3,21	3,23	3,26	$4,32 \rightarrow 4,34$

From the same considerations as for Na it follows also here again very clearly that the upper series of values is better than the lower one, and that therefore $T_{k}=1770^{\circ}$ is preferable to 1560°. The limiting values of f for T_{k} are viz. $f_{k}=8 \gamma=10,40$ to 10,00 , or $f_{k}{ }^{10}=4,52$ to 4,34 . Probably the accurate value of η_{k}^{\prime} lies somewhat below 1770° abs.

Heycock gave 0,135 for $\frac{d t}{d p}$. When we assume $f^{\prime}=0,46: 397=$ $=0,0016$, the following formula follows for $\dot{f}_{s}{ }^{10}$ with $T_{k}=1770$ $T_{s}=1035$ from the formula derived in $\S 3$:

$$
\begin{aligned}
f_{s}{ }^{10} & =\frac{(1035)^{2}}{1770} \times 0,4343\left[\frac{1}{0,135 \times 760}+0,719 \times 0,00116\right] \\
& =606 \times 0,4343(0,00975+0,00082)=263 \times 0,0106=2,78 .
\end{aligned}
$$

This value may be correct. It is larger than 2,67 and at the same time smaller than 3,13 (tangent and chord, see for Na). Perhaps T_{k} lies again somewhat below 1770° abs.
5. Rubidium. $38^{\circ}, 5+273,1=311^{\circ}, 6$ was found for the absolute melting point temperature. This multiplied by $5 \frac{1}{3}$ gives $T_{k}=1662^{\circ}$. Ruff and Jor. (1905) found for the boiling-point $691^{\circ} \mathrm{C} .=971^{\circ}, 1$ abs. This $\times 1,7$ gives 1651 . Let us take the round value 1660. On the other hand $311,6 \times 4^{2} / \mathrm{s}=1452$, and $971,1 \times \overline{1,5}=1457$, averaged and rounded of 1450 .

In consequence of this $V T_{k}$ becomes $=40,74$ to 38,08 , hence
$2 \gamma=2,548$ to $2,447, \gamma=1,27$ to 1,22 . We find therefore 0,560 to 0,550 for $\gamma:(1+\gamma)$, hence according to our formula $\lambda=0,922$ to 0,430 , and $\varphi=74,60$ to 75,25 . Hence

$$
\left.\begin{array}{rl}
b_{k} & =\frac{2,548 \times 85,45}{1,648 \times 224.2}=\frac{217,7}{36930}=590.10-5 \\
\text { or } \quad b_{k} & =\frac{2,446 \times 85,45}{1,673 \times 22412}=\frac{209,0}{37500}=557.10-5
\end{array}\right\},
$$

D_{0} being $=1,648$ to 1,673 . For, according to Hackspile $D=1,475$ (liquid) for $38^{\circ}, 5$, hence according to the formula derived by us:

$$
\left.\begin{array}{rl}
1,475 & =D_{0}\left(1-0,560 \frac{311,6}{1660}\right)=0,895 D_{0} \\
\text { or } \quad & =D_{0}\left(1-0,550 \frac{311,6}{1450}\right)=0,882 D_{0}
\end{array}\right\}
$$

We find further for a_{k} :

$$
\left.\begin{array}{rl}
a_{k} & =\frac{1660 \times 59,0.10^{-4}}{74,60}=\frac{97940}{74,60} \cdot 10^{-4}=1313.10-4 \\
\text { or } a_{k} & =\frac{1450 \times 55,7.10^{-4}}{75,25}=\frac{80770}{75,25} \cdot 10^{-4}=107310^{-4}
\end{array}\right\},
$$

giving $\underline{V u_{k}=36,2 \quad \text { à } \quad 32,8.10^{-2} .}$.
We find for p_{k}.

$$
\left.\begin{array}{rl}
p_{k} & =\frac{1660}{2185 \times 590.10^{-5}}=\frac{1660}{12,89}=129 \mathrm{~atm} . \\
\text { or } p_{k} & =\frac{1450}{2185 \times 557.10^{-5}}=\frac{1450}{12,17}=119 \quad "
\end{array}\right\}
$$

which causes $\log ^{10} p_{k}=2,110$ to 2,076 .
From the above values of γ we find for the coefficient of expansion α, resp. with $T_{k}=1660$ and 1450 abs.:

$$
\left.\begin{array}{rl}
\quad a & =\frac{0,560}{1660-0,560 \times 363}=\frac{0,560}{1457}=384.10^{-6} \\
\text { or } \quad a & =\frac{0,550}{1450-0,550 \times 363}=\frac{0,550}{1250}=440.10^{-6}
\end{array}\right\},
$$

while Hackspill gives 339.10^{-6} between 40° and $140^{\circ} \mathrm{C}$. (mean temperature $90^{\circ} \mathrm{C}=363$ abs.). Here too the first talue 38.10^{-5} is nearer the experimental value $3 \pm$ (which will have to be raised somewhat, see for potassium and sodium) than the second 44.10^{-5}.

Hackspill gives for the vapour tensions of Rubidium:

$t=250$	292	305	330	333	340	346	350	353	356	365	367	$698^{\circ} 1$
$T=523$	565	578	603	606	613	619	623	626	629	638	640	$971^{\circ} \mathrm{al}$
$p=0,06$	0,98	1,46	2,66	2,95	3,29	3,67	4,0	4,25	4,57	5,51	6,14	760 m
$\log ^{10} p=0,778(-2)$	0,991(-1)	0,164	0,425	0,470	0,517	0,565	0,602	0,628	0,660	0,741	0,788	2,881

As $\log ^{10} p_{k}$ in atm. $=2,110$ to 2,076 , this is in $\mathrm{mm} .4,991$ to 4,957 , and we find then:

Here too the first row of values appears to be nearer the truth than the second. As f is still greatly increasing at T_{s}, the values past 4,21 cannot possibly remain below the limiting value 4,25 (for T_{k}). This limiting value is namely $p_{k}=8 \gamma=10,19$ to 9,79 , i. e. $f_{k}{ }^{10}=4,43$ to 4,25 . Perhaps T_{k} lies slightly below 1660° abs.
6. Caesium. At last the last member of the group. Here the triple point is at $28^{\circ}, 25 \mathrm{C}=301^{\circ}, 3$ abs.; the boiling point is at $670^{\circ} \mathrm{C}$. (RuFf and Jon.) $=9 \pm 3^{\circ}, 1$ abs. So that T_{k} will lie between $301,3 \times 5^{1 / 2}=1607,943,1 \times 1,7=1603$, mean 1605° abs., and $301,3 \times 4^{2} / 2=1406,943,1 \times 1,5=1415$, averaged and rounded off 1410° abs.
We find therefore 40,06 to 37,55 for T_{k}, yielding $2 \gamma=2,522$ to $2,427, \gamma=1,26$ to 1,21 . The value of $\gamma:(1+\gamma)$ becomes 0,558 to 0,548 , so that 2 becomes $=0,924$ to 0,931 , and $p=74,77$ to 75,36 . And we find for b_{k} :

$$
\left.\begin{array}{rl}
b_{k} & =\frac{2,522 \times 132,81}{2,061 \times 22412}=\frac{334,9}{46,90}=725.10-5 \\
\text { or } b_{k} & =\frac{2,427 \times 132,81}{2,090 \times 22412}=\frac{322,3}{46840}=688,10-5
\end{array}\right\}
$$

because $D_{0}=2,061$ to 2,090 . For the density at the melting-point $28^{\circ}, 25$ Hackspill gives namely $D=1,845$, so that

$$
\left.\begin{array}{rl}
1,845 & =D_{0}\left(1-0,558 \frac{301,3}{1605}\right)=0,895 D_{0} \\
\text { or } & =D_{0}\left(1-0,548 \frac{301,3}{1410}\right)=0,883 D_{0}
\end{array}\right\}
$$

And we find for a_{k} :

$$
\left.\begin{array}{rl}
a_{k} & =\frac{1605 \times 72,5 \cdot 10^{-4}}{74,77}=\frac{116360}{74,77} 10^{-4}=1556 \cdot 10^{-4} \\
r a_{k} & =\frac{1410 \times 68,8 \cdot 10^{-4}}{75,36}=\frac{97010}{75,36} 10^{-4}=1287 \cdot 10^{-4}
\end{array}\right\}
$$

'giving $V a_{k}=39,4$ à $35,9 \cdot 10^{-2}$.
And for p_{k} we find:

$$
\left.\begin{array}{rl}
p_{k} & =\frac{1605}{2185 \times 725 \cdot 10^{-5}}=\frac{1605}{15,84}=101 \mathrm{~atm} . \\
\text { or } p_{k} & =\frac{1410}{2185 \times 688 \cdot 10^{-5}}=\frac{1410}{15,03}=94 \quad,
\end{array}\right\}
$$

giving $\log ^{10} p_{k}=2,01$ to 1,97 .
The coefficient of expansion may be calculated from

$$
\left.\begin{array}{rl}
\alpha & =\frac{0,558}{1605-0,558 \times 337}=\frac{0,558}{1417}=394 \cdot 10^{-6} \\
\text { or } \alpha & =\frac{0,548}{1410-0.548 \times 337}=\frac{0,548}{1225}=447 \cdot 10^{-6}
\end{array}\right\} .
$$

The value $39 \cdot 10^{-5}$ was found between 17° and $100^{\circ} \mathrm{C}$. (mean $63^{\circ}, 5 \mathrm{C}=337^{\circ}$ abs.) by Eckhard and Graefe (1900). As these expermental values had to be raised a little nearly everywhere in order to get into agreement with the normal expansibility at higher temperatures, given by γ (the older values of $\mathrm{H}_{\mathrm{ag} e \mathrm{~N}}$ for Caesium lie still lower, viz. mean 345.10^{-0}), it is possible that the critical temperature of Caesium will lie between 1605° and 1410° abs.

Let us consult the vapour tensions. Hackspilil found:

$=$	230	244	272	308	315	330	333	350	365	397	$670^{\circ} \mathrm{C}$.
T	$=503$	517	545	581	588	603	606	623	638	670	$943^{\circ} \mathrm{abs}$.
$p=0,2$	0,29	0,99	2,58	3,18	4,27	4,45	6,72	9,01	15,88	760 mm.	
$\log 10 p$	$=0,301(-1)$	$0,462(-1)$	$0,996(-1)$	0,412	0,502	0,630	0,648	0,827	0,955	1,201	2,881

We find 4,886 to 4,853 for $\log ^{20} p_{k}$, and further:

It also appears clearly from these values of f, that the real critical temperature will lie between 1605 and 1410. The limiling values of f at T_{k} are $f_{k}=8 \gamma=10,09$ to 9,71 , hence $f_{k}{ }^{10}=4,38$ to 4,22 . The value $f_{s}{ }^{10}$ lies slightly too far from 4,38 ; the value 3,98 lies too near it.
7. Recapitulation of this group. In accordance with the course of the vapour tension factors f we shall assume the critical temperature of sodium to be 2000° abs., i.e. ${ }^{1} /$, of the difference between 1970° and 1730° higher than the first of these values. Further that of Potassium to be 1710°, i.e. ${ }^{2} / \%$ of the difference between 1770° and 1560° abs. lower than 1770°; that of Rnbidium to be $=1590^{\circ}$, i. e. $1 /$ of the difference between 1660° and 1450° lower than 1660°; that of Caesium $=1510^{\circ}$, i. e. $1 / 2$ of the difference between 1605° and 1410° lower than the first value. At last that of Lithium, in virtue of the value of b_{k} (which we assume $=145.10^{-5}$) halfway between 2410° and 2700°, i. e. $=2550^{\circ}$, so that we get the following survey.

	$T_{t r}$	T_{s}	T_{k}	$\frac{T_{k}}{T_{t r}}$	$\frac{T_{k}}{T_{S}}$	γ	$\begin{array}{\|c\|} \hline b_{k} \\ \times 10^{5} \end{array}$	$\begin{array}{\|c\|} V a_{k} \\ \times 10^{2} \end{array}$	$\\| \begin{gathered} p_{k} \\ \text { (atm.) } \end{gathered}$	$\operatorname{Tr} .-k p$	$f_{k}{ }^{10}$
Lithium	452	1450?	2550	5,6	1,76?	1,46	145	22,6	806	-	5,1
Sodium	371	1156	2000	5,4	1,73	1,35	266	26,9	343	2,9 3,5	4,7
Potassium	336	1035	1710	5,1	1,65	1,29	481	33,2	163	2,8-3,4	4,5
Rubidium	312	971	1590	5,1	1,64	1,25	579	35,1	126	2,8-3,4	4,4
Caesium	301	943	1510	5,0	1,60	1,24	707	37,7	98	2,8-3,4	4,3

These are the most probable values following with pretty great certainty from the available data. The inaccuracy will at most amount to 1 or 2%.

With regard to the values of b_{k} we will only observe that they
are about in the following ratio $1: 2: 4: 5: 6$. For $145: 1=145$, $266: 2=133,481: 4=120,579: 5=116,707: 6=118$.

From the value of T_{k} and p_{k} for Hydrogen, determined just now by K. Onnes c.s., would follow the value 59.10^{-5} (per Gr. atom) for b_{k}, i. e. exactly half the middle value 118 for $\mathrm{K}: 4, \mathrm{Rb}: 5$ and Cs:6. So that the ratio of the b-values for H to Cs would become 1/2: $1^{1 / 4}: 2^{1 / 8}: 4: 5: 6$.

Possibly the ratio values for Li and Na will later have to be rounded off to 1 and 2 on more accurate knowledge of some data.

And it appears again from the values of $V a_{k}$, for which rounded off we may write $23,27,33,35,37,5$, that all these metals occur atomically with the very much increased valency attractions. If they were bound to $\mathrm{Li}_{2}, \mathrm{Na}_{2}$, etc., only the "rest-attractions" $3,5,7,9,11$ would have manifested themselves (per G. atom). For Li it is possible that undissociated molecules of L_{2} are still present at $T_{J_{k}}$ (the abnormally low value 23 would point to this), but it is also possible that this is not the case. All these questions must be left open for the present till the whole periodic system sball have been examined.

In a following puper the minor group $\mathrm{Cu}-\mathrm{Ag}-\mathrm{Au}$ will be treated, besides Manganese and the Iron-Platinum group.

Clarens, June 1917.

[^0]: ${ }^{1}$) Or would 0,153 be a printer's error for 0,135 ? See Tables Annuelles of 1912, which are full of misprints. Then 860 would become 975 , and 0,00934 would become 0,0105 , because of which $f_{s}{ }^{10}$ would become from 2,76 to 3,09 . And this value is very well possible and would - like the expansibility - point to a value of T_{i} which would be slightly higher than 1970 , e.g. 2000° abs.

