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Mathematics. — “On Elementary Surfaces of the third order”.
(Third communication). By Dr. B. P.”Haaimever. (Commu-
nicated by Prof. L. E. J. Brouwsg).

(Communicated in the meeting of September 29, 1917).

It has been proved that F'* cannot exist if that surface does not
contain at least one straight line. It will now be shown that if #*
contains a line '), this surface still cannot exist if in no plane through
that line the section consists of three lines. )

We start from a line a on F° and assume that in no plane
through a the restcurve consists of two lines. It will be shown
that this assumption leads to contradictory results.

Theorem 1: Every point of line a has a tangent plane.

Let A be an arbitrary point of @ and 8 a plane throngh 4 not
containing a. 4 cannot be isolated in p because there are points of -
F'® on both sides of B inside any vicinity of A. Hence 1n 8 acurve
passes through A. On this curve we choose a sequence of points
A, A, ... converging towards A from only one side. Let a,, ¢, ...
be the planes passing through a and through A,, 4, ... respectively
and let @ be their limiting plane (obviously e is the plane through
a and the tangent at A to the curve in g). In every one of the
planes «,, e, .. is situated a curve of the second order, passing
respectively through 4,, 4, ... :

Three possibilities are to be considered:

1. The curves of the second order contract towards « or part of a.

2. The curve in the limiting plane « consists of a and an oval
which entersects a at 4.

3. The curve in the limiting plane « consists of ¢ and an oval
which has a for tangent at A.

1. The curves of the second order contract towards a ov part ot
a. This part of o anyway contains ihe point 4. Each curve of
the second order divides the corresponding plane e, in two regions ?).

C S

1} Again line will be used for sitraight line.

%) Ap cannot be isolated in «, because the curve in B infersects the plane z, .

Neither can the restcurve in z, consist of a line counting double, as we assumed
that no second line of F'8 intersects line a.
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We call internal region that one which contracts towards a or part
of a only. Now if A continued to belong to the external regions,
the curve in plane # would show a cusp in 4 with both branches
arriving from the same side of the tangent. and this is excluded.
The possibility might be put forward that for every n the oval in
¢, has the line of intersection b, with 8 for tangent in A,, in other
words that the two points of F°, which b, carries besides 4, coincide.
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As follows can be shown that this possibility is excluded. In the
second communication (Second part, theorem 1) we proved:

If a line a in a plane e intersects the curve in that plane at an
ordinary point 4, then lines which converge towards a end up by
carrying points of /° converging towards 4. The demonstration
we used there, also holds if A lies on one or more lines of F?,
provided A is not situated on such a line in plane a. We proceed
to apply this theorem to the case of fig. 11. In plane 8 the line b,
intersects the curve (which is no straight line) at the ordinary point
A,. In-plane «a, however it would be possible to ‘find a sequence
of lines converging towards b, but carrying no points of F* which
converge towards A,: a contradiction.

Hence 4 will end up by belonging to the internal regions of the
ovals ') and considering this region together with its boundary con-
tracts towards a or part of a it follows that every plane through A
not containing line a has a point of inflexion at A with tangent in c.

1) We exclude the possibility that 4 continues to lie on the ovals themselves.
The cases in which 4 belongs to an oval in a plane through.a will be dealt with

sub 2 and 3. \ ° - ’
) ®
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Sections in planes through a will be dealt with later on.

2. The restcurve in « is an oval which intersects o at 4. In «
four branches depart from A: AB and AC on a and AE and. 4D-
on the oval. Regarding the connection of these branches the Jorpan
theorem for space leaves only two possibilities.
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Fig 12.

First possibility: AC and 4D are connected by I, AD and 4B
by II, AB and 4E by 11l and lastly AE and AC by 1V. If 1 and
IV were situated on the same side of e then a parallel linesegment
converging from that side towards £’ D’ would end up by having
two points in common with I and two with IV: a contradiction.

If T and II were situated on the same side of «, then a parallel
linesegment, converging from that side towards 4’ D’/ would end
up by having two points in common with T and also two with II:
a contradiction. .

In the same way it can- be shown that III and IV cannot lie.on
the same side of a. Combining these results it appears that the
connecting sets of points are situated. alternately above and below «.
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Fig 13.

Second possibility. The following is a representative case: I con-
nects AB and AC above « and IIl connects AE with 4D below .
AC is connected with 4D above or below « by 1I and lastly AB
with A4/ above or below a by IV. Let parallel linesegments con-

verge towards D’(’ from that side on which LI is situated. This
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line ends up by carrying two points of II. Besides it has a point
in common with either [ or III converging towards C" ov D" and
lastly it carries a point of I converging towards the second point
of intersection of D’C’ and the oval in a. Altogether four points.

It thus appears that the second possibility is excluded and we
need only consider the first. .

In § 8 of the first communication we proved: [f A is double
point in a plane a, and cusp in not more than one plane, then a is
tangent plane, assuming that no line of I"* passes through 4. Here
however one of the branches passing through A, is a straight line.
This is the only one, as we assumed that no second line of F°
intersects the line a on which 4 is situated. Hence in no plane through
A except those passing through a, can the eurve contain a line through A4
and the demonstration of § 3 still holds. The results obtained for
planes through the tangents at A in e also remain valid for the
planes through the tangent at 4 to the oval in « Regarding
the curves in planes through the line in « however (which line
corresponds 1o the second iangent of the former case) the demon-
stration says nothing. These shall be dealt with later on. Also the
first part of § 3.where the connection of the branches is examined,
has to be slightly altered, but this has been done already above.

In order to be able to use the former res}ults here, it remains to
prove the following theorem:

If a lne of F° passes through A, which line is not intersected
by a second ome, then A cannot be cusp in more than one plane
(we give a fresh demonstration as the former one must be altered
a good deal). .

A is sitnated on the line a of F'* and is cusp in a plane 8 which
of course does not contain a. Let ¢ be an arbitrary plane through
a not containing the cuspidal tangent in 8 and & the line of inter-
section of « and B. Line & carries except A only one point B of
F°. In plane « the point B cannot be’ isolated, as the curve in B
crosses e. Neither can the restcarve in e (that is: the curve minus
a), according to our assumption, consist of two lines and the only
remaining possibility is that the restcurve is an oval through B.
This oval also passes through A, because b has only the points 4
and B in common with F® (that the oval cannot have b for tangent
in B follows from the same reasoning which shows that fig. 11
represents an impossibility.) ')

!) Here we are not entitled to use the theorem given at the end of the first

communication, because this was only proved for points not situated on a line of
F3, and it is not excluded that B lies on such a line. '
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Hence in every plane through «, not containing the cuspidal
tangent in 3, the restcurve is an oval through A. Passing on the
limiting case, it appears that in the plane through @ and the cuspidal
tangent in p the curve consists of a only, or o together with an
oval through A. -

Furthermore it appears that an arbitrary line through 4 (== a)
carries at the utmost one point of F*® different from 4. But in no
plane can A be isolated (because ¢ furnishes points of F'* inside
any vicinity of 4, on both sides of every plane not containing a),
hence in any plane which does not contain a the point 4 is either
cusp or double point. Concerning the planes through a it appeared-
that A is double point in every one of these with the possible ex-
ception of the one through a and the cuspidal tangentin 3, in which
case the curve in that plane consists of ¢ only.

So far we only assumed A to be cusp in a single plane B. Now
let 4 be cusp in two planes B and y. We shall consider separately
the cases that only one or more than one line can be cugpidal
tangent at A:

- First case. A is situated on the line a of F'*. Let b denote the
only line through A which can be cuspidal tangent and let « be
the plane through « and b..The foregoing results show that there
are only two, possibilities: *

I. Thé curve in « consists of « and an oval through 4.

11. The curve in a consists of @ only.

[. Let ¢ be a line through A4 in «, not being tangent to the oval
and not coinciding with a or 5. Only line & can be cuspidal tangent
at A hence in every plane through ¢ (=)= ) 4 is double point,
but A is double point in « also, hence 4 would be double point
in every plane through ¢, and ¢ cannot be tangent in any of these
planes because ¢ carries besides 4 a second pomt of F*. This how-
ever cannot be, as may be shown in the same way as in § 3 of
the first communication. The fact that here A4 lies on a line of F?
makes no difference as the demonstration merely depended on the
connection of the branches dictated by the assumption that F* is
a twodimensional continuum. .

II. Again let ¢ be a line through 4 in « not coinciding with a
or 6. In every plane through ¢ (== «) A is ordinary double point
and in « the curve consists of a only.

Let ¢ be an arbitrary plane through ¢ (=}=«). In this plane ¢
the line ¢ is tangent at the double point A, hence in 6 on both
sides of ¢ at least one branch joins A4 with the line at infinity (on

’
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one side there even can be three, when the loop reaches the line
at ‘infinity, but in any case there is at least one on either side).
Now let d revolve round ¢. The curve in a limiting plane is the
limiting set of the curves in the converging planes (no isolated points
are possible here). Besides a sequence of infinite branches has an
infinite limiting branch. Hence it follows that in every plane through
¢ (== a) we can choose on both sides of ¢ an infinite branch such
that they merge in each other in continuous fashion when d revolves
round c. If we add the line g in « these branches are just sufficient
to" gne F? the character of a twodimensional continuum in the
neighbourhood of A and the branches departing from A4, which we
have left out, cannot be fitted in anymore. This contradicts our
assumption that F* is a twodimensional continuum (of course the
neighbourhood of a point on a twodimensial continnum can in an
infinite number of ways be represenied on the neighbourhood of a
point in a plane, but the neighbourhood of a point in a plane can
by (1,1) continuous transformation in the plane never be transformed
in anything but the neighbourhood of a point).

Second case. A is situated on the line @ of F*® and is cusp in 3
and y. The cuspidal tangents do not coincide, hence the line of
intersection & of B and y cannot be cuspidal tangent in either of
these planes. It follows that & carries besides 4 a second point B
of ¥* and the curve in the plane « through @ and & consists of a
and an oval throngh 4 and B. The line 4 divides 8 in two semi-
planes: in the one the cuspidal branches depart from A, hence in
the other 4 is isolated. In the same way 4 is isolated in one of the
semiplanes in which 4 divides y.

Now a foregoing demonstration (§ 5, second communication) shows
that in this case 4 is isolated inside the entire angle (<180°
between these semiplanes. Hence the line a belonging to #'® cannot
pass through this angle and it follows that the semiplanes of 3 and
y in which the cuspidal branches depart from A, are situated on
the same side of the plane e through a and b, let us say below .
In « four branches arrive at A4, consecutively AP, AQ, AR and
AS (two on o and two on the oval). Suppose above «, AP is
connected with 4Q and AR with 4S. Then line b must lie inside
the angles QAR and PAS, because planes pass through & in which
A is isolated above «a. Let ¢ be a line in & through 4 inside the
angles PAQ and SAR (this is impossible when the oval in a has
a for tangent at A, which case we shall consider separately). The fore-
going results show that A is double point or cusp in every plane

- 53
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through ¢. In any such plane however two branches arrive at 4
from above ¢, one on the set which joins 4P to AQ and the other
on the set by which AR is connected with 4AS. Now if A were
cusp 1n a plane through ¢ then, considering the branches arrive
from above @, at the utmost one plane could pass through & in
which A is isolated above e and this contradicts the above results.
Hence A must be double point in every plane through c:ta contra-
dietion.

It now remains 'to consider the case!that the oval in « has-a
for tangent at 4. We shall consider separately the following:possi-
bilities :

I. There exists a semiplane through & above « in which A is
not isolated. -

II. No'such semiplane exists.

I. A s not isolated above e:in a plane ¢ through b. Then 1n
the semiplane of d above « two branches ‘depart from 4, because
4 is cusp or double point in every plane not containing 2 and line
b has a second point B in common ‘with F* From the 'way in
which the branches meeting at 4 in « are connected, follows that
in‘every planeithrough & two bran¢hes arrive .from bélow «, hence
A is ordinary double-point in d.'Here, there 1s no danger of aline
as we assumed that no second line of F° intersects a. If'd revolves
round b‘then in one of the two directions A will remain-ordinary
double point till ‘¢ coincides with «.

From this it follows that'the semiplanes of" B and y-in which the
cuspidal branches ‘depart from ‘4, are-situated on the same side’of
d, let 'us say below d. In & 'we now choose~a'line d through 4
separated from b by the tangents at 4. The ‘same reasoning ‘used
‘before shows that 4 would have to be double point:in‘every plane
‘through d. ‘Only for the-plane through @ and d a slight alteration
is 'required, which however is sélfevident. The impossibility of
assumption !I has thus been proved.

1. 4 is isolated in every semiplane through & above a.‘In every
plane through 4 not containing a 'the point 4 is double point or
cusp, hence in every plane'through §'(=}=a) 4 is cusp and -all the

‘branches arrive at 4 from ‘below . It follows'that 4 'must be cusp

in ‘every plane except e, 'all branches arriving at 4 from below «a.
‘This however 'is only possible. if the cuspidal tangents form one
plane’s through a, whith plane has nothing but line @ in common

‘with I'*. Let a sequence of planes s,,¢,..... all passing through

a converge ‘towards-s. In‘each “of' these an‘oval passes’through A.
"Now suppose the oval in &'crosses'the line a at A. “Then four
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branches arrive at 4 in g, forming finite angles. These branches
are connected alternately on different sides of &. Through 4 in &,
we can at once find a line through which pass two planes having
a cusp in 4 and such that in both the cuspidal branches arrive
from the same side of &. Then in the same way as before we can
once more obtain a contradiction.

It now remains to consider the possibility that for every n the
oval in & has a for tangent at A. For increasing n these ovals
contract either towards 4 only or towards a connected part of a
containing A.

If 4 is the only limiting point, then the contracting ovals would
give to A the character of'a point of a twodimensional continuum
and a sequence of points on @.having 4 for limiting point, could
not be fitted in anymore.

If on the other hand the limiting set is an interval on line a then
the internal points of this interval would, in planes not containing
a, be cusps with both branches arriving from the same side of the
tangent and this is also excluded.

We thus have proved that every plane through A, containing
neither line a, nor the tangent at A to the oval in e, has an
ordinary point tn A with tangent it a. The planes through the tangent
at A to the oval in a have point of inflexion in A with tangent i a.

There remain to be considered the curves in planes through a.
These shall be dealt with presently.

3. We now come to the third poésibility mentioned on page 736.
The restcurve .in,o consists of an oval having a for tangent in 4.
In a there depart from 4 two branches AB and AC on a and AE
and AD on the oval. In almost the same way as before it appears
that here AC is connected with 4D, AD with AL, AE with AB
and lastly AB with AC. The connecting sets of points are again
situated alternately above and below e. This being established the
further reasoning used for case 2 holds here without any alteration
(again we remind the reader of the assumption that'no second line
of F'® intersects a). Results: In every plane which does not contain
lme a, the point A is ordinary point with tangent in a (in all these
planes the branches depart from A to the same side of a).

The curves in planes through a must be considered still. o

In each, of the three above cases, « was found to possess the
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character of tangent plane, only we had no certainty with regard
to the curves in planes through a. Now all possibilities have been
considered it appears that for no point 4 two different planes can
pass through a both possessing one of the examined characters (we
obtain an immediate contradiction by considering a plane through
A not containing a@). It follows that in the three above cases no
plane through a (=}=«) can contain branches departing from A4 (except
a itself). This completes the demonstration that e is tangent plane.

Theorem 2: If A moves continuously along a, then the tangent
plane also changes i continuous fashion.

Let the points 4,,4,.... on a convergé towards 4. Tangent’
planes «,, e, . ...« all passing through a. We assume thate,, ¢, .. ..
have a limiting plane «’ different from & and shall prove that this
leads to a contradiction. Let B:,8,....8 be planes respectively
passing through A4, 4,....4 and all L a. The line of intersection
of «,, and B, we denote by b,, the one of ¢, and 8, by b, etc.
Lastly let & be the line of intersection of « and g and &’ the one
of «’ and 8. According to our assumptions &’ and b do not coincide
and A’ is the limiting line of b,,5,....

Now & is tangent at 4 to the curve in 3 and in the converging
planes #,8,.... the curves have for tangents at A4, 4,....
respectively the lines 4,0, .... converging towards &’ in 8.
According to theorem 2 of the second
f ¢ communication the curve in gis the limiting
ﬁ_\ - g set of the curves in §8,,8,.... (with the

= postible exception of an isolated point).
Let ¢ and d be lines through 4 in 8
A separating b from J’. The corresponding

planes through a shall be denoted by yand d.
X For n large enough a branch departs
ﬂ in g, from 4, in both directions inside
those opposite angles between y and d'in
which. 4’ is situated. Loops contracting
towards 4 are evidently excluded, hence in order that in 8 no branch
departs from A4 inside those angles of ¢ and « which contain 37, it
1s unavoidable that in the converging planes the above mentioned
branches leave ihese angles via points of the planes v and d (or
one of these) converging towards 4. Hence in at least one of the
planes y and d the point 4 would be limiting point of points of
F* ot sitnated on a. This means that in one of those planes a .
branch deparis from A different from a, bat this is a contradiction

4

4

A
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Fig. 14
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considering that only in the tangent plane « a second branch can
pass through A. This completes the demonstration of fheorem 2.

- Let an oval in a cross the line a at A. This oval and the linea
have a second point of intersection B and the points 4 and B have
the tangent plane « in common. If 4 moves continuously along «
then, according to theorem 2, the tangent plane « also changes in
continuous fashion and the point B also moves continuously. ) From
this follows that a point 4 at which an oval crosses a, can only
be limiting point of points of @ possessing the same character.
Besides it is easy to prove that the tangent to the oval at 4 also
changes continuously. This result however will not be needed, but -
we do want the following:

Let 4,, 4,... on a converge towards 4. Tangent planes ¢, a, .. . a.
If the oval in « crosses a at 4 it follows from the above that for
n larger than some finite value the plane e, also shows an oval
which crosses a at A,. .

Now suppose all these ovals in «, turn at A, their concave sides
to the left. The oval in « is the limiting set of the ovals in e, and
considering a sequence of finite concave branches cannot converge
towards a finite convex branch, it follows that the branch in_ea
through A also turns its concave side to the left.

Taking these results together we obtain:

Theorem 3: A pomnt of line a in the tangent plane of which an
oval crosses a, can only be limiting point on a of points having the
same kind of tangent plane also with regard to the side to which
the ovals through those points are concave or conver.

Theoremn 4: F* cannot exist-if the restcurve does not degenerate
i any plane through a.

We consider the case in which the curves of the second order
in the planes «,, e, .... (passing through @ and converging towards «),
contract towards part of a. We call internal vegion of these ovals
that region which contracts to nothing but a. We found that the
points of @ belonging to this limiting part must be situated in the
internal region of the oval in @, for n larger than some finite
number. From this follows that the part of @ belonging to the

1) This theorem and some others which shall be formulated presently concerning
the directions in which 4 and B move, have already been given by Juer, Math, Ann. 76,
p. 552. The existence and continuous changing of tangent planes is simply
postulated by that aunthor.

-11 -
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internal region of the oval in «, must diminish for increasin
because if the oval in «, crosses a at 4; and B, then «, is tan,
plane at A4, and in case 4, ended up by being sitnated inside
ovals, « also would be tangent plane at 4,: a contradiction.

Hence if the ovals have the entire line_a for limiting set, r
can have points in common with a. An idea of this case maj
got by imagining a sequence of hyperbolas of which the angl
the asymptotes (inside which the hyperbola is situated) tends tow.
180° and such that the centre is situated on « and both asympt
converge towards a.

In this case everything is i favour of counting e as a triple
in «. In no plane through @ a branch would depart from any p
of a, and except a, F* would contain no straight tine.

A second possibility we wish to consider separately is thatin
tangent plane of every point of @ the oval has a for tangent. Ay
let A be a point of a with tangent plane «. The line a divides «
two semiplanes, in the one 4 is isolated and ia the other an oval
a for tangent at A. :

Now let 4 move along a. The plane « turns round a. If A m¢
on in the same direction the plane « goes on turning in the s
direction, for otherwise two points of @ might be found with
same tangent plane and this cannot be as in either pomnt an «
in the tangent plane must have a for tangent.

It A4 goes round the entire line a the tangent plane meanw
turns 180° round . The ovals in the tangent planes merge cc
nuously into each other, hence after turning 180° the branch hax
a for tangent is situated in the wrong semiplane. This means
on the way the branch must change from the one semiplane
the other and this is only possible either via a tangent plane
which the restcurve consists of two lines through A4, or via a tang
plane in which the oval has contracted to nothing but point 4.
first possibility is excluded according to our assumption and the
would mean that a sequence of ovals in the converging ple
contract towards a point of a not belonging to the internal reg
of the converging ovals. Tlis was found to be impossible hence
assumption that every point of @ has a tangent plane with ¢
having a for tangent, leads to contradictory vesnlts.

Leaving apart both cases treated above, there certainly exis
plane through a in which an oval has two different points 4
B in common with a. Let this plane a revolve continuously i

f

~
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certain direction round ¢ The points 4 and B then also move along a
continuously !). Two assumptions are possible: 4 and B can move
in the same or in opposite directions. Let the direction be the
same. In the time that B has described the original segment B4, the
point A has gone further, hence all this time we keep tangent planes
with ovals having two different points in common with a.

When B arrives at the original place of A the plane ¢ must
have turned an angle of 180° but if the branch through B has
originally been concave to the left, it must now be concave to the
righthand side, and this is not possible as on the way the concave
side in B cannot jump round and no change from concave to convex
can have taken place via a degeneration of the oval in two straight
lines (according to our assumptions).

The second possibility was that 4 and B move in opposite direc-
tions. Let the tangent plane successively turn:round a in opposite
directions, then we obtain two different points in which 4 and B
meet. Such a 'meeting takes place either when the two points of
intersection of a and the oval converge to one point or when the
entire oval contracts to nothing but a single point on a. In both
cases the concave sides of the branches through A4 and B face each
other. A priori it seems possible that before the meeting the convex
side of the branches through A and B face each other, but then
these branches would be connected on both sides via the line at
infinity and in the limiting plane the oval would degenerate in two
straight lines?) through the point where 4 and B meet and this.
contradicts our assumptions. ,

Now we start from ' the original position of 4 and B and we
observe 4 only. Let the branch-through 4 turn its concave side to
the left. If we turn the tangent plane in such a way that 4 moves
to the right, then the concave side goes on being turned to the left.
But before the mecting with B takes place the concave side must
be turned to the right (that is in the direction in which 4 moves)
and this means a contradiction because the curvature cannot change
its sign discontinuously, neither can it change via a degeneration of
the oval in two straight lines (according to our assumption). This
completes our demonstration. '

Remark. Above we spoke about the possibility that the oval

1) If « goes on turmng in the same direction A and B obviously cannot cha;lge
the direction in which they move for then points of & would exist with two
different tangent planes.

) The oval does not converge towards a.

-13 -
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through 4 and B contracts to the point where 4 and B meet. The -

most rational. thing to do is to consider this meeling ﬁoint as a
special kind of oval in the tangent plane. We can also imagine
. that the oval throngh A4 and B contracts to a segment of a., All
points of this segment would have the same tangent plane (tangent

plane of the first kind, examined at the beginning). Now the admis- .

sion of this possibility has the disadvautage that we should be more
or less forced to consider the linesegment in the tangent plane as
a special sort of oval and going back to the definition of elementary
curves we should not only have to admit isolated points, but line-

" segments also. This would cause the development of the theory to

become a good deal more complicated but the enlargement of the
results would probably remain very trivial. To mention an example;
to the elementary surfaces of the second order would be added the
plane convex regions including the boundary and the linesegment.

Far greater would the changes become if we also dropped the
condition that the convex arc is not to contain linesegments. This
hbquer would mean an entirely different problem.
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