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Physics. — “On the mass of a material system according to the
gravitation theory of Eissteiy.” By Dr. G. Norpstrom. (Com-
municated by Prof. H. A. LorenTz). '

{Communicated in the meeting of December 29, 1917).

§ 1. In this paper some formulae will be deduced for the mass
of a material system according to EiNsTEIN’s gravitation theory. The
principal purpose of these formulae is to express the mass firstly
by a volume integral over the material system and.secondly by a
surface integral over a surface surrounding the system.

First 1 shall indicdte in this paragraph the general formulae which
will be used further on. The following calculations are principally
based upon EinsTrIN'S paper: “HamiLtoNsches Prinzip und allgemeine
Relativititstheorie” ') (further cited as: EinstTeiy, Hamirronsches
Prinzip). His article: “Die Grundlage der allgemeinen Relativitits-
theorie” *) (farther denoted by EinsteiN, Grundlage) will also be
referred to.

In the first paper EinsTrIN points out that the formulae in his
gravitation theory can be deduced from a variation principle of

this form:
d‘fffﬁ@i* + x M) de, dz, dwy da, = 0, . . . . (1),

where the first part &+ of the integrand refers to the gravitation
field and the second part »M to the matter (inclusively the electro-
magnetic ﬁéld), » is the gravitation constant, which in EINSTEIN’S
paper has been put equal to 1. &* is a function of ¢» and

Ogm
9ol = 7

T

M is a function of g#» and of several parameters which determine
the state of the matter. , v

The components T, of ‘the stress-energy-tensor for the matter are
represented by the following expression (formula (19) Emsrmn,
Haminronsches Prinzip):

1) A, EmvstEIN, Berl, Ber. 1916, p. 1111,
2) A. EinsTEIN, Ann. d. Phys. 49, p. 769, 1916.
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According to its behaviour with respect to transformations T is
a mixed volume tensor, M a volume scalar, &* is no volume scalar,
but this quantity is formed from the volume scalar ——V—_—gﬁ
(where & is the: total curvature of the four-dimensional continuum)

by elimination of the second-derivative 3 ga by partial integration.
Lo -’v,@
We have')
— 0.

where U is a four-fold vector in the sense given to it in the special
theory of relativity of Emstmx-Minkowsky. U is thus covariant for
Lorentz transformations. The sign of ©* and for M has been chosen
in such a-way that the expression (2) gives the density of energy
of the matter with the right sign. For — ©* and ¥. we have the
expressions :
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where the CHRISTOFFEL symbols
o 1 aﬂuu B 3 a ,
= (G 2B 9N . (6)
Y 2 \0xpg Oz, Ou,
are used. According to the equations?)
IV —g
g — -‘l E gp.v Y . e . (7)
s B
09 v J Bg“
R T O (-
0t f e 3% S e ®

1) Because of equation (3) and as at the limits of the domain of integration
all variations are taken equal to zero, the variation principle (1) is equivalent with
the variation principle expressed by the following equation

dfff (—V=g.6G + » W) de, de, do, do, =0, . . (la)

from which equation EInsteiN originally started.
?) EinstEIN, Grundlage, equations (29) and (32 .

§ .
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we find that &* is a homogeneous quadratic function of the quantities
g+, so that we have

o)
266 =2&* . .. . .. (9)
/magﬁ"

The stress-energy-components of the gravitation field t* intro-
duced by EinstEIN are connected with ©* by the formula ?)

1 o
== &*dpy — = g N ¢ 1)
¢ 2( o agv/“_g )! ( )

where d/ =1, d’ = 0 for 6 =}=». For the diagonal summation we
find because of (9)
xStr=0% . . . . . . . Q)

For the diagonal summation of the material stress-energy tensor we
have again?)

xSTr=V_gG . . . . . . . (12
By summation we find taking (3) into account
0l
# 2@+ ) =23 (18)
' v U8z

An equation of quite the same form is obtained from the fol-
lowing formula of EINsTEIN?)

*® (3 t,,“:—}.‘— L 14
@t o)== 3o (30 (14

We thus find that the four-fold vector % and the four-fold vector,
: 5

0 .
the components of which are — Ea @i g have the same divergency ;
po 09z

the notations “four-fold vector” and “divergency”’ have here the
meaning ascribed to them in the special theory of relativity. From
a private correspondence with EissteiN I learned thathe has proved
that these two vectors are really identical, at least when the system
of coordinates is thus chosen that V' —g=1. -

Now all general formulae necessary for the following have been
cited. We still remark that not yet anything has been said about
the units in which the quantities are expressed. In order to obtain
the stress- and energy-density in the desired units it may therefore
be necessary to introduce in the expressions (2) and (10) a constant

66@*)

1) ErnsTeIN, Hamiltonsches Prinzip, equation (20).
9) See e.g. J. DrostE. Het zwaartekrachtsveld van een of meer lichamen volgens

de theorie van EinsTEIN. (Diss. Leiden 1916) p. 8 and 12.
%) EiysteiN, Hamiltonsches Prinzip, equation (18).
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factor depending on the system of units (comp. the next §, equation (15)).

§ 2. Energy of a stationary system.

We shall now consider a material system of finite dimensions and
especially one for which there exists (at least) one system of coordi-
nates in which the gravitation field is stationary. Let us first consider
what must'be understood by the mass of the system. The matenal
system having finite dimensions it is evident that its gravitation
field may be considered as being caused by a material point, the
mass of which has a definite meaning, and all that holds with greater
accuracy according as the distance to the system is greater. The best
way of defining the mass of the system is based on the properties of
the created gravitation field at points at a great distance. According to
the theory of relativity however the mass of the sysiem is equal to
its total energy when at rest divided by the square of the universal
constant ¢ which represents the velocity of light in natural units. If
according to our assumption we nse a system of coordinates in
which the gravitation field is stationary we find for the energy at

rest the expression
ff (St4 + r44) dml d‘”a d‘”s ! )
J

where the infegration has to be extended over the whole three-
dimensional space. Possibly a universal constant factor bas to be
added in order that we may obtain the energy expressed in the
desired units (comp. § 1 end). It is easy to see whether this is
necessary. First of all we choose the time-coordinate in such a way
that at an infinite distance g,, gets the value c¢*. Of course the value
of the universal constant ¢ depends again on the.system of units,
which can be chosen thus that ¢ —=1. Further we remark, that
together with a change of the unit of the time-coordinate the

numerical values of V' —g and of all *,”s changes proportionally
to the numerical value of c¢. The energy having the dimensions
ML*T-?, it is now evident that the factor ¢ must be added to our
integral expression in order that it may express the energy inde-
pendently of the choice of the unit of time in the corresponding
unit. We thus have for the energy at rest £:

r
E;t[JﬁS“+t4‘)dmldm,dm,,. S .. (1B)

integrated over the whole three-dimensional space.
This expression gives the total energy at rest for a definite material
system when this is the only one within the domain of integration.
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.

Dividing by c¢* we then obtain the mass of the system and in § 4
we shall find that this mass is identical with the one we obtain by
considering the gravitation field at points at a very great distance.

As has been said, the integral in (15) must be extended over the
whole infinite space. It is however desirable to express the mass of
a material system by an integral taken over the material system
itself and we shall now show how this can be done. According to
a law of v. Lave we have for the energy E also this expression

E = fffE(@ﬂ—{»r,")dmldmﬂdw,, B ¢ 1))

integrated over the whole three-dimensional space. We subtract this
equation from equation (15) after having multiplied the latter by 2.
As in a stationary field ¢,/ = 0, we have because of (10) and (11)

2t =5 =LxZ¢ty, . . . . . . (17

¥
and we obtain .

E=o f f @, =%, —%,—%,") do, dw, dw, . . . (18)

The 1ntegrand being zero at every point outside the material system,
the integral here has only to be extended over the material
system itself.

By means of formula (18) we have expressed the mass of a
material system by a space-integral extended over the material
system. This space-integral can again be transformed into a surface
integral extended over a surface enclosing the material system. This
may be made evident in the following way. From formula (14)
we see that = (3, 4 r,*) can be expressed as the divergency of a
three-dimensional quasivector ®:

0B,
2E+tH)=2 B , (19)
T aﬂf'r
where
oG*
s=-3 e

Multiplying (19) by 2 and subtracting (13) from this product
while also (17) is taken into account, we obtain
. 0 ‘ o€,
2(3‘4_4’11_%2__333):27‘&;(2Q)-;—Qj-,):?5;;. . (20)
According to this equation the application of Gauss’s law to

(18) gives
E:—:—f@ndf. N 1))
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integrated over a surface f, enclosing the material system. Therefore
the mass of the system is also expressed by a surface integral over
a surface enclosing the system. Unfortunately the quasivector €,
the normal component €, of which occurs in the integral expression
is not covariant, even not with respect to LoORENTzZ-transformations.

§ 3. Application to a field with spherical symmetry.

In our discussion on a system with spherical symmetry we shall
principally introduce the same notation as J. DrosTE in his article:
Het zwaartekrachtsveld van een of meer lichamen volgens de theorie
van EmsreiN (further cited as: Drosre, Het zwaartekrachtsveld) chapter
Il §1. In contradiction with Droste we shall however consider also
the field within a material body. Introducing as space-coordinates
the polar coordinates r, %, ¢ we can at any rate represent the hne-
element ds by the same expression as DROSTE viz.:

ds* —w* dt® —uw’ dr? —v* (d9* s’ S dp®), . . . (22)
where u,v,w are functions of » only. Here the time-coordinate
@, =1 has thus been chosen that everywhere

Jra =924 =95, =0,
which is always possible in a stationary field with spherical symmetry *).

Instead of the polar coordinates r,9,¢ we shall now introduce

as space-coordinates the corresponding orthogonal coordinates

)

&, = 1 ¢08 ¥ 05 1P,

wy=mncosdsing, 5. . . . . . . (23)
&, = rsnd,

while we keep the same time-coordinate as Drosre. We put
V=TrP. . . . . . .. . . (29

1) Because of the spherical symmetry gss and g4 must be zero. Thesystem of
coordinates may however be chosen in such a way that ¢;4 is not zero. We

then have
ds? == w? dt* - 2g,4 dt dr—® dr’—v? (d9° - stn® D dg?). (224)

If however the time coordinate is transformed in the following way, while 7 is

left unchanged:
dt = dt—+ W (+) dr,

we obtain.
ds'—=wPde® + 2(g, 4 +0?)dt dr— (u? — PP —2pg, 1) dr® —v? (A9 sin®ddop*).

If now the function ¢ () is,deﬁned thus that

gra + Pt = 0

¢:4 will be zero in the new system of coordinates.
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for the components of ‘the fundamental tensor we then have the
following expressions

L &)
gm=— L @—p) for p=fu.
(29)
. - .
Gop= —0F — —;;(u =P Gua =0, g, , =",
where w, v=1, 2, 3.
For the components of the contravariant fundamental tensor we
have:
. e, (1 1 )
g ‘—“—T(E“F) for k==, f
‘ . . (26)
1 al/1 1 1
g/*/’: —_—— =), 9”4:0 944:_:_
pz 3 u® pz w?

As we consider also the field inside the matter, the material
stress-energy-tensor ¥,” occurs now too in our formulae. Because of
the spherical syminetry we can write for its components:

Ly &
g, = ";2 ’ & — zpp) for up=f=v, [
&yt @7
~ *~ ~ 4~y 0l
ne= @ g =t =
u, v=1,2,3. !

That here T,*=%,#=0 rests on our assnmption that the energy
of the system remains constant. No radial energy-current can
exist then.

Now we shall deduce formulae for the gravitation field from the
variation principle of the form (la). We chose this form of the
variation principle with a view to a better correspondence with the
article of J. DRrosTE.

By a right choice of the limits of integration the equation (1a)
becomes :

1y LE
4ndfdt (- V—gG+2zM)rdr=0
. 4 .’1
or by division by 4 = ({,—1t,) ]

?

T2 i 2
de:,aGr’dr::udfsmr’dr e .. (28)
1 ‘

3
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The integral on the lefthand side, which multiplied by 4= evidently
gives the space-integral f V—g G-dV over an empty spherical space

V, has been calculated by Droste. He used polar coordinates, but,
the integral multiplied by 4« (¢,—1,) giving a scalar, the result is
independent of the choice of the space-coordinates. First DrosTe
finds for (7, which evidently is also a scalar, (see Droste, “Het
zwaartekrachtsveld” p. 16)

2 20" 4dow  4v" 44U 2w 2uw

.. ©9)

wvw  w'v udy w*w ww

where %’ v’ 1w’ are derivatives with respect to 7. Further DrosTE
finds :

f V' —g Gr* dr=2 f 3 g (”?wl"‘ 27’”’”') n wv'® - 2vv'w’ 4w
d’r u u

All variations being taken zero at the limits r =, and » =1,
we have '

dr. . (30)

. 12 7y
. 2 2 ()
de—_qGr'—‘ =24 ﬁw—”—i—ﬂJruw dr. (31)
4 u
7 n
This is now our expression for the lefthand side of equation (28).
Now we must consider the righthand side of this equation, and we

shall begin by proving the following relations:

0 dgrr 2 .\
=8,
w 0g® 0w w '
oM dg~ 4
. ————3F .. .
w 09 0o v P ' (32)

oM ogr 2,

g Q. w
where Zr and I» are connected with the tensor ¥ in the way
indicated by the equations (27). In order to prove the validity of
the equations (32), we first vemark that becanse of the spherical
symmetry both the lefthand and the righthand side depend on r
only. If the equations hold for an arbitrary point on the X,-axis

(z, =7, o, ==, =0), they are always valid.

According to (26) and (27) we have for points on the X, -axis:

11__._._1 33 as.___l-—- r “-——-1 33
gt = 7 g =97 = -p—,-———;;v g —'w—,' ( )
(zll :?_,", (E’z:rzla _—_Epp v e (34)
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All quantities g and £, for which u==» are equal to zero.
Consequently we have for points on the X -axis

agn 9 ag" _ 69”____27# ag‘“ 2

T W e e w0 ©Y

the other derivatives of g’ with respect to u, v, w are zero. According ~

to the formulae (33) equation (2) gives
oM | om 1 Cam o, am e

2 T e —_— —
2 T agng agu 3

&9

=37,

~l — —_——
1 — agu-q agu u?
farther we have because of (35)
L0 dgw O 2 oM dge o oM 207
T Pt PR P PR C P P
All these equations hold for points on the X, -ax18 and consequently
the two first equations (32) are valid for these points. The general
validity of the equations follows from the above. The proof for the
third formula (32) is given in_the same way ; this latter proof directly
_holds for points not on the X,-axis, as every where g'* = g* = g*=0.
Because of the equations (32) the righthand side of (28) can be
written in the form
s

Tq
~ Ou o do L dw,
S wd § W r? dr = 2% S — 23 — 4 T — rtdr. . (36)
u Yoy 2w,

51 a1

Introducing the expressions (31) and (36) for both sides of equatlon,

(28) and dividing by 2 the variation principle for a field with
spherical symmetry finally becomes

g

Flwo’? + vo'w
d + uw
1

rg
L O o, |
in—x | [, 1237 L 42 L ar 37)
u Yoy w

n

(2

As the variations du,dv,fw are independent of each other, and
as w,v,w,v,w are not varied at the hmits », and »,, we find
(comp. Droste, Het zwaartekrachtsveld, equations (24) which hold
for the field outside the matter), -~

'2 T 2
wu 20 v'w' 7
———————-—+2 — fw=—=2%,
u
1 ! " ”n 2 -
w4+ vw 4 vw uw o
— 4 @w + wv) —2‘:-%‘52;') . . (88
u u¥ v
Qoo 2" T

+u+ 21:1)';:;—%@“

u v

These equations are the fundamental formulae for a gravitation

o A e

-10 -
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field with spherical symmetry. We can easily deduce from it the
following equation

2 ‘i’ r ‘1.’_’ p Z"“ —i LR
r(uzr+zvs,,+w¢4)—dr(r ) ... (89)

which can also be found immediately by applying formula (22) of
Emsreiv (Hamiltonsches Prinzip) to our case. Formula (39) expresses
that the spherically symmetrical material system is in equilibrium
when the gravitation is taken intd consideration ).

Starting from equation (18) we shall now deduce a formula for
the energy and the mass of the system. We put

P=3—% -8 -3 =8 - —25F . . (40
and calculate r?2%. Putting for #*x%, g7, 9*’::‘.{2 the expres-
sions following from (38), we find that most terms neutralize each
other and we obtain

) lw" 2 ,vﬂ wlul

!
r’x‘f’=4vvw+2v — =
u u u?
d [v*w drp*w '
3 =2 =2 N € 3|
r*y ¥ d7'( " ) o ” ) (41)

Outside the material system is ¥ =0 and we thus have for »>> R
(R being the radius of the body)

P Y _ constant >R . . . . . (42

2r?
u

The meaning of the constant will be examined later on.
Equation (41) suggests a connexion with our former equation (20)

and we shall directly see that this really exists.

is o at the centre
U

Excluding the theoretically possible case that il
of the system we find by integration of (41) from =0 to an
arbitrary upper limit r -

?

2 !
j;"x ‘Fdr:Z'r’p w.

u

0
1) If we put
u=w=—1 , v=—r,
viz, if we neglect the gravitation (39) becomes

d , .
2 3;:5 (* &),

which equation expresses the equilibrium between the ponderomotoric forces given
by the stress-tensor T for the case that there is no gravitation.

75
Proceedings Royal Acad Amsterdam. Vol. XX

-11 -
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For the volume integral |x%d V" overa spherical space with radius» -

we obtain

r
47:::];" YWdr —4nxr

0

Bw’

2p

u

If we integrate over the same s\phere and apply the law of Gauss,

equation (20) gives again

4nxﬁ’ Ydr—=4nr¢,,
0
where €, is the component of the quasi-vector € difected radially
outward. In consequence of the spherical symmetry there does not
exist a component of € perpendicular to the radins. Thus we have
2 p*

&="2 ... ... . @43

u

In our orthogonal system of coordinates we have as component
in the direction of the X -axis
2p*w

&
C.e=—
r u

t=1,2,8 . . . . (44

Combined with our former formula (18) or with (21) our last °*
formulae give also an expression for the total energy at rest and for
the mass of the system. Taking r greater than the vadius R of the
material body we obtain
r ¢ s
% B — 4:rrxfﬁ" Ydr—4mcr® =4 mcsr? 2—};——?—,
" .

4 222 ! .
E="0P Y ¢>R o . . . . (45)

% u

This formula expresses the mass of the body by means of the
gravitation field outside the body. This shows at the same time the
meaning of the constant on the right-hand side of equation (42).

In our considerations of this § we assumed the field to be
thus, that there exists at least one system of coordinates in which
the field is stationary and to have spherical symmetry; and our
formulae hold for such a system of coordinates that has its origin in the
centre of symmetry of the material system and that has such a
time-coordinate that ¢, =g,, =¢,,= 0. If however there exists

-12 -
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one system of coordinates of the above mentioned properties there
exists an infinite quantity of such systems of coordinates, and our
formulae hold for all these systems. Not alone the directions of the
X, X,-, X,-axes can be chosen in an infinite number of ways,
but we are still free to chose the method of measurement for
the length ot the radius vector in space. Without destroying the
validity of our formulae we may thus pass from a system of coor-
dinates z,, 2, ¥,, , to an other one &', &', z,' #, with the same time
coordinate, but for which

where ' =V'7/," L 2/ * +2,* is a function of r(comp. Droste, Het
zwaartekrachtsveld p. 16). For such a transformation of coordinates
u, p, w change of course. If therefore we have to calculate u, p, w
(which according to (25) determine all ¢,,’s) we must first fix the
system of coordinates. This may e. g. be chosen in this way that
everywhere p =1 (corresponding to v ==r of Drostk). If then still
the unit of time is chosen so that the universal constant ¢ has the
value 1 the system of coordinates is determined except as to the
directions of the three axes in space, which for spherical symmetry
are of no importance. For the thus specially fixed system of coor-
dinates we have outside the body (see Drostr, Het zwaartekrachts-
veld, p. 18)

1 a ‘

wWe=—=1—- , p=1 >R . . . (46)

u r :
where o is a constant.

That these formulae ave right can easily be verified from the
formulae (38); they are also found more directly from more general
formulae which will be, deduced in a following paper. The
constant ¢ must of course be connected with the mass of the body.
Formula (45) gives for this relation, ¢ being equal to 1,

4w e

(46a)

m=F =
%

In this special system of coordinates we have according to the
formulae (25) outside the body *)

V=1 . . . . . . . . (46b)

Inside the body however this value of V" —g need not hold. If

1) This is seen most clearly by considering a point on one of the axes of
coordinates We then find first /5 = uw p*

-13 -
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the system of coordnates is fixed by the condition that everywhere
V—g=1, then we have p=l=1.

§ 4. Generalization of the obtained result.

In the preceding § we have chosen the time-coordinate so that every-
where ¢,,=¢,, = ¢,,= 0. Now we shall show how the formulae
(41)~— (45) can be generalized, so that they also hold when this condition
is not fulfilled. Because of the spherical symmetry we can write

&
g,,4=7_j’gr4, n=1,2,8 . . . . . (47

where ¢,, has the same: meaning as in formula (22a)-of the note
on p. 1081. To generalize one formulae to the case ¢,, == 0 we must
evidently transform the time-coordinate in the opposite way as in
the note on p. 1081. The quantities referring to the original four-
dimensional system of coordinates, in which g,, = 0, will now be
denoted by letters with a dash over them. The expression of the line-
element in polar coordinates from which we start becomes then :

ds* =w* di* — uw? dr* — p*7* (d9* + sin® 9 dg*).
We transform the time-coordinate by putting
dt = dt —p (v) dr,
while r =17, # =49, @ = are left unchanged. "
ds* being an invariant, we obtain by substitution
it =wn At'—3 w* dt dr — (W — W w?) dr* —p* r* (d9* - sin? 9 dep?).
The components of the fundamental tensor are then transformed

according to the formulae

w=w' g, =—Pw, u=u— P'w, p’'=p’

These formulae firstly give
u? 2—02;4 = (u® w* + g,4%) p*.

This equation shows that the determinant ¢ of the components
gw is mot changed by our transformation of the time-coordinate.
We have namely
wulpt=—yg , @ Fg)pt=—g . . . (48)
where ¢ and g denote the above mentioned determinant for the

_orthogonal system of coordinates (which through the formulae (23)

is connected with the polar system of coordinates) before and after
the transformation of the time-coordinate. That both members have

-14 -
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the meaning we ascribed to them, is evident from the consideration
of a point on one of the axes of coordinates.
We shall now transform formula (41). In the original four-
dimensional system of coordinates this is after a slight variation
Faw=g LT
dr V_;

Now. we shall prove that the lefthand side remains covariant at

the transformation of the time-coordinate. As also the righthand side:

remains invariant, the formula holds in this form also in the four-

dimensional system of coordinates. According to (40) we have for

every system of coordinates
=2 f— X2

‘ wl

v being a mixed volume-tensor, ¥,* is transformed according to
this formula :
V—g _ 0z, 0z, _

B = L. ... . (49
! l/_; «8 6.1:{; am4 ( )

If we consider a point on the X, -axis, then dz, =dr. At our

transformation of the time-coordinate a.w {—=1 is the only one of all
ml

0 oz 0a @

— which is not zero. Of all é only —l_i-_—_i and —— =1 are

a""« a.’vp 6.7;4 &z,

different from zero. As further g =g we find
T = 54‘ T+ v Ecl‘ -
It T' was not zero this would mean that there\existed a radial
energy-current and the energy of the system would change contin-

nally. As we, assumed the field to be stationary, we have ¥,' =0

_and therefore ,*=T,*. As D, is a volume-scalar and as the
lU.

detérminant ¢ does not change by the transformation, = ¢,» does not
o2
undergo a change by the transformation either. Thus at the transfor-
mation ¥ remains invariant.
f: L' 28

As 7, p, w too remain constant, we thus obtain for the new
four-dimensional system of coordinates also

—d 3 4 dﬁ
e lIf:‘Z_("_Zi_—;o—) e e e e e . (41la)
/8 V—g 7

-15-
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We here have found a generalization for formula (41) which
also holds when g,,=]=0. It maust still be remarked that gr4 ocecurs
in the expression for l/:§ (see the last formula (48)).

The more general formulae for (43), (45) can easily be obtained
in the same way as above.

-

4 2
=P 439
l/_g dr
4 2 4 t
E=20T W SR .. (459
% V._.g d’r

In this § and in the preceding one we have confined our discussion
to bodies with spherical symmetry. If we have a body of finite
dimensions, which does not possess spherical symmetry, the corre-
sponding gravitation field is different from that belonging to a body
of the same mass but with spherical symmetry. We see however,
that the greater the distance from the body in question becomes,
the more the two fields must become equal. Therefore we can.
define the mass m of a fimte material system of arbitrary form by
the formula

m:ﬁr lim ('r’p“ i@g’_)_:‘i_n lim (7‘2 9" dg“) . (50)

€% p —oo _—_g dr

In the last expression we have introduced — p* = g,, analogous
to the notation in formula (27). In order that formulae (50) may
have a definite meaning, the limit on the right-hand side must of
course have the same value for any direction in which we move
towards the infinite. Formula (50) supposes therefore the system of
coordinates to be chosen in such a way that at an infinite distance
the field possesses spherical symmetry. ’

For the case we are considering formula (43a) gives

2 ,n4 d 2
bm » €, = lim rp_i N 1 )
r=ow r=ow l/—g dr
and as formula (21) in § 2 is also valid for a stationary field, which
has no spherical symmetry, this equation gives together with (50)

E=c¢m . . . . . . . . (52)

as is demanded by the theory of relativity. Thus we have shown
that the calculation of the mass of a stationary system by means
of formula (50) from the field at points at a great distance and the
calculation of the mass by means of formula (52) from the total
energy at rest give the same result also for bodies without spherical
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symmetry. From our considerations 1t also follows, that Efc* has
the same value in every arbitrary system of coordinates in which
the field is stationary and possesses spherical symmetry in the in-
finite. The mass m is thus a scalar.

In a following article the gravitation field for an electrically
charged centre will be calcnlaied by application of the result found
in this paper for a field with spherical symmetry.

Further it will be proved, that the density of energy of the gravi-
tation field t,* outside the body is everywhere zero, when the system

of coordinates is thus chosen that ¥ —g==1 (or constant).

~
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