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Mathematics. — “Some Considerations on Complete Transmutation”.
(Sixth Communication). By Dr. H B. A. Bockwisken. (Com-
municated by Prof. L. E. J. Brouwgr).

(Commhnicated in the meeting of March 31, 1917).

In the preceding communication we treated of the transmutation
T=1T,T, which is obtained when two complete transmutations
T, and T, are applied to some regular function . We saw there
that the resulting transmutation is likewise complete in some pair or
other of associated fields, the mutual dependence of the new N. F. O,
and the new N. F. F. being to some extent established. We further
gave a strong proof of the formula determiing the resulting series
P, which was furnished by Bourier without domains of validity
being mentioned by this author. As we have seen the formula
expresses the so-called operative function of the resulting series P
in those of the componenis P, and P, and differential coefficients of
them. Again in giving some examples to illustrate our theorem of
N°. 24, we observed that the method to find the resulting series by
means of the just mentioned formula of Bourrer, is often much
more difficult in practice than a somewhat more direct method,
according to which first the functions §, () = T, T, (z™) are determined,
and then, by the symbolic formula (24)

) ap=@E—2)m™ . . . . . . . . (24

the coefficients a,, (¥) of the resulting series P. BourLer, however,
has been able to apply his formula with success to questions of a
more theoretical character. .
The examples mentioned give rise to the question whether it is
possible by means of the more direct method to find a general
formula which expresses the coefficients a, of the resulting series
P in the coefficients 2,, and w, of the composing series. We thus
arrived at a rather simple symbolic formula, which allowed us to
shew again the completeness of P, the statement about correspond-
mg domains being the same as in the foregoing communication.
The investigations which led us to this result, gave us an opportunity
to establish other more simple formulae, which served us to go on
further, and which have moreover a certain interest in themselves.
Again it seemed convenient {o add some further formulae to those
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already obtained forming with the latter a more or less complete sysiem.
The development and the discussion of all these formulae is the
subject of the following pages.

30. In all symbolic formulae to be treated of, the closed expressions
accurring in the right-hand members of them must be developed accord-
ing lo ascending powers of one or more letters, these powers
having no meaning in themselves, but obtaining one when the
exponents (upper indices) are replaced by (lower) indices. Now,
often certain reductions are allowed which would also be valid if
the letters denoted variable quanittties, whether or not being restricted
to certain domains. Such reductions we shall call analytical reductions.
The principal condition which should be noticed in order to be
able to perform an analytical reduction with symbolic expressions
15 that equal symbols occurring in different parts of them, have
the same meaning, this being the same fundamental condition if the
letters denote numbers. )

Generally speaking an analytic reduction is permitied if the proper
meaning of the result is the result of the proper meanings, when
by the latter the result is meant which would be obtained if the
proper meanings were introduced before the reduction mentioned
1s performed. Thus we may have an analytic sum of symbols or
a product. In the first case we shall often have to apply the ruole
that in a polynomial consisting of symbolic powers of the same
lefter, before substituting indices for exponents, terms involving equa:
powers af may be added analytically. For the proper meanings of
such terms are quantities involving equal factors a;, the coefticients
in the symbolic terms being respectively equal to those in the proper
‘ones. The sum of these coefficients multiplied by a* is the analytic
sum of the symbols and the same sum multiplied by @z is the sum
of the corresponding proper expressions. Thus the latter sum is
indeed the proper meaning of the former.

If we have a product of symbolic powers of the same letter a,
we should carefully state whether the product of their proper mean-
ings 18 meant by it, or the proper meaning of the analylic product,
that is of the single power which is obtained by multiplying thé
powers of a according to the ordinary rule giving as new exponent
the sum of the partial exponents. For the proper meaning of the
analytic product of a certain number of powers of the same letter
a is not in general equal to the product of proper meanings of all
factors.') We shall always have to deal with such products of

1y See, however, the example in NO. 33.
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powers of a letter a that have to be multiplied analytically before-
the proper meanihgs are substituted. In other words, the proper
expressions will always be linear functions of quantities involving
thé same letter ¢ and different indices £.

To begin with we observe that the functional theorem of Mac-
Lauriy, treated in the 3'Y communication leads to a generalization
of the symbolic formula (23)

Ehi=Te)=@&+aom, . . , . . . (23)
which expresses the transmuted §, of the rational integral functions
a® in terms of the coefficients a,, of the series P answering to the
normal transmatation 7. Formula (23) is vahd in any circular
domain to which belong all functions @, and §,; the existence of
such domains is one of the characteristics which make a transmuta-
tion normal, according to the definition we gave in N°. 15.

When the series P is complete in the domain () then, according
to the just mentioned theorem

®

Oy ylm) (zv)

Tu=Pu= Sp 2
%m m/! !

for functions w which belong to the domain (8) corresponding to (a).
The right-hand member may apparently be denoted by the symbol
u(x + a), provided we interpret this in the following way: sub-
stitute for the symbol the power-series in the letter a which answers
to the function u (x4 a) if that letter means a compiex number.
This power-series 1s unique, since 2 is a point n the domain (&)
and « a function belonging to (3) and thus certainly to (a).') We
therefore obtain the symbolic formula
Tu(@)=u(z 4+ a) N (1))
valid in () and of which (23) forms a particular case. 7

1) Considerations of unigueness were really of use already when in the 8td
communication we put for the formula
m

- §n=— Z my, Ak q, N

0

the symbolic formula (23); in fact, if the expansion of (xtaj in a power series
according to g were not unique, special reference should be made to the fact that
the series in the right-hand member is meant and no other. But no one thinks
of uniqueness in the development of a bimomial, nor did we in writing our
8rd communication. Nevertheless, in the light of the piesent general developments,
in which the uniqueness of a power-series forms the principal part, it seemed
convenient to us to mention this point.

%y We have to take care that in the first term of the expansion the factor af
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For the m' derivative of Tu we may as well give a symbolic
formula. We saw in the 4t communication that this quantity,
defined by PmcuerLt by means of (45), may in the doman («) also
be found by formula (39): ’

w

(kY (2
T :2 ﬂ’i’%ﬂ N 1)
of course for functions u belonging to (3). Instead of this formula
we may write symbolically

T(u) =aru(@+a) . . . . . . . (68)
which formula has (67) as a particular case (m =0). This
might perhaps give oceasion to make the mistake of substituting
in the factor o™ index for exponent before developing the form
u(z-+a) in a power-series of the letter a; this should first be
done, then multiplication by @» should be performed, and finally
exponents should be replaced by indices.

We now come to the symbolic representation of the more general
functional theorem of TayLor, dealt with in the <4th communication.
Applying (67) to the product of the funections v and-u both belonging
to (3) we get

Tw(@u(z)) =v@+o) wz+a). . . . . . (69)
provided no other meaning be as yet assigned to it than that the
right-hand member be regarded as a whole, according to which it
has to be replaced by the power-series in @ which corresponds to
the funection w (z + a) = v (¢ 4 a) u (x 4 @), if a denotes a number.
This power-series, however, is to be obtained by multiplying the
partial series corresponding to v (z 4 @) and to w (x -+ @) according
to the well-known rule, and then ordering the resulting aggregate
s0 that terms involving the same power of a are combined. If, now,
we collect into one all terms of the aggregate containing the same
factor ' \

amu(”‘)(.'v)
m/!
which is due to the expansion of u (2 4 @), the result for all values
of m is the functional series of TayrLor. For the whole of those
terms corresponding to a definite value of m is represented by
amv (fb + ‘_7'_)_ u'm ('1,),
m!

which, through (68), is equal to

is not omitied, as was the case with (28) and m.m. more general with all
symbolic expansions we shall treat of.
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T (v)uln)(z)
m/!

But this 1s, 1if we consider v (z) as “original point” and w (2) as
“increment”, exactly the general term of the series in question, the
validity of which we proved in the 4" communication. This proof*),
as a matter of course, consistsin shewing that the change in the term-
grouping is permitted, the convergence of the aggregate being
absolute. It may therefore be grouped in an arbitrary manner so
that the symbolic formula (69) admits of the following interpretation :
replace both functions » (z 4 a) and u (x -+ a) by their power-series
in the letter a, then form the aggregate arising from the multiplicative
combination of the series-terms, and substitute ndices for exponents.
If the so obtained aggregate be ordered according to indices of a
we simply get the functional series of Mac-LauriN for Tw = T (vu);
if 1t be ordered according to powers of Du, the functional series of
Tavror for 7w in a “neighbourhood” of w=—wv is obtained; if,
lastly, the aggregate in question should be ordered according to
powers of Dwv, we should find the functional series of Tavror for
a ‘‘neigbomhood” of w=wu. The symbolic formula (69) contains
all these different cases; we only wish to observe that, if we expand
the right-hand member according to powers of [Du, the general
coefficient in that expansion, which is, except for the factor 1/m /,
equal to )

) am v(w -+ a),
or to T’ (v), has in this very form a meaning only in domains ()
: smaller than (r,), where 7, is the a-value to which the radius of
i convergence r of the function v corresponds as a B-value; whereas
in N°. 20 we saw that the other form of the coefficients in question,
viz. that defined by (45), possibly has a meaning in domains greater
than (r).

T S———
.
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31. We now come to our principal object; to construct a sym-
bolic formula which expresses the coefficients a, of the series P
- answering to the composed ‘transmutation 7I'= 7,7, in terms of
the coefficients 2, and g, of the partial series P, and P,. As we

said already, first the functions

§r= Tsz(wk)v

| mto which 7' transforms the integral powers of », are determined
for the purpose, in order to derive from them, by means of

1) We wish to insert here the remark that the proof we refer'to becomes simpler
if the majorant-fanctions @m of am are used, as we did in the 5th communication. .
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formula (24) (mentioned again in the beginning of the present com-
munication), the functions @, . The difference from the course fol-
lowed in the previous communication consists therefore in the determi-
nation of T, T, for the particular function % instead of at once
for the arbitrary function ». This can but lead to simplification.
We retain all notations and suppositions of N°. 24, and thus
especially assume the existence of three numbers ¢, vy, 3, having
the properties explained there. To begin with, we observe that z*
belongs to the circle (8), hence T'(a%) to (v), hence T,T.(a%) to (o).
In other words & is a function that is regular in the closed domain
(@), and we at once add the remark that the regularity of a, follows
from this by means of (24). We further develop 7\(2%), as T, in
N°. 24, in the series of Mac-LiavwiN, which, however, here simply
becomes the finite series (23) (copied in the previous paragraph).
Thus the transmutation 7, may be without any addition applied
term by term to that series, whereas the same operation in N°. 24
“wanted some further explanation the series in question being' there
infinite. We therefore have, in terms with proper meanings,

k
Ep= i kT (zk—2,),
>

valid in (¢). The quantity 7',(z*—2;) may in this domain be deter-
mined by means of (69), since 2 (z) as well as 2%~ belong to (y);
this gives
T,(%—%2,) = (z-+u)— 4 (v +p).
Substituting this result in the foregoing formula we find

k
§k=27c1((6+y)7¢—"21(w+y), A (£))
0

without anything wanting to be proved, provided we replace each of
the £ - 1 terms of this series separately by its own proper meaning,
and add them after this being done. The proper mneaning in question is:
substitute for the expressions (z + w)*— and 2,(z -+ @) their power-
series in gy, multiply those series term by term, and finally replace
the exponents of p by indices: then, the so obtained aggregate
converges absolutely and uniformly in (e). But the same holds for
each new aggregate that arises from the collection of a finiic number
of suchlike aggregates. Thus the £ 4+ 1 aggregates corresponding to
the right-band member of (70) need not be kept apart from one another.

One method of grouping the elements of the aggregate consistsin
taking all those elements with the same index of u, or, if indices
have not yet been substituted for exponents, with the same exponent,
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together, and thus we may interpret the right-hand member of (70)
as follows: replace it by its expansion in a power-series of the letter
i and substitute indices for exponents. That a uniquely determined
power-series corresponds to the right-hand membe}' of (70) hardly
needs any further mentioning, this having already been stated for each
of the £ 4 1 terms separately. The manner of grouping considered
here makes it clear, however, that the expression in question may be
transformed analytically before proceeding to its interpretation, owing
to the fact that a function in the neighbourhood of a regular point
can but be expanded in one power-series. This remark will be of
use when 2's of different indices are in some relation to each other
so that further reductions of (70) are possible. But a general reduc-
tion of (70) is not possible since in none ‘of the £ -1 terms of the
series occur terms with the same ipdex at 7.

But further symbolization of the formula for & is possible if we
replace the index at the letter 2 by an exponent; if, at the same
time, » we omit for a moment the form (z - u) from 2, we way
write

k
§k:2k,(w—|-y)k"i2i,v B (41
0

If this be interpreted such that, before performing other rednctions,
the exponent of A be replaced by an index and the form (x4 p)
be added, the foregoing formula is produced again and there is nothing
to’ be established. But a new result is obtained if we do not consider
each of the £ -1 nembers of the sum asa whole, but every product
(x4~pm)k—i+1 2 where ¢ stands for 4; (x-4u), as the sum of f—i41
magnitudes the symbolic representation of which is obtained by the
development of the binomial (¢ 4 @)k~ and the multiplication of
each of its terms by Ai{ as if 2 and p were numbers ). The total
symbolic aggregate obtained in that way from (70" is an ending
power-series in 4 and g, so that any other development of (70
than the special one mentioned leads to the same power-series. Now
the expression in question can be analytically reduced to (A4-p—+x)¥,
so that finally we have the symbolic formula

§t=Q+tuta)k, . . . . . . (7))

0y The correctness of this interpretation of the product mentioned has been
pointed out at the end of the previous paragraph, and, as is evident from the expo-
sition there, the interpretation consists in consideriﬁg the product as the symbolic
representation of the expansion in the Tavior series of Tg[xk—?'hi(x)], 2: (x) being
the “origin” and xk— the ‘increment”. This is contravy to what in NO, 24 led
to the formula of BouRLET, where we took A:(z) as the “incremen!” and uli)(x)
as the “origin”.

’
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the interpretation of which is implied in what precedes. We only
wish to call the attention to the characteristic fact that the letters
} and p must not at all be treated in the same manner: first comes
the change of exponents into indices of 4, then the same change
with regard to p.

+ Finally the last step: the determination of the coefficients a,, from
the quantities & by means of (24). If we put in this formula the
right-hand member of (71) we find

- m
- am = M my (—z)ym—k A+pEa)k. . . . . (72)

0
and there is nothing to be proved, if we substitute in each of the
m 41 members of this sum sepavately for (A4 u-2)* its proper
meaning. In order to get this latter we must expand the trino-
mial in its power-series in 1 and p: each of the terms then
has its own real value as is explained above, and the same
therefore holds for the product of such a term by the factor

my (— z)»—*, We thus obtain for each of the m -1 members of -

(72) an aggregate consisting of a finite number of elements each
of which is characterized by a definite symbolic power of 2 and u.
The total number of elements arising from the m -1 members is
therefore also finite, so that it forms a new aggregate that may be
arranged arbitrarily. If this be done in such a way that terms
involving the same powers of 2 and u are collected — these may
be added analytically, the meaning of a product A»u¢ depending
only on the exponents p and ¢ and not on its source — then we
obtain a power-series in 2 and u. But the same power-series evidently
corresponds to all expressions which can be derived analytically
from the right-hand member of (72). Since, now, this latter is equal
to (A-u)?, we may finally write

=G = Beptwm . - . . . . (79)

where the last member shews more explicitly the signification
which is to be assigned to the formula. This is as follows: expand
the binomial (2~ u)* analytically in its power-series in 4 and y;
substitute indices for the exponents of 4 and in 4;{z) replace = by
x4 p; again develop the so obtained functional expression in a
series according to ascending powers of w and finally sabstitute in
these powers indices for exponents.

This is the symbolic formula we had in view, expressing the
coefficients a,, of the resulting series P in terms of the coefficients
2, and p, of the components P, and P,. In deriving this formula

Eoarme s oo
-
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we have met with another, viz (71), which expresses the resulting
quantities §, also in 2, and u,. But if we want this formula as a
final result we had better write it in the following simpler form
En = @A) = {(A-} a)n oy (74)

32. Formulae (73) and (74) arve valid in the domain (a), as it
has been shewn in the foregoing paragraph. It still remains to
be proved by means of (73) that the resulting series P is complete
in (¢) with a corresponding domain thai is at most equal to (8), a
statement we gave in the previous communication. To do this we
shall make use of the following proposition, the proof of which we

‘do not give, first because it is very easy, and secondly because the

proposition may perhaps be established elsewhere:
The upper limit for m = w
1
lim | By 4 Qu |,

of the m root of the modulus of the sum of two complex quantities
P, and Q., both defined in the aggregate of positive integral m-
values, 1 equal to the greatest Of the two wpper limits
1 . 1

G | Bafw o G [ Qulm

m=—a m=oc .
of the mt roots of the moduli of those two quantities separately. 1f
the two latter limits be equal then the former 1s never greater than
each of them. . )

An analogous proposition is, as a corollary of the one just men-
tioned, valid for a sum consisting of an arbitrary finite number of
terms, this number not depending on m.

The proposition will serve us to investigate the mth root of the
modulus of the coefficient a, (z) of the resulting series 'P. 1If we
work out the righthand member of (73) in the prescribed manner,
we obtain

»

. o
A== Yk mj ym“k Ak _f_i_zk +

——
pasaan}

w,
E)—',-).k +...]

0
m ® }
— m—fer A
= 3 [ me 33 e, )
0 0

this equality containing only proper expressions. We assume again,
as in the previous communication, that (y) is not the maximum domain of
completeness for the series P,, so that there is a domain (y) > (v),

L

-10 -
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in which P, is likewise complete; let the domain corresponding to
this latter be denoted by (8). We may suppose g to be arbitrarily
litile greater than 3 — provided y'be chosen sufficiently liitle greater
than y — if we assume at the same time, as we did in the previous
communication, that « and 8 increase and decrease continuously with
each other. Let further Z; (v') be the maximum modulus of 7; on
the circamference of the circle (y'). There is, on account of the
completeness of P, and P, mentioned above, corresponding to any
arbitrarily small chosen number # a whole number E such that for

n> 0

together with
(|G —atep. i |af<a . . . (7
Fuorther we have in the dom&m («) for all integral not negative
values of ¢ and %
Wl L) (78)
¢t (y'— a)itt
We now suppose m to be chosen greater than 2F and on that
supposition divide the double sum (75) into the following four parts,
which we denote for brevity by their limits only,

m—E o E—1 m ® m  E—1
% E : 2‘ : 3 2 :

8, == gk 1, §T= kZ ’ 38:“‘—: y 8§, = Ek 7.
x5 0 m—l+41 E m—E+1 0

Further we assume &, after v, to be so chosen that y 4 & <7,
say v'=1v + e} d. Then we find for the first three sums by means

of the 1nequaht1es {77) and (78)
m—E

s, | < g Zc my Ly, (7) (y — a + eyn—Fk

E—1

[ 5| <%2 m L (Y) (v — @ + &)yv—*

I Sy I <z.({ i:t'e) >k my Ly (y)( — - 8)’""

m—E41
In the first and third sums moreover the inequality (76) can be

applied, and thus we find 101 s,

m—E m

o) <5 Y me (=74 9 —at gt < S Vi <
dg'k - d;

<5 E—r'+r—at2gn < < (E—at 2oy

-11 -
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For s, we find by analogous reductions

: Pl <= (YT_,_‘_'—?)E(B’—-aque)m

af v—ate \E a
- —— — 2gym — (R —a-28)n
< et < s-aran
From this it may be inferred
1 L
lim |s,| m < f—a , lim|s| ™ <p—a,
M=o m=owm

since & and §'—pB may be supposed arbitrarily small.

As for s,, in this sum we cannot assign a majorant-value for
the quantity L (y). But the number of terms of s, is a fized one
not depending on m. Thus we need only calculate, according to the
lemma at the beginning of this paragraph, the required limit for
each term separately and then for the whole that limit is in any
case not greater. In no one of the terms the factor Lz (y) depends
on m, so that this factor gives the amount 1 for the required limit
and, therefore, does not influence it. ¢

If we further notice that for a given value of Z not depending
1

on m the limit for m = o of mym is also 1, and that, finally, ¢ may

be chosen arbitrarily small, we infer that
1

th |‘5'2l "—l_<_ e
m== o

Lastly we consider s,; substituting £ = m—#£', and then omitting

again the accent at the letter £, we find
E-1 -1 L
- %:E‘mkz_lifi!lm k
0 0

The double summation extends over a finite number of terms,
which number is independent of m; each of the terms may be
identified by fixed values of ¢ and %, likewise independent of m,
so that it is snfficient for our purpose to consider the terms separately.
To such a term we may apply the inequalities (76) and (78), giving

4 .)
M Wt I
1l

r

< Bl mu(B—' + &)t
(y'—a)t
By remarks analogous to those made with regard to the preceding
sum we infer from this

1
Z{;"l"}l;;Sﬁ_Y

m=uw

-12 -
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Noue of the four limits is, therefore, greater than g — e, since
y is at least equal to ¢ and at most equal to 3. Hence for the
whole sum (75) the limit in qnestion is not greater either than
#— a. Thus the radius corresponding to e is for the resulting
series P at most equal to e 4 (3—a) = 3; the required result has
therefore been established.

33. We may say that with the foregoing developments our
original object has been performed: to find a symbolic formula ex-
pressing the coefficients of the resultant of two complete transmuting
series in the coefficients of these two; to fix the domain of validity
of this formula; finally to derive from it the statement that the

resultant transmutation is likewise complete ; as to the last point, we .

found the same result with regard to the dependence between two
corresponding domains as was the case in the proof we gave of the
formula of Bourrzr. \

'Before, however, finishing our considerations on the subject we
wish to establish a few other formulae constituting with those
already found a sort of closed system. In the first place we have
in view the generalization of the formulae found in N° 31 for
more than two transmulations. It will appear to be sufficient if we
take only three transmutations, represented by the series P, £, and
P,. We thereby assume that it is possible to assign four numbers:
oy, @, «,, a, such that P, is complete in a circular domain (a,)
with corresponding domain (e,), £, in a domain («,) with corre-
sponding domain @), P, in a domain (¢,) with corresponding
domain (e,). Let the coefficients of the series be denoted respectively
by aym®@), @m(®@), a;m(@), those of the resuitant P;; of P, and P,
by asm(z) and those of the total resultant Ppy by aur.(z).

Then we have

allm = ({al §x+a, T aa)m R (4%)
valid in (a,); further, since the series Py is complete in (a,), with
a corresponding domain not greater than (a,), we also have

atim=(§em}sta, + ag)» . . . . . . (80)

valid in (), and Py is complete in the domain (e¢,), with a corre-
sponding domain which is at most equal to (e,); all this is to
be inferred from (73) and what has been stated about this
formula. The statement that the resultant Py is complele so
that as a domain of completeness comes into account that of the
last component, the corresponding domain being at most equal to
that which for the first component corresponds to ils domain of

-13 -
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completeness, 15 thus easily proved, the generalisation for
n components being at once evident. It remains only to combine
the two preceding formulae, so that the resulting coefficient ayrm -
may be expressed in terms of the coefficients ay,, a2 A3
We consequently work out the right-hand member of (80) accord-
ing to the rule at the end of N°. 31, and then find the following'
new symbolic formula which answers to the earlier form (70) of
formula (73},
m
ajim == E;crmk e~ kapgr(@+e) . . . . (80)
The right-hand member must be developed according to ascending
powers of a,; that this power-series is entirely determined follows
from our detailed investigation in N° 31, according to which the
funection agr,, (¥) is regular in the domain (e¢;) and therefore also in
(). Purther the exponents of a, have to be replaced by indices;
the so obtained aggregate converges, according to the investigation
mentioned, absolutely and uniformiy in the domain (e,) and the same
holds for each of the m 41 aggregates that can separalely be
derived from the members of the sum (80'): this latter assertion,
moreover, corresponds to an earlier stage of the inferpretation of
(70). The function aj, (x) has been considered in this as a whole,
but now it must be determined by means of (79), making formula
(80" pass into

m
O

arm — :kmka m_k'((a 1+"2+a'2)k§1+"l T (81)
0

’
-

with the same signification, provided the factor between braces '
be interpreted as a whole, according to the rule prescribed for the
working out of (79), substituting at the end of the process z + a,
for ). The latter formula we may write in a more simple manner thus

t
m

)
arrim ==t mpa," ~*a,+a)e . . . . . (81)
0 ‘

1y By the words at the end we mean: after the function an (x) having been
constructed as o whole. Formula (81) would not express the same thing as (80')
if we interpreted it such that in each element of the infinite aggregate that is, in
general, obtained from (74%) for asr, x were to be replaced by = 4 a3. Mean-
while we may observe that the latter mode of calculating arrr might really he
applied, as it will be seen on noticing that the preceding investigations remain
intact if the coefficients @;, ap, a3 be replaced by their natural majorants. This
remark may be of use in theoretical questions.
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this form having the same meaning as the foregoing. But the latter
formula suggests the idea that we shall finally have

aIII,m_—:(at + a, + aa)"‘_:_ [{(al)l"}-an + azfm-l-as + a,Jm, .. (82)
the last member of which points out the signification in a more
detailed manner. This is: expand the trinomial (@, +a, 4 «,)*, as
if a,,a,,0, were numbers; replace in each individual term of that
expansion, viz.

Cafgaagi,. . . . . . . . . (83)
where ( is a whole number only depending on the exponents ¢, &, 7,
the exponent ¢ by an index and in a4 (2) the letter 2 by z+a,;
then expand every expression

aabanq (w + aa)

in a series of powers of a, and replace the exponents of @, by
indices; in the functional expression represented by the now obtained
aggregate, or in the aggregate itself, *) replace the letter # by » -4 a,;
expand the product of the latter expression by a,; in a power-series
of a, and replace the exponents of @, by indices; then there results
an aggregate that, together with those obtained from the other terms
arising, like (83), from the trinomial (82), represents the required
function anzm in the domain (e,).

We can easily see that the transition from (81) to (82)is allowed.
For looking into the matter thoroughly we see that the interpretation of
(82' may be obtained from that of (81) by changing the latter only so
far as to consider, in the development of the rinomial in question,
all terms involving the same power of a, as an irresoluble whole.
It is not at all a matter of course that the two points of view
agree, nor even that the aggregates corresponding separately to
each of the terms mentioned converge. But we may again state
that the whole reasoning remains valid if we'substitute for the
functions a,, a,, a, their natural majorants a,, a,, a;, and thus we
infer that there is no difference in the results afforded by the two
points of view.

!} See the foregoing footnote.
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