Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

L.E.J. Brouwer, On linear inner limiting sets, in:

KNAW, Proceedings, 20 II, 1918, Amsterdam, 1918, pp. 1192-1194

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematios. - "On linear inner limiting sets" ${ }^{1}$). By Prof. L. E. J. Brouwer.
(Communicated in the meeting of April 27, 1917).
We consider an inner lumiting set I, determined inside the unit interval as the intersection (greatest common divisor) of the sets of (non-overlapping) intervals i_{1}, i_{2}, \ldots, each point of $i_{,+1}$ being also a point of i. Then the complementary set C of I with regard to the closed unit interval is the union (common measure) of the closed sets a_{1}, a_{2}, \ldots, each a_{+1} containing a. We shall suppose that I as well as C is uncountable in each sub-interval of the unit interval; then we may assume that each a_{ν} contains as its nucleus a perfert set p_{v}. The difference of a_{ν} and p, will be indicated by v_{ν}, the complementarg set of $p_{\text {, }}$, considered as a set of intervals, by u_{ν}, and the inner limiting set determined as the intersection of u_{1}, u_{2}, \ldots by U. Then the points of each u, he everywhere dense, and each u, is a set of order-type η of intervals, whose length does not exceed a certain value ε_{ν} having the limit zero for indefinitely increasing v.

Let us assume that we dispose of such a set j, of order-type η of intervals each being an element of one of the sets $u_{v}, u_{\mu_{1}}, u_{4+2}, \ldots$, that j, contains no point of $v_{\%}$, but does contain all points of U not belonging to v_{v}. We shall indicate a method leading from j, to such a set j_{v+1} of order-type η of intervals each lying inside an interval of j_{v}, and being an element of one of the sets $u_{v+1}, u_{v+2}, u_{v+3}, \ldots$, that j_{v+1} contains no point of v_{v+1}, but does contain all points of U not belonging to v_{v+1}, each interval of j, containing a subset of j_{v+1} of order-type η.

Let $A B$ be an arbitrary element of j_{y} being at the same time an element of $u_{\mu}(\mu \geq v)$, let F be the subset of $u_{\mu+1}$ lying inside $A B$,

[^0]and w the set of intervals which is left from, ${ }^{F}$ after destroying all points of $v_{\nu+1}$ contained in r. Let ${ }^{*} P Q$ be an arbitrary element of w, s_{ρ} the set of intervals determined as the intersection of u_{ρ} and $P Q, t_{\rho}$ the set of intervals which is left from s_{ρ} after destroying its first and its last element, in so far those elements exist, γ the set of intervals determined as the union of $t_{1}, t_{2}, t_{1}, \ldots$, and p the set of intervals which is generated by constructing in each element of w a set of intervals in the same way as γ has - been constructed in $P Q$. Then the required set of intervals j_{v+1} is generated by constructing in each element of j, a set of intervals in the same way as p has been constructed in $A B$.

If we understand by u_{0} as well as by j_{0} the unit interval itself, then we arrive from j_{0} at j_{2} by the same process which has led us from j_{y} to j_{j+1}.

The inner limiting set determined as the intersection of j_{1}, j_{3}, \ldots contains all points of U belonging to none of the sets v_{ρ}, so a fortiori all points of U belonging to none of the sets a_{2}, so also all points of the unit interval belonging to none of the sets a_{ν}. ds, on the other hand, this inner limiting set can neither contain a point of a v_{ν}, nor (as a subset of U) a point of a p_{ν}, it finally cannot contain a point of a a_{ν} either. So it is adentical to the complementary set of C.. i.e. to I.

If we construct a ternal scale on the unit interval, and if (designing by ρ_{v} an arbitrary finite series of digits 0,1 or 2 , among which v digits 1 occur) we understand by d_{+1} the set of the intervals $l_{\rho_{y}}$ whose end-points have the coordinates $\cdot \rho_{v} 1$ and $\cdot \rho_{v} 2$, then we can first represent the set of intervals j_{1}, biuniformly and with invariant relations of order, on the set of intervals d_{1}; thereupon we can in each interval of j_{1} represent the subset of j_{2} contained in' it, biuniformly and with invariant relations of order, on the subset of d_{2} contained in the corresponding interval of d_{1}; and so on. In this way we determine a continuous one-one transformation of the unit interval in itself by which I passes into the set τ_{2} of the points expressible in the ternal scale by means of a sequence of digits containing an infinite number of digits 1 , whilst C passes into the set τ_{1} of the points expressible in the ternal scale ty means of a sequence of digits containing only a finite number of digits 1 . Thus, indicating the geometric types ${ }^{2}$) of τ_{1} and τ_{2} by $\bar{\mu}$ and $\bar{\nu}$ respectively, we have proved the following

Theorem 1. Each inner limiting set contained in a linear interval,
${ }^{1}$) Comp. these Proceedings XV, p. 1262.
and, as well as its complementary set, uncountable in each sub-interval, possesses the geometric type \vec{v}, and its complementary set possesses the geometric type $\bar{\mu}$.

Let H and K be two arbitrary points of r_{1}, we can choose v in such a way that neither H nor K is an endpoint of an interval of d. Let us indicate the set of points which is the complementary set of d_{ν}, by e_{ν}, and the set whose elements are the intervals cf d_{ν}, and the points of e_{ν}, by r_{ν}. Then, we can construct a one-one tians- . formation of d_{ν} and e_{ν} each in itself, by which the relations of order between the elements of r, remain invariant, and H passes into K. This transformation can be extended to a continuous one-one tra s formation of the unit interval in itself, for which the subsets of \boldsymbol{r}_{1} and τ_{2} contained in corresponding intervals of d_{t}, correspond to each other. We thus have generated a contmuous one-one transformation of the unit interval in itself, by which τ_{1} passes into itself, and the point H chosen arbitrarily in τ_{1}, passes into the point K chosen likewise arbitrarily in τ_{1}, so that τ_{1} is a homogeneous set of points.

Let H and K be two arbitrary points of τ_{2} contained in the intervals h_{ν} and k_{ν} of d respectively, we can construct a one-one transformation of the set of intervals d_{2} in itself leaving invariant the relations of order, by which h_{1} passes into k_{1}; this transformation can be extended to a one-one transformation of the set of intervals d_{2} in itself leaving invariant the relations of order, by which h_{2} passes into k_{2}; continuing indefinitely in this way, we generate a continuous one-one transformation of the unit interval in itself, by which each d_{l}, so also τ_{3}^{\prime} passes into itself, and the point H chosen arbitrarily in $\boldsymbol{\tau}_{\mathbf{2}}$, passes into the point K chosen likewise arbitrarily in τ_{2}, so that τ_{2} too is a homogeneous set of points, and we have proved the following

Theorem 2. Each inner limiting set contained in a linear interval, and, as well as its complementary set, uncountable in each sub-interval, is homogeneous, and its complementary set is likewise homogeneous.

[^0]: ${ }^{1}$) To the last footnote of my former communication on inner limiting sets (these Proceedungs XVIII, p. 49) must be added that the changed form in which Schoenfurs has referred to my reasoning (applying it to a special case only, and deducing the general theorem from this special case) is irrelevant. The error is contained in the sentence (Entwickelung der Mengenlehre I, p. 359, line 5-8 from the top): "Ist namlich P irgend eine abzahlbare Menge, die nicht dicht in bezug auf eine perfekte Menge ist, und geht man durch Hmzufugung samtlicher Grenzpunkte zu einer abgeschlossenen Menge Q über, so kann diese keinen perfekten Bestandteil enthalten ist also ebenfalls abzählbar".

