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Physics. -- "Un the Course of the Values of a and b f01' 
H,vd7'ogen at Different Ternperatures and Volumes". IJ. By 
Dl'. ,J. J. VAN LAAR. (Oommllnicated by Prof. H. A.IJORI!lNTZ); 

(Communicated in the meeting of Jan,26, 19]8). 

IX. Infiuence of the fi~ld of force according to Boltzmann. 

When we substitllte tbe vallIe . 
f 

dN = 4.rr r2 dr X e-P P' X T X n 

in the general Virial formula 

dP, 
pv=RT - j 21'f(r) =RT -t N fdN 1'-

for dlv, the number of molecules 111 the 
7' and 7' + dJ' round the molecule under 
becomes: 

ra 

d1' 

spherical sllel! 
consideration, 

} 
dPr 

pv = RT - t:n: Nn Tri - ~P, dr. 
dr 

between 
then pv 

In this P, repl'esents, therefore, the function of force in the points 
at a distance l' fl'om the centre of the considered molecule (thOllght 
sphel'lcal); so that f(l') = dP, : dl'. The integJ'ation extends from 
l' = s (the distance of the centI'es of two molecules - thought in
compressible at the collision, so that s represents the diameter of 
tbe molecule) as far as the field of force extends outside the mole
cule (1' = ra). 

Tbe factor e-9P, is the well-lmown BOJ"TZl\IANN temperatu7'e "distri
bution factol'" under the influence of the field of force. The para
meter () is = N: RT, in which N represents the total number of 
molecules in the volume V, so that N = nv, when n represents the 
numbel' of molecules in the unit of volume. 
, The other factor T is the volume distribution factor. For r = s 

(at collision) t's ~ wilt be = ~ _"_ (see further below), which will 
bg v-b 

approach to 1 for V = 00, as this fictitious quantity b then becomes 
= bq• For r =00 t' is = 1 for all values of v. But already at a 
short diFltance from the considered molecule l' can be put = 1. 
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Let us at first ollly consider the exceedingly l'arefied gas state -
i. e. the planetary condition of matter - then T = 1 everywhere, 
so that we may write: 1) 

s ~ 

pv = RT - t 3'( Nn s' - e-op" dr- ! n Nn rll - e-9P, dr, (a) f dPr fdPr 
dr ~ dr 

s-a 
in which wa assume that at the collision the distance of the mole
cules remains = s (no appreciable compl'ession), and that also the 
attraction extends only to a small distance from IS, sO' that a mean 
value 1\ B can be brought as a constant factor before the inte
gration sign. 

In this 1'a is in any case tq be supposed g1'eaté1' than s. {i'or if 
this were not so, and jf the atti'action only worked at an exreedingly 
short distance s + ó just before the collision, as is still sometimes 
supposed, the vil'ial of attraction would, for smaller volumes, be 
su~jected to the sarne volume distribution factor T s as the \'Ïrial of 
collision - with the consequence that the equation of state would 
not contain two distinct constants a and b, but only one, and would 
assume the form p(v-fJ) = RT. 

Critical phenomena - which can be explained theol'etically 
justly by the different behavioul' of the two separate virial parts, 
in this way that the factor T will have no Ol' hardly any influence , 
on tl1e virial of attraction for smaller volumes (as the middla value 
TI can then always be assumed to be neal' 1), whereas it will exert 
a graat influanca on the virial of collision (for v = vk, where v = 3 
or 2 times b, Ts will already have a value between 1,5 !tnd 2) -
these phenomena would entirely fail to appE'ar. For then there is 
no distinction possible at all between the two constants a and b, 
on account of which the equation of state can be brought in tha 
well-known form (p + a/v~)(v-b) = R'l' (see also further below). 

It is, therefore, almost c01npletely e.'vcluded that the attraction 
should not take place UIltil at immediate (or almost immediate) 
contact of the molecules. For vel'y small volumes (smaller than the 
critical volume), whel'e the centres of the molecules possess e.g. a 
mean smallel' distance (l) than 1'a, it may be expected that also the 
virial of attraction will be somewhat intluenced by the factor 1', 

80 that a beCOlnes dependent on v. But then we are already past 
the critical point - whel'e l = s tV 4 = 1,6 s. \(i'a wilt appeal' to 
be not mllch gl'eater tban about 1,6 s). Rence the quantity a would 

1) Cf. also my Article in the Arch. Teyler (2) T VII, Troisième partie, 1901; 
chiefly chapter X, p. 28-34.. 
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then be abJe to increase with decreasing v, but on the othel' hand 
the value of a can also decrease in consequence of absorption of 

tbe lines of force, when v becomes smaller. 

X. The Virial of Attraction. 

Let liS first determine the value of the virial of attraction. 
For l' = s P, will evidently be = -!M, the (negative) maximum 

value of the force function. Fol' J(r) is taken so in the yirial formula 
that attraction becomes positive. If e.g', Pr = - c: rg

, Ihen 1(1') 
becomes ,= d P, : eh, = qc: 1,g+1, hence properly positive. Furthel' 
P" = 0 for l' = ra, whel'e the attt'a('tion stops or becomes impel'

ceptlble, so that the secobd integral ylelds: 
o MN 

( 
e-opr) _ eOM - 1 _ Rl' ( Rl' ) ____ ------ e - 1 

() () N 
-fII 

And as N X -}:lS3 IS evidently = N X 4m = (bq)rx, (m = volume 
molecule; Ihe index 9 refers to infinitely large volume; tbe index 

co to infinitely high temperatul'e), we may wl'ite (bq)rx, X (~y = l' (hg)"" 

fol' N X ?1'1 a, and the vaille of the virial of attraction, as n: N = 1 : v, 

becomes: 
, ]lN 

Va =- V(b;)""RT(eR1 -1)-
Let us now put 

ilfN 

l' (blJ)OO R!' (eRT 
- 1) = a, . . (al 

then for T= CIJ: -

aoo = v (bq)oo ~T (~;, + ~ (:;'T} + ... )= v (b'l)oo' MN. . • ((J) 

Henee, when we put 111N = a, we get: 

and 

"IRT 
e -1 

a = a oo X = a.., X f (a) I 

"IRT 

a 
Va=-

V 

The quantlty n is therefore determined by 

M a"" a= N=--. 
v (bg)oo 

. (1) 

(2) 

(3) 
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We shall presently consider the tempel'ature function f(a) in the 
quantity a somewhat more fulty. 

It may only be l'emarked all'eady here, that when we genet'aUy 
put the integral of work: 

f(a) may be represented by 

~ 
f(a)=-

a 

, . . (1) 

(4) 

It is easy to see that (4) will hold generally , whatever be (he 
form of the fador of distribution, prodded this be ouly such a 
function ó'f () Pr, that it becomes = 1 for P" = O. aoo wiII then 
always be = v (b")(/Ja. 

In the special case that the factor should be constant = 1, }; 

becomes simply = (N~)~(1 = O-(N X -MJ =MN =a. J(a) then 

also becomes = 1, 80 that the quantity a becOines independent of 
the tempel'ature. 

XI. The Virial of CoUislon . 

Here Pr will assume the value + 00 'for l' = S - Ó - at least 
when the molecule is supposed t obe incompressible - whel'eas p,. for 
'!' == s will evidently again have the vaille -.frl. This makes the 
t1rst integl'al indieated in the expl'ession (aJ for pv: 

-111 

(
_ e-BPr) __ eBM __ RT e IX./ IlT 

() - 8- N ' 
00 

and we fiod fOl' the vidal of repulsion (n: N is agaio v): 

Let us then put: 

theo bg becomes: 

and 

V - (b,,}oo R'1' "/ RT 
b - e . 

v 

b 
Vb =RT3. . 

v 

• • • . . • • (d) 

. • . (5) 

. • . (6) 



- 6 -

1199 

The temperature function feb) can evidently generally be l'epresented 
by the eq uation < 

2 
f(b) = 1 + Rl' 

We now get instead of (a), in l'elation with (2) and (3): 

(7) 

b'l a RT bq-a B 
pv = RT + Rl' - - - = Rl' + = RT + -, . . (8) 

v v v v 

in whieh b.q and a are given by (5) and (1) as functions of the 
tempel'ature. B represents the so-ealled "seeond" vil'ial coeffieient, 
when - as we have supposed - v is = 00 (very great). Othe~wise 
B is still a funetion of v (thl'ough the volume distribntion factor T), 
and instead of B: v can be written (B : v) + (C: v~5 + etc., in whieh 
B, C, etc. are still only functions of the temperature. I 

When we neglect the possible influence of v on the quantity a
henee when we do not take the volume to~ smal! - only the 
influence of the factor Ts ~t the collision l'emains. When we write 
for th is (see also § 9): 

b v 
Ts =- --, . . . (9) 

bq v-b 

then bq in (8) becomes ~q X T s, ànd we may write: 

pv = Rl'(l + _b_) _ ~ = RT_
v 

_ _ ~, 
v-b v v-b v 

i.e. 
a Rl' 

p + '=-b' ....... (10) 
v v-

throngh whjeh VAN DER WAALS' well-known -separation of the two 
constants a and b has been brought about. We repeat once more that 
th is was, therefore, only possible by this, that only for hq a volume 
distribution factor with v: v- b appears, and not for a, aftel' whieh 
the factor R T in the vil'ial of collision can be nnited with the 
principal term RT, 

We should, ho wever, nevel' forget that the quantity b thus inh'o
duced for ,v-b is an entirely fictitious b, and is in no di1'ect relation 

-with th,e real quantity bq = (Og)<I:) X feb). For b follows namely , 
from (9): '. 

T. 
b = b9 X--"?;, . . . .. (9a) 

1 + T,..J!. 
v 

so that. b can only be expressed in Dq, when Tb is known in 
anotltel', independent way as fnnction of v, which has not yet 

r 
I 

I __ -I 
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succeeded as yet. For v = 00, however, Ts is always = 1, and b 
becomes bq, while for v = h, where Ts = 00, bis = v = v,, Rence 
the fictitious ql1antity b will lie bet ween bg and Vu' Le, bet ween 

. 6 
(bq)~ X feb) = N X 4 m X f(b) for V = 00, and about N X ;;. m 

(with cubic distl'ilmtiou) fOl' v = vo' Only at high temperature 
f (b) = I may be put, and the uppel' limit becomes =.N X 4 m, 
(m = volume of one molecule), 1) 

That Ts becOlnes infinitely great for v = Vu, is clear when we 
consider that then the molecules (çubically distributed) get to lie 
close against each other, so that every time a ftnite ·number of 
molecule ('en tres will !ie inside an 1'nfiniteZy t!tin spherical sheB, 
which causes the number of molecules per volume unity not to 
have the ordmary middle value n at those places, but to be 
= n X T,ç = 00, Then the middle value 12 is formed by the alternate 
values 0 (between two centl'es) and 00 (at the place of the éent{'es). 

XII. Another Derivation of the Virial Collision. 

When objections should be raised against the 'Way in which the 
distribution factor e-oPr is introduC'ed also for the virial of c01lision, 
in view of the circumstance that it may be expected that the density 
of the molecules will not be modified any fllrthel' aftel' passage 
thl'ough the spher~ of attraction, so that the assnmption of Pr = + oc 
for the colli sion (which would render the said factor = 0) seems 
nnjustifiable (P" can, indeed, never become 00, becallse just so much 
work is performed by the quasi-elastic fOl'ces til! the normal (relative) 
velocity of the colliding molecule is exhausted) - we can also arrive 
at the result of (5) and (6) in the foBowing way,' which is not open 
to the same objection, 

In the foregoing paper we found fol' the virial of colIisioIl the 
following expression : 

Rl" (b ) , 
Vb = --g ~ [l-a V1" + t (a Vl")' - t (a V,T')'], 

'/) 

in which a represents a coefficient whi('h is in connection with the 
atomie forces within the molecule, and detel'mines the degree of 

1) We draw aUention bere to this, that whereas from f) = 00 to 'IJ = Vo the 
real quantity bq = (bq)~ X (tb) X 'T's increases from bq to 00 (in consequence 
of 'T'ç), the fictitious quantity 'b in v - b will decrease from bg to bo = about 
6'"XNm, ' 
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compression. When we put in th is a = 0 (perfectly hat'd, incom
pressible sphel'es), we obtain: 

V
b 
= RT' (bq)"" , 

- v 

which in this case wè should also have obtained immediately by 
sup/:losing Q constant under the integral sign (see the til'St Paper). 
Fol' lhen the integral had become (the indices 0 and b refel' to the 
interval of collision ; in Oomml~nication I (Ja was written instead of Qb) : 

Po 

2En(bq)""}Q-(JQ)dQ=-En(bq),,,,(Qo - (>b)', 

Pb 

and as E (r 0 - 1'b)' is = E (Qo - (6)2 = R T' : ~ Vu becomes as above. 
We wrote RT' and not RT, This is owing to this that the mean 

relative normal velocity lto, with which a molecule stl'il{es against 
anothel', is inc?'eased by a cel'tain amount on acrount of the travel'sing 
of t11e sphet'e of attl'action, and this in such a way that 

2 2 fdP, -op 1/ 'LU' _ 1/ HU = - e " dr = ~ : N "11 ,r n dr ' 

in which !l is given by (r) in § 9. But 1/, fJ,U2 being = RT: N, also 
11 

RT'-RT=~, .....•. (11) 
so that we get:, 

hence 

RT' ~ (J/R1 --1+- -e RT- RT- , 

Vb = RT (bq)"" Xe "/RT, 
v 

thl'ough which f(b) becomes = erx
/ RT, in agt'eement with (5). 

XIII. Objections to the Function e-oP,. Another 
Factor of Distribution. 

For J(a) and J(b) we find therefore resp, the expressions 

f(a)=(, "'Rl'_I):"'RT= i H R~' H(;T)' +, .. j 

, feb) = e rt./
R1 = 1 + Ral' + 1 (~;,)' + .. ' \ 

. (12) 

And these two functions of the temperature are not the same, 
'as the expel'imental reslllts (see the foregoing êommllnication) have 
taught. The diffel'ence is slIch that even a very considerable error 

-- ----- --------' 

I 

1[: 
I: 
I 

I' 

I 
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in these results could not have given rise to sueh a diffel'enee. For 
at the critical temperature 1 : RT = 8,2306, so that with a = 0,06426 
(see foregoing Pap el', 2nd tabIe) tbe value of f(a) becomes = 1,3180, 
while at the BOYLEpoint, where 1 : RTis = 2,545, the vjtlue of this 
function is = 1,0864. That of the temperatnre functlOn f(ó) becomes, 

'\ ~ 

however, in the two cases resp. 1,6971 and 1,1777, so that bg : a 
would become = (bg)",,: a"" X (1,697: 1,318) = 1,288 (b")",, : aoo in 

the {h'st case, on the other hand = id X 1,178 : 1,08.6 = 1,08i (bq) cx> : a"" 

in the second case. 
Experimentally the same value (viz. 2,545) was found for the two 

relatIOns. With BOLTZMANN'S distribution factor they would not be 
the same, but be in the ratio of 1,288: 1,084, i. e. bg : a would have 
to be 1,19 times greater than ~t the BOYLEpoint, whirh would reqnil'e 

an error of al most 20 0/0 in one of the two obAervations. Alld this 
is vel'y unlikely, in deed - unless the ratio of bq : bk, fol' whieh we 
assumed 1,0-14 (see fOl'egoillg Communieation, ~ 2), should have to 
be about 1,24. But SlIlce tbe value of the fictitious b in v-h at the 
cri ti cal point will certainly not be 20 % smaller than the limitillg 
value for great volume, this supposition is not particularly probable 
either 1). 

'rhe same thing applies to a still great~r degree with respect to 
the f (a) and f (ó), calculated by REliNGANUM and KI'lESOM '), in which 
they stal'ted from the same dlstribution factor, but where r in the 
vil'ial .of attrartion was taken not almost constant = 1', (see ~ 9), but 
varying between s and 00. In order to render the integration pos
sible, a definite form, viz. - c: Tg, was then used for P, (q > 3). 

dPr qe . dP,. qe 
Then - =-+ ' hence I'~ - = -, If q were = or < 3, the integral 

dr rq 1 dr rq-2 

would - become l.nfinitely gl'eat (for q = 3 logadthmieally infinite). 
FOI' q = 01'-> 4 this difticulty diAappears. 

From the genel'al formuJa (42) on p. 32 of Suppl. 24 we can del'Îve 

q [q-3 a q-3 ( (J.)2 1 q-3 ( a )3 ] 
a=q_a(bq)""a 1+2q-3Rl'+~3q-3 Rl' +b4q_3 RT +. 
for the q uantity a [aftel' subtraction of 

1) For tbis we should have to assume thai the value of T s in (9 0 ) for a volume 
corresponding with vk were much greater at lower temperature than at higher 

temperature, where the ratio 1,044 is determined. Possibly also tbe value of a on 
the critical isotherm is slighter for large volume than for smaller volumes, because 
the factor 'Tl 'could then play a part also in the sphere of attraction. (Cf. also the 
ronc!uslon of § 9, and the footnote In § 11). 

2) Suppl. Comm. Leiden No. 24, 25 en 26, 

\ 
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bq = (bg)oo ( 1 + RaT + t (R~ Y + .. ), 
and multiplication by RT, as KEESOM'S B rëpresents = bq - (a: RT)], 
when N X ~/I 3'l s= = N X 4111 = (bq)oo is put (KEESOM writes rz, whel'e 

we have put N), and for R v (= OUl' N X M) a is written (kv is 
k 

v R 
namely= -=-v: RT). 

kT k • I 

For 9 = <Xl this becomes a = (bg)oo a (1 + ! ;T + t (RaT Y + ... ). 
in agreement with what we found in ~ 10, as the sphere of attraction 
becomes infinitely thin for q = 00, 80 that 1'(1 = 1\ = s, hence v = 1. 

When with KEESOM we assume q = 4, the functions of the tempe
rature become therefol'e: 1) 

f(a) = 1 + t Ra
'jl + -ft (R~ Y + ... / 

I, 

f(b) = 1 + ~ + 1 (~)' + ... \ 
RT RT I 

(12a) 

hence /(fl) still less pronounced than ours with the coeJiicients t, t, etc., 
so that the differenee betwefln the two functions of the temperatnre 
feb) and f(a) would become still gl'eater than ours, and the slow 
decrease of attraction ovel' a greater region, accol'ding to the 
law q = 4, would therefol'e lead to still m,Ol'e unfavourable 1'esults 
with respect to the experimentabI.v found eq1.lfllity of tlle two 
functions of the temperature (at least fol' T7c and fJB) than our 

assumptions. 
The only faclor of äistJ'ibntion that would yield equal expressions 

for the two functions of the temperatnre, is 

(1 + 8 Pr)-2 

instead of e-6P" • For then the integl'al of work :s becomes: 

ra 0 

,..., Jd(NPr) ( NI) ~= __ (1-l-8P,)-2dr= ----- = 
• 81+8~ 

L-1lJ 

"] ) =Rl.'{ -1 
\.1-8M ' 

a 
1- «/RT' 

1) With q = 4 the factor would become 4: (blJ)oo a, hence 11 = 4, which corre· 
sponds with a mean va\ue rl = 1,6 8 (sce §' 9), 

83 
I'ror:eedings Royal Acad. Amstel dam. Vol XX, 
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as IJ = N: RT an,d MN = a. For a<l> = v(bg)iIJ X 2<1> (cf§ 10) at 
T = r:1'J (0 = 0) we find therefore again v(bg)<I> X a, and further for 

:IJ 
(Ca) = :2: a, and feb) = 1 + RT (See (4) ~nd (7»: 1) 

1 (~a )' f(a) =f(b) = --, = 1 + -" + ... 
1 - rx/R.T R'l \ 

(12b) 

. This function of the tempe1'atnre f(a) is, therefo1'e, the stron,qest _ 
of all. ft duly gives feb) = f (a). Then follows ours, viz. (12), derived 
from BOLTZMANN'S function of distribution e-oPr, on the assumption 
of l'apidly decreasing attraction, only between s and ra. It is wealcer 
and gi\'es feb) > ((a). At last comes that of REINGANUM and KEESOM, 
likewise del'ived from e-oPr, but with attraction from r = s to -
l' = r:1'J, and q = 4. This it the weakest of all, and gi "es a still greater 
difference between f (b) and f(a), which pleads against it: 

Jt is the question whether the p~oposed distribution factor is 
theol'eticall.r justified. Bnt it has, the great disadvantage that the 
öenominator already becomes injinite for RT = a~ and would then 
become nepative for smaller val LIes o( T, which is of. course impossible. 
The agreement with the values of a calculated experimentally from 
the found "all1e~ of B (namely by dLvidi9.g B by (T:. TB) -1, see 
the fOl'egoing' communication) is aIrnost the same as for the. function 
(e rx/R! -1) : al RT, which we considered valid not ouly fox a, but 
also for b, 

In tbe subjoined table a has' been caIcnlated from a'= a<l> : (1- al RT). 
The values of a oo and a have this' time· been determined from the 
values of a, found for - 2520 and 20~ C. ~'Ol" - 252?·c. a- is 
namely =-475.10-6:-0,808=588.10-6, and for 20°C. a was 
= 380 ,10-6, so that we find a<l> -= 370,0 . 10-6 and a == O,027~7. 

It is seen that the agreement is pl'etty satisfactory; only the 
values between 20° C. and the critica I ternperatm'e are again , 
all too low. 

1) It is again noteworthy that ((b) ean also be obtained by earrying out the integration 

8 

f dPr ' 
- (1 + 8Plr2 dr between the limits 0() 

d1' 
8-8 

,( 1 : 1 )-M RT 1 
- I) 1 + 8P1• 00 = -N' 1- 8M' 

beeomes = (1-8M)-1 = (1- rx/R.T)-i • 

and - M for Pro Wethen get namely 

so that again (see also § -11) f(b) 

. ~-- -,-------------------
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o 
-257,10 

- 255,32 

-252,47 

Tk= -239,91 

-204,62 

-103,54 

+ 20 

+ 100 

T 

15,99 

11,77 

20,62 

33,18 

68,41 

169,55 

293,09 

373,09 

1205 

,0,5220 

0,5699 

0,6293 

0,7698 

0,8884 

0,9549 

0,9739 

0.9795 

a.l06 a.l06 
calc. found. 

709 

649 

588 

481 

411 

388 

380 

378 

740 

(599) 

588 

486 

472 

414 

380 

All the functions of the temperaturè considel'ed approach CIJ at 
l' = ° or in the neighbourhood of l' = 0, and become, therefore, 
very great fol' low temperature. 1. e. in the eqllation (8), viz. 

a-RT bg pv=RT- . 
v 

P would become negative already for comparatively }arge valnes of 
v at "ery low tempel'atures. This is, howeve1', pl'actically no 
objection, for it only means that fhe bounda1"fI line where the 
satllrated vapour cannot exist any longer and condenses to liquid, 
is shi~ted more fo the right (i. e. to the side of the still greater 
volumes). The negative values of p then fall within the bonndary 
line in the metastablR region as before. 

That a becomes very great, might also be interpreted in this way. 
At vt1ry low temperature, where the molecules with exceedingly 
smaIl velocity pass through the sphere of attraction, the accumu
lation round a molecule will be very great; these will at last' all 
fall togethér, which would again mean condensation to liquid. 

And as fOl' the increase of bq to infinite large, this would entail 
that the ~ctitious quanftity b in v-b would approach v more quickly 
than otherwise would have been the case. For in (~a), viz. b = Tsbg : 

: (1 + (Tsbg : v), the fact that bq becomes great in conseqllence of the low 
tempel'atm'e, has now the .same effect as otherwise the becoming 
gl'eat of T~ in consequence of the small volume. I. e. that for a 
volume v, where else (at high temperatnres) the fictilious quantity b 
would still be near (bg}rr" and far from v, this will nozo (viz. at low 
temperatures) already have drawn Itluch neal'el' to v. This is again 
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no pl'actical objection, though the probability to such a behavÏour 
may not be great. 

The theol'y of the factor of distribution e -oP} (or (1 + 0 Pr)-2, 
etc. etc.) rests m my opinion on nothing but a misunderstanding, 
and the theol'Y of the vlI'ial of attraction_ and colhsion should be 
built up on entirely new gI'0u,nd8. 

XIV. More Accurate Theory of the Virial of Attraction 
and Collision. 

The method of calculatlOn followed up to now (REINGANUM, 
VAN LAAR, KEII,SOM) 'might lil a certain sense be called the "static" 
tnethod. ln this it is assmned that the molf'cules ál'e distl'ibuted 
accol'ding to a certain law rOllnd t he considered molecule, in which thelI' 
motion, resp. velocity and directlOll, is entil'el.r eliminated (disregard
ing the mean final velocity at the colhsion). In tbe pi ace of this 
BOLTZ.MANN'S factor of distl'ibution e-oPr is then substituted, which is 
to set evel'ything right again, But lil my opmion BOJ,TZMANN'S con
siderations at'e 110 lQJlger valid fol' separate micl'o-complexes, as molecules 
iJl rollision, and immediately before impact, Ol" passmg each other 
at a small distance in t he sphel'e of attraction. 

Il is easily seen that the effect of the attl'action will be tMs, th at 
the at {h'st l'ectilinear path (at least for large volume) wiU be inclined 
more or less towards the molecule under the inflnence of the ath'action 
in the sphere of attl'action, and that therefore moleeules whlCh would 
otherWlse remain further from the molecule L1nder considel'ation, 
wil! 'now get into sphel'es, where the aHraction is greater. And the 
smalle!'" tbe velocity with which the mo]er~les wiII pass, the stl'onger 
this enlarging influence wiII beo lf the temper'ature is exceedingly 
low, all the molecules tbat pass the bOl'del' of the sphere of attrartion 
(1' = 1'«) with theI!' centres, will collide with the molecule nnder 
considemtlOll, thl'ongh wbich fol' all the maximum value.Al is obtained 
for -- Pil and a ma.'CWHtm valne will therefol'e be found fOl' a - but 
not an e,vponentially infinitely la1'!Je one, as with BOLTZl\fANN'S factor 
of distl'ibution, 

The same thing holds for b. Molecules tha,t would not êollide 
under other circumstances, will JlOW collide under the influence of 
the ath'action that causes them, to deflect, and the number of 
colliding molecules will thel'efOI'e be increased, in more or less 
degl'ee as the temperatnre will be higher or lower. And it is easy 
to see that here too the value of ó" will appl'oach to a maximum 
for T = 0 (as the radius of the sphel'e of attraction 1'(1 remains 

- --,------
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finite) , and not to infinite. Also the absurdness of the mfinitely great 
value for Pr at the end of the collisioJl is quite obviated now. Of 
course the distribution remains finite, and during the collision th ere 
romes IlO change in this at all. (On the assumption of e-9P,. the 
density would decrease during the lllterval of collision, thought 
infinitely srnall, ft'om n X eB,!! to n X 0, w hich is nonsense, because 
when a molecule has once come to collision, the number of them, 
as has been said, does not change again dnring the impact). 

Thus we are naturally led to a new method of calculation, whieh 
- in oppositioJl to the usnal one, the statie one - might be called 
the dynamic one. What happens to the molecules that pass each 
other and that collide, will then have to be considered separately 
- though mnch can be sirnphfied also with this mode of viewing these 
things, and rnneh can be bl'ougbt nndel' a eompl'ehensive point of 
view. 

And thus we have again returned from BOLTZMANN to MAXWET,L 

WItl! the considel'ation ,of tlle sepamte paths or glOUpS of paths. 

XV. The fundamental Path Equations. , , 

As may be seen from the sllbjomed 
figl1re, the curved path now gets neál'er 
to 0 (in the point B, with the mimmum 
distance 1'm) than the straight path 
(u = 00, I. e. T = (0) in the point A' 
with tile minimnm distance 00' =d= 
= a sin 8. The angle, at which the 
path of the centre of the moving 
molecule nndel' considel'ation (() is the 
stationary cenh'e) romes within the 
sphere óf attJ'aetion at A with respect 

to the joining line AO, is namely indlcated by 8. All these angles 
lie on the circumfEwence of a rone witb A as vel'iex. As the pafh 
is still undisturbed at A, the fl'equency of the angle 8 is as usual 
= sin 8 cl 8. Later on we shall have to integl'ate fol' all possibie 
angles_ 8. When the centres of the molecules !ie on the eÏt'cumfel'ence 
of the sphel'e l' = s, they collide. The limiting angle (jo is that for 
which the path just touches the circle I' = .'I (in D). All the paths 
that ente/' nndel' a smallel' angle wUh respect to A 0, give rise to 
collision. 

It is self-evideJlt that this limiting angle 8
0 

in the limiling case 
'T= 00 (I'ectilineal' paths) is given by sin ti = s: a, as AD then 

- I 
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becomes the straight tangent. (a is the radius of the sphere of 
"attraction; out~ide a thel'e is no attraction any more). 

If now the attractive forc~ is in the path = -,/(1') (henee al ways 
directed towards rne centre 0), then the equation 

ä-,'!; d'y d( dx dY) ~ dx dy _ 
Y dt' - m dt~ = 0, or dt Y dt - x dt = 0, or Y dt - x dt = const. 

d'x ) d' 
follows from f-' - ='- j(r) cos tp and f-' ..J!... = - f(l') sin tp with 

dt' dt~ 

3J= l' cos tp, Y = r sz'n tp (1' is the radius vector', lP tbe amplitude). 

dx dr . dIp dy . dr dep 
But from - = cos tp - - r sm t/' -, - = szn ti' - + l' cos t/' -

dt dt dt dt dt dt 

J! 11 . d' I dx dy dt/' h' h' I' d' 1 10 ows Imme late)' y--'x-=-r~-(w IC lSaSOJmme late v 
dt dt dt • 

seen), hence 

dtp ,.' - = - c, . . , (1) 
dt 

in which c is a constant (which is still to be determined more closely). 
This is the well-known law of sectors. 

(
dX) , (dY)~ The squ~re of- velocity ut = dt + dt '. expressed in pole 

(
dr) , (dl~): coordinates, evidently becomes = dt + r t dt . But also we have: 

d'x dx d'y dy f(r) [ dm . dY] --+--=-- cost/'-+stn:tp- , 
dt' dt dt' dt f-' dt 'dt 

i. e. because the expres sion between [ J in tbe second member, in 

. f dr 
vlrtue 0 r' = x t + y', is also = -: , dt 

~ [(dX)'. (dY)'] = _ j (r) dr 
ldt dt + dt [.I. dt' 

hence 
f(r) 1 dPr 

1 d(1(')=- -dr= - --dr, 
f-' f-' dr 

when Pr represents the function of force, and f-' the mass of a 
molecule. Integrated between the limits A and P, ihis gives therefore 
(in A Pr is = 0, and tt = u,) : 

or 
t tL (u'-u/) = 0 - PIl 

P, 
u'=uo' - 2-, 

f.I. 
. • . . . . . (2) 
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the weIl known law of the vis viva. When now we substitute the 
above found value in pole coordinates for u\ we get: 

(dr)~ + ~ = n ,_ 2 Pr , . . . (3) 
dt r' 0 l-' 

(
dl/')2 as 1" Tt is = c': 1" according t<;> (1). This equatioll (3) is ofgl'eat 

importance for our calculations. For the equation of path th~ following 
dl/' C 

equation follows from tbis ~u connection with - = - -: 
dt ,ri 

dl/' = ± c 

dr r' I //n' _ 2 Pr_~ 
V 0 (.t 1" 

. . (4) 

The uppel' sign evidently holds fol' l' = a to l' = rm CA to B), 
the lower sign for all the points beyond B. 1) 

We must now fil'st detel'mine the constant c. This can take place 
in two different ways. The simplest way is to examine the state in 
the point A, whel'e the path coincides witb the tangent A 0'. If the 
('onsidered point P lies in the immediate neighbourhood of A, then 
evidently sin ~lp-8) is = a sm 8 : r in b. OAP. Differentiatioll with 

. ~ a~8 
respect to l' gives cos (l/'-8) - = - --, hence because l/' is then 

dr r' 

= 1800 and r = a: 

(
dl/') = tg 8. 
dr.ti a 

But from (4) follows, because Pr = 0 in A, and the positil'e sign 
holds: 

From the two expl'essions follûws immediately: 

c = U o X asin {jo 

This causes (3) to become: 

(
dr) , = u

o
' (1 _ a' sin' (j)_ 2 ~', 

dt r' l-' 
. (3a) 

hence we find for the point B, )Vhere the radius vector r gets the 
minimum values rm, and whel'e therefore d1': c{t = 0: 

- d'r c' f(r) 
)\ We must remark that by differentiation of (3) follows -d' - -.-= --. 

t r {.t 
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~ p a . ~ - rm 
-s~n (j = 1 _L ---
r ~ '/ "U ~ m sr- 0 

(5) 

I Therefore we find for the limiting angle (jo, as 7'711 becomes = s in 

D, and - Pr =M: m 

. (6) 

XVI. Calculation of the Virial of Attraction. 

Now 'the calC'ulation of the virial of attraction call be carried out 
in the following way. 

Äs the sum of the radii at the entrance of a molecule with 
radius 1/2S inside the s~here of attraction a is exactly = a (the 
centre of the entering molecule is then, namely, exactlyon the 
circumfer'ence of that sphere), the numbel' of enLrances per serond 
will be given by the well-known relation 

The number of en trances for the direction (j is therefore No\= 
= muo X sin8d(), so that tbe number of molecules that will be 
found 011 the elemen! ds of the pOl'tion of the path A B, i~ given by 

ds 
mUD sin 8 d8 X - = mUD sin 8 d8 X dt, 

u 

ds 
when U = - is the velocity in the element of path in question. But 

dt 
dt is given by (31l); thl'ough which we get for the numbel' in ql1estioIl: 

As, namely, dr: dt is negati ve on AB, the negati ve slgn has 
been taken in the extl'aC'tion of the root. Let us write: 

·2Pr -P, -Pr M 
---= =--X =F(r)Xrr, 

"U 2 1/" U 2 M 1/ (!.LU 2 , r 0 ~r () J.. 2 n 

in which (jJ is therefol'e in connection with tbe tempemture through 
1/ ~ PUo 2. CM again repl'esen ts the maxim urn val ue of - Pr for l' = s). 

. Rence we have for the total virial of attraction of the considel'ed 
molecule: 
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90° a I 80 a 

îNXMw[J J 1'(- F' (r))dr X sin IJ df) + fJ.(r(-F'(r))drXSinf)df)}(7) 

80 1'111 V 1- :: ,~in'f)+cp .. è(r) 0 S V id. 

in which the fIrst (double) integration refers to all the entering 
molecules that do not strike against the molecule in question, and 
where, therefore, a minimum value of l' is passed through in B 
(which minimum in the limiting case 0 = () 0 wil! get exactlyon 
the circumference of the sphere l' = s), whereas the becond inte
gration refers to all the collidin.q molecules. For the attractive force 
dPr d(-Pr} , 
- - we have written - M F(1') according to the . ~ / 

assumption - P,,: M = F(1'). In consequence of the negative sign 
of the root, the limits of integration are reversed with respect to r. 

Besides we still have multiplied by 2 in the above expression, 
since evidently the second portion of the path from B to C, or 
from the collision back to the.circumfereuce of the sphere of attraction, 
will yield exactly the same iutegral value. Everything then takes 
namely place in the reversed order, the limits of the integl'llis 
remaining quite the same. :Moreover the summation is extended over 
all the molecules N, which with the virial factor t yields thel'efol'e 
in all still a pl'e-fador t X i- N X 2 = t N. (The total number of 
molecules N has been divided by 2, becallse else all the pairs of 
molecules would have been counted double). 

We now have to. chooRe a sllitable expl'ession for F(1·). The 
accurate [aw rèferring to the ath'action being unknown, it will Ilot 
make much difference for the detel'mination of the dependence of 
the tempel'ature (lying in the quantity q;), which int(;\rpolation
function is used, pl'ovided F (1') become = 0 for l' = a, and = 1 
for l' = s. The more 80 ""hen - as will probably be always the 
case - rt and s do not differ much. We c~n, therefol'e, choose a 
function for which t11e above integl'ations hecome possible. This 
cannot be completely l'eached, as we shall at ouce see, out thl'ough 
the . assumption 

1 1 

- P" 1" a' 
F(r}=--=-

Mil 

s' a' 

we can get a long way. In consequence of thi8 

-F'(1')=-: ---2 (1 1) 
ra 82 a2 ' 

, . 

. . . . . . (8) 

we get: 

. . . (8a) 
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and this IS iDdeed Dot = 0 for l' = a, but DO essential objectIOn 
in prmciple caD be raised agaiDst tbis. lt may, Damely, be assumed 
that the molecules will suddenly experience aD attractive force 
(proportional to 1: 1'8) at their entran<'e inside the sphere of attractioD. 
lf only - Pr itself becomes = 0 for r = a, which is tbe case OD 
our above assumption. 

/ 

Fontanivent, Autumn 1917. 

(To be continued). 


