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Physics. — “Un the Course of the Values of a and b for
Hydrogen at Different Temperatures and Volumes”. 11. By
Dr. J. J. van Laar. (Communicated by Prof. H. A.Lorentz),

1

(Communicated in the meeting of Jan,26, 1918),
AY ~

IX. Influence of the field of force according to Boltzmann.

When we substitute the value-
AN = 4x ' dr X e X v X n
in the general Virial formula
dP,
p=RT —1Zrf(r)=RT— % N |dN 'r—(-i—’—

7

for dN, the number of molecules m the spherical shell between
r and 74 dr round the molecule under consideration, then pv
becomes :

7

ap,

=RT — £ a N !
po in nfrr =

¢—9P: dr,

s .

In this P, represents, therefore, the function of force in the points
at a distance » from the centre of the considered molecule (thought
spherical); so that f(»)=dP, :dr. The integration extends from
r=z3 (the distance of the centres of two molecules — thought in-
compressible at the collision, so that s represents the diameter of
the molecule) as far as the field of force extends ountside the mole-
cule (r = ra).

The factor ¢—*F is the well-known BorrzmMaNN temperature distri-
bution factor” under the influence of the field of force. The para-
meter is= N:RT, in which NV represents the total number of
molecules in the volume v, so that N = nv, when n represents the
number of molecules in the unit of volume.

The other factor v is the volume distribution factor. For r =3

b
(at collision) v = will be = o (see further below), which will

g U

approach to 1 for v ==, as this fictitious quantity 6 then becomes
=b,. For r—=w ris=1 for all values of v. But already at a
short distance from the considered wolecule r can be put =1.
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Let us at first only consider the exceedingly rarefied gas state —
i. e. the planetary condition of matter — then v =1 everywhere,
so that we may write: ")

s T

pr=RT — 4 x Nn s’fﬁ e—9Pr dr— 4 7 Nn 1'1'V{-‘£1—3Z e—%P dr, (a)
dr - dr
s—d¢ H

in which we assume that at the collision the distance of the mole-
cules remains-==s (no appreciable compression), and that also the
attraction extends only to a small distance from s, so that a mean
value »® can be brought as a constant factor before the infe-
gration sign.

In this 7, is in any case to be supposed greater than s. For if
this were not so, and if the attraction only worked at an exceedingly
short distance s~ d just before the collision, as is still sometimes
supposed, the virial of attraction would, for smaller volumes, be
subjected to the same volume distribution factor =, as the virial of
collision — with the consequence that the equation of state would
not contain #wo distinct constants @ and b, but only one, and would
assume the form p(v—@)= RT.

Critical phenomena — which can be explained theoretically
justly by the different behaviouv of the two separate virial parts,

in this way that the factor v will have no or hardly any influence .

on the virial of attraction for smaller volumes (as the middle value
v, can then always be assumed to be near 1), whereas it will exert
a great influence on the virial of collision (for v — vz, where v =3
or 2 times b, v, will already have a value between 1,5 and 2) —
these phenomena would entirely fail to appear. For then there is
no distinction possible at all between the two constants a and b,
on account of which the equation of state can be brought in the
well-known form (p + %/ )v—0)= RT (see also further below).

It is, therefore, almost completely excluded that the attraction
should not take place until at immediate (or almost immediate)
contact of the molecules. For very small volumes (smaller than the
critical volume), where the centres of the molecules possess e.g. a
mean smaller distance (/) than 7, it may be expected that also the
virial of attraction will be somewhat influenced by the factor =,
so that & becomes dependent on ». But then we are already past
the critical point — where [=s¥ 4 =1,64.'(r, will appear to
be not much greater than about 1,6 s). Hence the quantity a would

1) Gf also my Article in the Arch. Teyler (2) T VII, Troisi¢me partie, 1901;
chiefly chapter X, p. 28—34.
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then be able to increase with decreasing v, but on the other hand
the value of a can also decrease in consequence of absorption of
the lines of force, when v becomes smaller. ‘

t

X. The Virial of Attraction.

Let us first determine the value of the virial of attraction.

For r—=s P, will evidently be = — M, the (negative) maximum
value of the force function. For f(r) is taken soin the virial formula
that aitraction becomes positive. If eg. P.=-—c:19, (hen f(7)
becomes ~— dP, : dr = gc: r9+1, hence properly positive. Further
P,=0 for r=r, where the aftraction stops or becomes imper-

ceptible, so that the second integral yields:
0 MN

e—0F; _eoM —1 -RT BT ]
S )“”_a_““ (e
— M

And as N X %as® 18 evidently = N X dm = (0g),, (m = volume
molecule; the index g refers to infinitely large volume; the index
o to infinitely high temperature), we may write (by),, X (7—1) =v(by),,

§

for N X 2ar,*, and the value of the virial of atiraction, asn: N=1:v,
becomes :

. uN
Vo = — ——‘—~v( e RT(eRl — 1).
v
Let us now put '
L
v (b)), BT (eRT - 1) =a, R (-1

then for I'=oo: X

- _[MN s MNN\?
awZ’D(b(/)wR.[ (—ﬁ;—i—z '1—271—,— + ... :v(b,,)m.MN. .. (ﬂ)
Hence, when we put MN =¢, we get:
“/RT
a=a )(e————:——j-:a X f{®) . ()
» 4Ry A
and
a M ]
Va:-- . . . . . . . . .
\ . @)

The guantity « is therefore determined by
¢

. . ’a=MN=°°...,....3)
, > Gl (

!
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We shall presently consider the tempervature function f(a) in the
quantity o somewhat more fully.

It may only be remarked alveady here, that when we generally
put the integral of work: '

To :
( fd(gp')e'“"w=m'(e/“’—l)zz, AR o
»

s

JS(a) may be represented by
=
f@y=— . . . .. .. .. @

a
It is easy to see that (4) will hold generally, whalever be the
form of the factor of distribution, provided this be ouly such a
function of &P, that it becomes =1 for P,=0. a, will then
always be = v ()0
In the special case that the factor should be constant =1, =

becomes simply = (NP)* =0—(N X — M) =MN =a. f(a)then

also becomes =1, so that the quantity a becomes independent of
the temperature.

XI. The Virial of Collision.

Here P, will assume the value 4 oo 'for r=s—d — at least
when the molecule is supposed t obe incompressible — whereas P, for
r=ys will evidently again bave the value — M. This makes the

first integral indicated in the expression (a) for pv:

’ —M
e-opr) __éM  RT <pp l
§)" "GN

and we find for the virial of repulsion (n: N is again v):

v, = %a gy, IRT.
v

Let us then put:

/RT

(bg)mXe“ =by ... . (d)

then b, becomes:
“/RT

by == (bg), X & = (b, X S®)y . . . . (5)
and

V6=RT-bi’.......-.(6)
v

——E
o s o _ -
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The temperature function f'(d) can evidently generally be represented
by the equation

h=1 = 7
We now get instead of (@), in relation with (2) and (3):
b RT b,— B
pw=RT +RT I _2—pr 4+ =" _gri 2 . . @
v v v v

in which b, and o are given by (5) and (1) as functions of the
temperature. B represents the so-called “‘second” virial coefficient,
when — as we have supposed — v is = o (very great). Otherwise
B is still a function of » (through the volume distlibmion factor ),
and instead of B:v can be written (B:v) 4+ (C:v* + ete., in Whl(‘h
B, C, etc. are still only functions of the temperature.

When we neglect the possible influence of v on the quantity a —
hence when we do not take the volume too small — only the
influence of the factor at the collision remains. When we write
for this (see also § 9):

b v 9
‘ts-;q:z,........()
then &, in (8) becomes by X 7, and we may write:

b
pv:RT(l—{-— )—?—:RT Y __f_,
v—>b v v—b v
i.e. '
a RT
—_— s -« . . « .+ . (10
p+v’ v—b (10)

throngh which Van pEr Waars’ well-known separation of the two
constants @ and b has been brought about. We repeat once more that
this was, therefore, only possible by this, that only for b, a volume
distribution factor with »:v—b appears, and not for a, after which
the factor RT in the virial of collision can be united with the
principal term RT7.

We should, however, never forget that the quantity & thus intro-
duced for »—b is an entirely fictitious b, and is in no direct relation

-with the real quantity b,,_ (bg), X S(b). For & follows namely .

from (9): '
b= by X —t N ()

b,
1+n”

so that.® can only be expressed in 6,, when v, is known in
another, independent way as function of v, which hLas not yet
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succeeded as yet. For »— oo, however, 7, is always =1, and &
becomes b,, while for v =10, where 7, == o, bis = v =wv,. Hence
the fictitious quantlty b will lie between b; and v,, i.e. between

()., Xj(b)—Nx4m><f(b) for v=o0, and about N>< m

(with cubic distribution) for v=w,. Only at high temperature
JS(©® =1 may be put, and the upper limit becomes = N X 4 m.
(m = volume of one molecule). ?)

That =, becomes infinitely great for v —=w,, is clear when we
consider that then the molecules (cubically distributed) get to lie
close against each other, so that every time a finite number of
molecule centres will lie inside an wnfinstely thin spherical shell,
which causes the number of molecules per volume unity not to
have the ordinary middle value n at those places, but to be
=n X 1, = ®. Then the middle value n is formed by the alternate
values 0 (between two centres) and oo {at the place of the centres).

XII. Anofther Derivation of the Virial Collision.

When objections should be raised against the way in which the
distribution factor ¢—Pr is introduced also for the virial of collision,
in view of the circumstance that it may be expected that the density
of the molecules will not be modified any further after passage
through the sphere of attraction, so that the assumption of P, = + «
for the collision (which would render the said factor — 0) seems
unjustifiable (P, can, indeed, never become oo, because just so much
work is performed by the quasi-elastic forces till the normal (relative)
velocity of the colliding molecnle is exhausted) — we can also arrive
at the result of (5) and (6) in the following way, wlnch is not open
to the same objection. ,

In the foregoing paper we found for the virial of collision the
following expression : >
RT' (b,)

Vo= 08 1y T 4 @y T — 3@ VT,

v

in which e represents a coefficient which is in connection with the

atomic forces within the molecule, and determines the degree of

1) We draw attention here to this, that whereas from v = to v =4y, the
real quantity by = (bg),, X f10) X 7s tncreases from by to oo (in consequence
of 75, the fictitious quantity b in v —b will decrease from by to b, = about
6'qg X Nm.
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compression. When we put in this ¢ =0 (perfectly hard, incom-
pressible spheres), we obtain:
. !
ry BTG
v
which in this case wé should also have obtained immediately by
supposing ¢ constant under the integral sign (see the first Paper).
For then the integral had become (the indices 0 and b refer to the
interval of collision; in Commu_nication I ¢, was written instead of gs):

2en(by), f(@—ea) do = — &n (b)), (0, — e1)",

and as &(r, — 1) is=¢& (9, —p)* = RT”: N, V), becomes as above.
We wrote R7’ and not R7. This is owing to this that the mean
relative normal velocity wu,, with which a molecule strikes against
another, is ncreased by a certain amount on account of the traversing
of the sphere of attraction, and this in such a way that
dP, _sp,

Y/, uu® — 1, pd = ik "dr=ZX:N,
in which I is given by (y) in § 9. But /, pu? being = RT: N, also
RT'—RT=2X, . . . . . .. (11)
so that we get:
RT" “/RT
RT T k?' - ’ i
hence .
(59) “/RT

Vi = BRI “2® xce ,
v

through which f(b) becomes — ¢*/R7, in agreement with (5).
XIII. Objections to the Function ¢—~. Another
Factor of Distribution.

For f(a) and f(b) we find therefore resp. the expressions

so=e" Detur=1+4 g4 () + |
(12)
ey = o TR =14 +l( )’-!----s

RT RT
And these two functions of the temperature are nof the same,
as the experimental results (see the foregoing communication) have
taught. The difference is such that even a very considerable error
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)
in these results conld not have given rise to such a difference. For

at the critical temperature1: RT = 8,2306, so that with « — 0,06426
(see foregoing Paper, 2°d table) the value of f(a) becomes = 1,3180,
while at the BoyrLepoint, where 1: BT is = 2,545, the value of this
function is = 1,0864. That of the temperature function f (h) becomes
however, in the two cases resp. 1 6971 and 1 21777, so that b,:
would become = (by), : a, X (1,697:1,318)=1,288 (3,), : a_ in
the first case, on the other hand = id X 1,178:1,086 =1,084 (3,) : e
in the second case.

Experimentally the same value (viz. 2,545) was found for the two
relations. With Bovrrzmasn’s distribution factor they would nos be
the same, but be in the ratio of 1,288:1,084, i.e.b,:a would have
to be 1,19 times greater than at the BoyLepoint, which would require

an error of almost 20 °/, in one of the two observations. And this
is very unlikely, indeed — unless the ratio of b,: &z, for which we
assumed 1,044 (see foregoing Communication, § 2), should have to
be about 1,24. But since the value of the fictitious & in v—»& atthe
critical point will certainly not be 20°/, smaller than the limiting
value for great volume, this supposition is not particularly probable
either 1).

The same thing applies to a still greater degree with respect to
the f(a) and f(5), calculated by Reineanum and Kupsom *), in which
they started from the same distribution factor, but where » in the
virial of attraction was taken not almost constant —», (see § 9), but
varying between s and o . In order to render the integration pos-

sible, a definite form, viz. — c'rq, was then used for P, (¢ > 3).
dP, g . dP,
ThendT = hence 1 o= N~2 . If ¢ were = or < 3, the integral

would - become infinitely great (for ¢ =3 logarithmically infinite).
For g=—or >4 this difficulty disappears.
From the genéral formula (42) on p. 32 of Suppl. 24 we can derive

7 1478 L9438 + g8 a3
0= =g o @ +2g—3R1’ 3¢—8\RT F49 s\ 77 )T

for the quantity a [after subtraction of

-

1) For this we should have to assume that the value of 7, in (94) for a volume
corresponding with v, were much greater at lower temperature than at higher
temperature, where the ratio 1,044 is determined. Possibly also the value of ¢ on
the critical isotherm is sléghter for large volume than for smaller volumes, because
the factor 7, could then play a parl also in the sphere of attraction. (Cf. also the
conclusion of § 9, and the footnote 1n § 11).

%) Suppl. Comm. Leiden No. 24, 25 en 26. v ,
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by = (), [ 1+ = ( “

9—(900( +grtt RT) +)

and multiplication by R7, as Kerson’s B répresents = b, — (. : RTY),
when N X ?/, & * = N X 4m = (by),, is put (Krisom writes n, where

R .
we have put &), and f0r—k— v (= our N X M) a is written (kv is

namely = {f’l—’:?v : RT). |

. a a \?
Forq = ooth1sbecomesa=(bg)wa(i—{—-%ﬁ—l—% ﬁ) —{—...),

in agreement with what we found in § 10, as the sphere of attraction
becomes infinitely thin for ¢ =0, so that ro=17, =3, hence » — |.

When with Krisom we assume ¢ = 4, the functions of the tempe-
rature become therefore : *)

f@=1+4z+ 7 1—;‘}—)

a 22
=1+ pp+ (7
hence f{a) still less pronounced than ours with the coefficients 4, i, efe.,
s0 that the difference between the two functions of the temperature
f() and f(a) would become still greater than ours, and the slow
decrease of attraction over a greater region, according to the
law g=4, would therefore lead to still more unfavourable results
with respeef to the experimentably found equality of the two
functions of the temperature (at least for 77 and T'g) than our
assumptions.
The only factor of distribution that would yield equal expressions
for the (wo functions of the temperature, is :

(14 6 P,y
instead of e—%Pr. For then the integral of work = becomes:

2+...'
\ Iy o« . . (120
+\

ra 0
d (NP, N 1
>y |- +0P)Y2dr=| — - | =
5 (L eR)T ( 61+ 0P,)

s M
1 a
=RT _ —_—
(1—011[ 1) 1_ <RI

1’) With g¢=4 the factor would become 4 (by),, 2, hence »=4¢, which corre-
sponds with a mean value 7, ==1,6 8 (see §9).

83
I'roceedings Royal Acad. Amsterdam. Vol XX.

-10 -
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as 0 = N: BT and MN = a. For an = (b)) X =, (ef§10) at
T=wo (6=0) we find therefore again »(b;), X «, and further for

fl@) = =:e, and f(b)=1+ I_ﬁ‘ (See (4) and M)H

L e g (128)
1— /Ry Rr) "ot

. This function of the temperature f(a) is, therefore, the strongest
of all. It duly gives f(0) = f (a). Then follows ours, viz. (12), derived
from Borrzmany’s function of distribution ¢—%r, on the assumption
of rapidly decreasing attraction, only between s and rq. Itisweaker
and gives f(b) > f(a). At last comes that of Remeanum and KEEsoM,
likewise derived from ¢—%Pr, but with atfraction from r=3s to
r=oa, and ¢ =1+4. This it the weakest of all, and gives a still greater
difference between f(b) and f(a), which pleads against it:

It is the question whether the proposed distribution factor is
theoretically justified. But it has the great disadvantage that the
denominator already becomes mﬁmte for RT— «, and would then
become negative for smaller values of 7, which is of course impossible.
The agreement with the values of a calculated experimentally from
the found values of B (namely by dividing B by (T': 1) —1, see
the foregoing communication) is almost the same as for the function
(eYRT —1): ¢/RT, which we considered valid not only for a, but
also for b.

In the subjoined table a has been calculated from a=a,, : (1 —a/RT").
The values of @, and « have this time: been determined from the
values of @, found for — 252° and 20°C. For — 252°C. a-is
namely — —475.10-%: — 0,808 = 588 .10-¢, and for 20° C. ¢ was
= 380.10-%, so that we find a, ==370,0.10—¢ and «=0,027Y7.

It is seen that the agreement is pretty satisfactory; only the
values between 20° C. and the critical temperature are again

f@o=7s0)=

"all too low.

1) It is again noteworthy that /(5) can also be obtained by carrying out the integration

dP
f o . 1+ 8Py dr between the limits o and —M for Pr. We then get namely

s—0

‘ 1 11 -4 RT 1 ,
—F 15867 ). =—3"1"gm" that again (see also §11) f(b)

4 14-6P,
hecomes = (1—gM)—1 = (1—<«/R7)—1

{

-11 -
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t T =/rr | %o | found.
—257%10 | 1599 | 05220 709 140 ‘
_os532 | 1771 | osees | 649 | (509)
25247 | 2062 | 06293 588 588 \
Th=—23991 | 3318 | 0,7698 481 486
—20462 | 6847 | 08884 417 4n
' — 10354 | 16955 | 0,9549 388 414
+ 20 203,00 | 09739 380 380
+100 373,09 | 09795 378 376

All the functions of the temperature considered approach oo at
T=0 or in the neighbourhood of T’=0, and become, therefore,
very great for low temperature. I. e. in the equation (8), viz.
a—RT b,

h——

v

pv=RT —

p would become negative already for comparatively large valnes of
v at very low temperatures. This is, however, practically no
objection, for it only means that the boundary lLne where the
saturated vapour cannot exist any longer and condenses to liguid,
is shifted more to the right (i.e. to the side of the still greater
volumes). The negative values of p then fall within the boundary
line in the metastable region as before. - .

That a becomes very great, might also be interpreted in this way.
At very low temperature, where the molecules with exceedingly
small velocity pass through the sphere of attraction, the accumu-
lation round a molecule will be very great; these will at last” all
fall together, which would again mean condensation to liquid.

And as for the increase of §, to infinite large, this would entail
that the fictitious quantity & in +—& would approach » more quickly
than otherwise would have been the case. For in (92), viz. b = by :
: (1 4 (z:by : v), the fact that b, becomes great in consequence of the low
temperature, has now the same effect as otherwise the becoming
great of 7, in consequence of the small volume. I.e. that for a
volume v, where else (at high temperaiures) the fictitious quantity b
would still be near (4,),, and far from v, this will now (viz. at low
temperatures) already have drawn rmuch nearver to v». This is again

-12 -
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no practical objection, though the probability to such a behaviour
may not be greal.

The theory of the factor of distribution ¢-% (or(1 + 0 P)—2,
etc. etc.) rests 1n my opinion on nothing but a misunderstanding,
and the theory of the wvirial of attraction_and collision should be
built up on entirely new grounds.

XIV. More Accurate Theory of the Virial of Attraction
and Colligsion.

The method of calculahon followed up to now (REINGANUM,
Van Laar, Kessom) ‘might m a certain sense be called the “static”
method. In this it is asswined that the molecules are distributed
according to a certain law round the considered molecule, in which their
motion, resp. velocity and direction, is entirely eliminated (disregard-
ing the mean final velocity at the collision). In the place of this
Borrzmann’s factor of distribution ¢—% - is then substituted, which is
to set everything right again. But m my opinion BoLrzMANN’s con-
siderations are no longer valid for separate micro-complexes, as molecules
in collision, and immediately before impact, or passing each other
at a small distance in the sphere of attraction.

It is easily seen that the effect of the attraction will be thus, that
the at first rectilinear path (at least for large volume) will be inclined
more or less towards the molecule under the inflnence of the attraction
in the sphere of attraction, and that therefore molecules which would
otherwise remain further from the molecule under consideration,
will \now get into spheres where the attraction is greater. And the
smaller” the velocity with which the molecules will pass, the stronger
this enlarging influence will be. If the temperature is exceedingly
low, all the molecules that pass the border of the sphere of attraction
(r =, with thewr centres, will collide with the molecule under
consideration, through which for all the maximum value M is obtained
for — P,, and a maxzmum value will therefore be found for @ — but
not an exponentially infinitely large one, as with BoLrzMaNN’s factor
of distribution.

The same thing holds for &. Molecules that would not collide
under other circumstances, will now collide under the influence of
the attraction that causes them. to deflect, and the number of
colliding molecules will therefore be increased, in more or less
degree as the temperature will be higher or lower. And it is easy
to see that here too the value of &, will approach to a mamimum
for T'=0 (as the radins of the sphere of attraction ., remains

—— — - -—

-13 -
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finite), and not to infinite. Also the absurdness of the infinitely great
value for P. at the end of the collision is quite obviated now. Of
course the distribution remains finite, and during the collision there
comes no change in this at all. (On the assumption of ¢~ the
density would decrease during the interval of collision, thought
infinitely small, from n X ¥ to n X 0, which is nonsense, because
when a molecule has once come to collision, the number of them,
as has been said, does not change again during the impact).

Thus we are naturally led to a new method of calculation, which
— in opposition to the usunal one, the static one — might be called
the dynamic one. What happens to the wmolecules that pass each
other and that collide, will then have to be considered separately
— though much can be simphfied also with this mode of viewing these
things, and much can be brought under a comprehensive point of
view. A
And thus we bave again returned from BorrTzmany to MAXweLL
with the consideration of the separate paths or gioups of paths.

XV. The fundamental Path Equations.

As may be seen from the sabjoned
figure, the curved path now gets nearer
to O (in the point B, with the minimum
distance 7,) than the straight path
(u= oo, 1.e. '= o) in the point O’
with the minimum distance 00’ =d=
=asind. The angle, at which the
path of the centre of the moving
molecule under consideration (0 is the
stationary centre) comes within the
sphere oOf attraction at 4 with respect
to the joining line 40, is namely indicated by 4. All these angles
lie on the circumference of a cone with A4 as vertex. As the path
is still undisturbed at A, the frequency of the angle 8 is as usual
=asn6d6. Later on we shall have to integrate for all possible
angles. #. When the centres of the molecules lie on the circumference
of the sphere r =13, they collide. The limiting angle ¢, is that for
which the path just touches the circle » = s (in D). All the paths
that enter under a smaller angle with respect to 4(), give rise to
collision. -

It is self-evident that this limiting angle &, in the limiting case
‘T= o (rectilinear paths) is given by sinéd—=s:a, as 4D then

-14 -
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becomes the straight tangent. (a is the radius of the sphere of
attraction; outside a there is no attraction any more).
If now the attractive force is in the path =— —f(») (hence always
directed towards the centre O), then the equation
4z d*y d/ dx dy ° dx dy
Yo ¥ F:O, or a(ya-—wa?)zm ya—xc—it——const

d 'ds
follows from “E; ='— f(r) cos ¢ and Mdtil/ = — f(r) in ¢ with

z=rcosyp, y=rsin@ (r is the radius vector, ¥ the amplitude).

dx dr dyp dy
But from — = —_——rsnP— S cos P —-
at from o cosxpdt rsmlpdt P tp +1 w
d d d
follows immediately y S A ik (which is also immediately
dt dt dt
seen), hence .
dy N
= . . e . ... (1
”— ¢ 1]

in which ¢ is a constant (which is still to be determined more closely).
This is the well-known law of sectors.

dz\? dy\? .
The square of- velocity u' = (d_:) 4 (%), expressed in pole

. . dm\? d z
coordinates, evidently becomes — (d_:) +r (71:;) . But also we have:

d’zdx d’ydy f(r)
@ E T u[osw +singp ]

i.e. because the expression between [ ] in the second member, in

. . d;
virtue of 7' = z* 4 ¢, is also = ;1—::

[ @]

hence
ap,
$d ()= __f(r) - —1—- -——P dr,
uw w dr

when P, represents the function of force, and u the mass of a
molecule. Integrated between the limits 4 and P, this gives therefore
(in 4 P is =0, and u=u,):
bu(—u)=0— P,
or
u’=u°’—2£’—, e e e e e (2
@
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the well known law of the vis viva. When now we substitute the
above found value in pole coordinates for u’, we get:

dr\? c"'__ \ 2Pr g
' d'—t)—f—q:__uo —l;—, . - . . . . ()

dy\? . . . .
as (d—lf is =¢*:7* according to (1). This equation (3)is of great

importance for our calculations. For the equation of path the following

c

. - . . d
equation follows from this in connection with %:——,:
xr

Z—:p:i /_"P L@
3 2 r e
P l/ U — 2?—1'—’

The upper sign evidently holds for » —=a to r=r, (4 to B),
the lower sign for all the points beyond B.?)

We must now first determine the constant ¢. This can take place
in two different ways. The simplest way is to examine the state in
the point 4, where the path coincides with the tangent AO’. If the
considered point P lies in the immediate neighbourhood of A, then
evidently sin (p—86) is —asmé:r in & (QAP. Differentiation with

' dp asin@

respect to r gives cos (W—~6) = hence because ¥ isthen
T

ap\ _ tg b
(-2

But from (4) ‘follows, because P.—10 in A, and the positive sign
holds :

=180° and r=a:

ap ¢
dr )4 ¢ .
a’ uo’ -
a

From the two expressions follows immediately :

c=u, X asinb.

This causes (3) to become:

(ﬂ)___uos(l_“"‘ 0)_21_"',_ ... (3a)
de r? u

hence we find for the point B, where the radius vector r gets the
minimum values r,, and where therefore dr:dt=0:
ar J()

1) We must remark that by differentiation of (8) follows:lt—,—r—‘_-: m
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a’ . ‘_P’m
—sin' =1L - — . . e . . . (B)
m'® /:lu'uo,

. Therefore we find for the limiting angle 6, as 7, becomes = sin
D, and —Prm:M:

-

1
:—zsin’ 8, =1+

— . 6
Ysuu,’ ©)

XVI. Calculation of the Virial of Attraction.

Now the calculation of the virial of attraction can be carried out
in the following way. )

As the sum of the radii at the entrance of a molecule with
radius '/,;s inside the sphere of attraction a is exactly — a (the
centre of the entering molecule is then, namely, exactly on the
circumjerence of that sphere), the number of entrances per second
will be given by the well-known relation

-

N=unna® X u, = wu,.

The number of entrances for the direction 6 is therefore Np—
= ou, X sindd?’, so that the number of molecules that will be
found on the element ds of the portion of the path AB, isgiven by

ds
wu, sin 6 df X — = wu, sin 8 d6 X dt,
u

: ds o . . .
when u=— is the velocity in the element of path in question. But
dt is given by (34); through which we get for the number in question :

dr

R 2

a -Lr
a1 T T

7? uu

wu, sin A df X

As, namely, dr:dt is negative on AB, the negative sign has -
been taken in the extraction of the root. Let us write:
2P,  —P, —P,

M
— = — =F
PR TR THEA Y, ug? ) X 4

in which ¢ is therefore in connection with the temperature through
Yauw®. (M again represents the maximum value of — P, for r=s).

Hence we have for the total wirial of attraction of the considered
molecule : )

-17 -



1211

90° a 8

r(— F' dr X sin @ df g ar——’F'r rxsfnﬁc‘iﬁ
vscan] [ [HEIOx0w (e 0ins) .

%ML//I—%ﬂm&+mHﬂ OsL// id.
r

in which the first (double) integration refers to all the entering
molecules that do not strike against the molecule in question, and
where, therefore, a minimum wvalue of » is passed through in B
(which minimum in the limiting case 0 = 6, will get exactly on
the circumference of the sphere »—3s), whereas the second inte-
gration refers to all the colliding molecules. For the attractive force
dP, _ d(—P)
dr  dr ,
assumption — P,: M = F(r). In consequence of the negative sign
of the root, the limits of integration are reversed with respect to r.

Besides we still have multiplied by 2 in the above expression,
since evidently the second portion of the path from B to C, or
from the collision back to the circumference of the sphere of attraction,
will yield exactly the same integral value. Everything then takes
namely place in the reversed order, the limits of the integrals
remaining quite the same. Moreover the summation is extended over
all the molecules &V, which with the virial factor { yields therefore
in all still a pre-factor £ X 1 N X 2 =4 N. (The total number of
molecules N has been divided by 2, because else all the pairs of
molecules would have been counted double).

We now have to,choose a suitable expression for F(»). The
accurate law referring to the attraction being unknown, it will not
make much difference for the determination of the dependence of
the temperature (lying in the quantity ¢), which interpolation’
function is used, provided F(r) become —0 for r—=ga, and =1
for r=s. The more so when — as will probably be always the
case — a and s do not differ much. We can, therefore, choose a
function for which the above integrations become possible. This
cannot be completely reached, as we shall at once see, but through
the assumption .

we have written — M F(r)) according to the

- P
F(@)= i ®)

we can get a long way. In consequence of this we get:
2 1 1
_F' (’I') = - H (—;—'———) y e e . e .l (Sa)
] a’

r
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and this 1s indeed not =— O for »r=a, but no essential objection
in principle can be raised against this. It may, namely, be assumed
that the molecules will suddenly experience an attractive force
(proportional to 1:r") at their entrance inside the sphere of attraction.
If only — P, itself becomes — 0 for » = a, which is the case on
our above assumption. }

Fontanivent, Autumn 1917.
) (0 be continued).
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