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Astronomy. — “Qutlines of a new theory of Jupiter's satellites.”
By Prof. W. ps SiTTER. .

{Communicated in the meeting of March 23, 1918).

1. Fundamental principles of the theory.

The great difficulty in the theory of the four old satellites of
Jupiter arvises from the mutual commensurability of the mean motions
of the three inner ones. The fourth satellite is not affected by this,
and, so far as periodic inequalities are concerned, its theory does not
give rise to particular difficulties, and is in many respects similar
to the lunar theory, only much simpler, since the ratio of the month
and the year, which for our moon is '/,,, is for the fourth satellite
ouly about ?/,,,. The secular perturbations of the equations of the
centre of the four satellites are however so intimately connected
with each other, that it is not possible to keep the fourth satellite
apart, but the theory of the four satellites must be treated as one
whole. '

I denote the satellites by the suffixes 1 to 4, and I put:

a; the semi-axis major, -

n; the mean motion,

w; the true 01‘bit-longitude,’

2, the mean longitude,

; the mean anomaly,

Ji the true anomaly,

r; the radius-vector,

e; 1he excentricity,

7, the longitude of the perijove.

If now we put?)

(, —n)t =7, ‘
then, if an appropriate zero of longitude and time is chosen, we
have

=@ —2)n
2, = (@2 —ux)r + 180°
=0 — %),

1) This = differs 180° from the angle which was called r in my previous work.
See these Proceedings Feb. and March 1908: “On the Masses and Elements of
Jupiler's satellites, and the mass of the system.” (Vol. X, pp. 653 and 710).
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where x is a small quantity whose value is approximately
x—= .

We will consider 2 as a small quantity of the first order. The
masses of the satellites then are of the second order (the largest is
about 0-8 X 10—4). ‘

Generally we put, for all satellites including the fourth

w=( —®T+lo . . e .. (L)

We thus have, the value of ¢, being only given approximately,

e,=4 , ¢,=2 , ¢=1 , ¢ = 0437,

If we start with uniform motion in a circle as a first approxi-
mation, the inequalities can according to their periods be divided
into four sharply separated groups.') . B

I. The inequalities of the first group have periods not exceeding
17 days. They can be subdivided into three sub-gromps:

Ia. ‘The equations of the centre, which are

duw,=2 ' 1, & sin (2, — @)),

dr, = — a, 2 v, & cos (}, — @),
where the sums are to be taken for the values of j from 1 to 4,
and where & and @,-are the “own’ excentricities and perijoves.

I. The “greal” inequalities. These are approximately :

dw,— 2e,stn ;T
dr,— — a,,008 ¢, T

Ic. Other inequalities of short periods.

Il. The inequalities of the second group have periods between
400 and 500 days. Their expressions are

Jw, = ' %, sin oy,
J
with *)
T = %T + Wy
HI. The libration has a period of about 7 years.
IV. The inequalities of the fourth group have periods of more

than 12 years.
The inequalities 15, 11 and I1I arise out of the mutual commen-
surability of the mean motions. In a previous communication ?)

1) See also “Elements and Masses”, p. 655, where however the libration (I1f)is
left outside the groups and the group IV is numbered 1L

%) These y, differ 180° from the angles so called in “Elements and Masses”; so
the coefficients »,; here have the-other sign.

%) “On the periodic solutions of a special case of the problem of four bodies*,
these Proceedings, Feb. 1909, Vol XI, p. 682.
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« I have, pointed out that for the three inner satellites a periodic
solution of the second kind (in which the own exentricities & are
zero, and the great inequalities Ib appear as excentricities) is a
very good approximation to the true motion, in fact much better
than the undisturbed Keplerian motion. The mean anomalies in
the periodic solution are

(

: L=cr . . e e . (@)

The longitudes of the perijoves are given by

o= A — 1,

and consequently their mean value is

N

m=—xrttmm . . . . . . . . B

The perijoves thus have a mean wotion common to the three
satellites. In the theory here outlined, the equations (1), (2), (3)
are taken as a first approximation, or ¢intermediary orbit”, also for
the fourth satellite. The solution, considered as a whole, is then
no longer periodic, since ¢, is mutnally incommensurable with
€1, Ca €y It is however not the periodicity which 1makes this
solution such a good first approximation, but the moving perijove,
combined with the circumstance that the “induced” equations of
the centre Ib are, for the inner satellites, larger than the own, or
“free”” ones la. For IV the contrary is true. The own excentricity
of IV is comparatively large (‘/,;;) and the induced one is entirely
negligible. For IV the Keplerian motion with a fixed perijove is
indeed a better approximation. In the ordinary theory this approxi-
mation is also used for the three other satellites, where it is not
appropriate. Here the method which is the best for I, II, III,.is
forced upon IV. This of course involves some drawbacks, but these
are in my opinion not vely\seuous and conmdenably smaller than
those arising in the ordinary theory from the fact that the inequa-
lities 16 appear as “perturbations”, and must consequently be treated
as quantities of the order of the masses (i.e. by eur method of
reckoning of the second order), while they actually are of the-first
order (the largest is about '/ ,,).

Briefly the new theory may be stated thus: We start from an
intermediary orbit in which ‘the equations {2), (3) are rigorously
satisfied. The radius-vector and the true anomaly are then computed

from the mean anomaly and the excentricity (which is constant),

by the ordinary formulas of Keplerian motion:

1 — €, sinu,==1, X

== TS
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146 '
tun%fl:Vl_’_ztan:}u, S (3]
—e,

. a(l—e?)
T4 €; cos f, _
The true orbit-longitude then is
w=fi+x . . . . . . . . . (5

This intermediary orbit is, also for the three inner satellites, not
the complete periodic orbit, but only contains its leading terms. To
get this intermediary orbit we must 1 restrict the perturbative
function to a certain part of it (viz: the “secular” and the “critical”
parts), and 2 we must take initial values, or constants of integra-
tion, which satisfy certain conditions. The complete solution is then
derived by adding to the intermediary orbit:

1. “perturbations” which arise from the parts of the perturbative
function that were at first neglected;
© 2. “variations” which are due to the fact that the actual constants
of integration do not exactly satisfy the conditions for the interme-
diary orbit.

Of these the variations are the most important. To get these we
must form the variational equations. These lead to a system of
equations entirely similar to those which are used in the treatment
of secular perturbations by the method of LaeraneE. The resulting
determinant has 5 roots @, ...p3,, corresponding to the four own
perijoves w,, and the argument of the libration @, respectively.
The inequalities in longitude and radius-vector are then given by
formulas which, if we restrict ourselves to the first order, assume
the form )

dw;= = Wi, & sin (4 — ;) + E w';J g, sin @,
J

(6)

J
dr; = = Rij & cos (A — @),
J I}

where
@i= it 4 ;= ur | ;

as above, and j assumes the values 1 to 5. These formulas include
not only the free equations of the centre Ia, but also the inequalities
of group II (argumenis ¢,—q,) and the libration 111 (argument ¢,).

As to the perturbations: by the introduction of ¢; instead of n; we
have realised that there are no small divisors. In the ordinary theory
small divisors appear in the inequalities 15, 11 and III. OFf these I&
is alveady included in the intermediary orbit; 1I and 1II appear as
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variations, which are treated by the 'method of Lacranes, together
with Ig, which is also in the ordinary theory treated in the same
way. We can say that all small divisors have been concentrated in
the equations of condition for the constants of integration of the
intermediary orbit. Once these equations have been solved, the small
divisors have disappeared, and they canuot reappear in subsequent
approximations.

9. Formation of the differential equations.

We take an arbitrary system of coordinate axes through the
centre of Jupiter, and ‘we put:

S the Ganssian constant of attraction,

m, = the mass of Jupiter,
m, = 'the mass of the body with index ¢, expressed in m, as unit,
s, = the latitude of the body i referred to the plane of Jupiter’s
' equator,
. 7, = the distance of the body ¢ from Jupiter,

A, = the distance between the bodies ¢ and 7,
V,= the angle between the radii-vectores =, and 7,
180°—w = the ascending node—of Jupiter’s equator on the plane
of (zy), )
& = the inclination of this ef;ua,tor on the same plane,
J,K = iwo constants connected with the compression of Jupiter,
b = the eqt\mtorial radins of Jupiter,
and further
@ = stn 7 sin 1P,
B = sin x cos P,

y=cosm,

Then the equations of motion are
d*z; 082 d*y, _6.521' d*z; 08

rr el it L e e

where

1 Jb Kb*
&; =fm,(1+4+m;) 3;—-{-%;3—(1—3 sin® si) + 1 e (1-10sin?si+- 3P sin's,)+. . z
1 ) )

1 Jb* . Kb* e lsged
+fm, Zm, I cos V3, 1+r—=—(1—5sm Sj)-{-—;?(%—'?sm si+Ysints;) 4. P(7)
J i

iy 7y
. exHByctre Jb* Kb .
— 2 —-——1—1—:7-'-1—-—181,” 5 [;JT-}- — 1 — § sin® 85) ko oo

The sums are to be taken over the valunes 1, 2, 3,4 of j, with
’ 89

Proceedings Royal Acad. Amsterdam. Vol. XX.
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the exception of j=1, and further over the indices j which refer -
to the sun, Saturn, etc.

If the plane of (zy) is chosen near the mean position of the equator,
then ¢ and B are very small; and y is very nearly equal to unity.
The latitudes s: of the satellites are very small (the largest does
not exceed 0°.7), and also for bodies outside the system of Jupiter
s; is small (e.g. for the sun it never exceeds 3°.1).

Regarding the value (7) of £; we may remark, that the terms
multiplied with J and K in the complementary part of the pertur-
bative function (second line of the formula) are here given for the
first time. These ferms are neglected by l.aPLAcE, and all subsequent
investigators ‘adopt LaPLAcE’s perturbative function without any
criticism. Laprace was perfectly right, for these terms are beyond
the limit of accuracy which he had set himself; but SouiLrarT, who
includes other terms of the same, and higher orders, ought also to
have included these terms.

If now we put -

__da; dy; | de . \

JLypu— P
Y= y R =

dt dt

Ti={ (@" + yi* + "),
= Ti - Sziv

7

then the equations become
de; OF; da;i'_ oF;

| @ @
and similarly for the other two coordinates.
We now infroduce the canonical elements of DELANNAY
l{, ) ¥, Lf) Gl'i G,

where ) .
Li= BV, G=LiV1i—e' 6;=Gcosi,
I now put?)

.2 .
S=o— 8)
7
Then we have ,
8
Fieme e — — & ‘
1 2Li’ 3

and the equations become

) See:- On Canonical elements, these Proceedings Sept. 1913, Vol. XVI
pages 285 and 287. ,
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d; Bt 08

dt  Li*  oL;
dg; 0S;
i G_Gi’ etc.

It is usual to take B = fm, (1 4+ m,). By keeping 8; indeterminate
we have a parameter at our disposal, which can afterwards be so
chosen that the intermediary orbit assumes the desired form.

1 now introduce instead of 7, ¢gi:, 9, Li, Gi, O; the canonical set

di=btg+% b, Pi=—,
G , Hi=L—G; , ¥i=G—@6;
Then we have
asi'_(a Sﬂ) | vi 08/
0G; \8G:)  * Gidy:' =
where ‘

The second term is of the second degree in y; and consequently

very small. If now we put

? 2= 2"+ ai,
and if we determine o; by )
: s !
%.—:%ﬁaﬁ,........(g)
i Oye

then we have

dli'_ Bt 0S;
@ L \9G:)

where the parentheses denote that S; must not be differentiated
with respect to (&, so far as it depends on (; through the incli-
nations ;. This being agreed upon, we can omit the accent of

'

N
2; and the parentheses of (g—(—;-z), if we apply to the value of 4, so

determined the correction
=06 . . . . . . . . . (10
where ¢; is determined from (9).

In the theory of the inclinations the approximate commensura-
bility does not give rise to particular difficulties. For this theory
the most important point is to choose the plane of (vy) so that
the inclinations of the satellites and of the equator always remain
small. I will not enter upon this problem here, and 1 will further

exclusively consider the four elements
- §9*
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d FEEa. &

4 L y Giv E . i

s BEFE L

We can choose a unit of time so that :=1=. This unit is about
4 9/8 of a day.
A Then we have

dl; _ g* oS/ dy B o8/

dr_'—i—;;*ﬁ[i " odr T L oGy ,
_As a general rule. I will denote by [X] the non-periodic part .
of a function X. We must have

;s &2
d—t_ = y ‘—d-; = — %.

;ﬁ This can be realised in two ways. We can take
}

8 057 087

| )= [l =
‘}f or ’

A aS; 987 .

1] l:%;:l::ci—x y l:é-;}:l::‘—*x N [5@}20 . (B)

{ Now the perturbative function is given as a development (e.g.
‘ by Newcomp’s method) in terms of 2;, 4, a; and ¢, and we have
y &
9.8/ 2 08  cos*gi 108/
TS e G o — —
0H; By/ai Oa; + BV a;i e O
as; 2 0S5 cos g;tan 1 @; 08!
l' 0% _ & 0% cosgitan § gi 00%
an-—ﬁ vV a; laai BV a; De; '

where we have put ¢; = sin ¢

e € e .,

5

i

9s;' -
o In the case (4) we thus find that a5- is of the order of x, in
Ay

r

‘ 0.S;
the case (B) it is of the order of =.¢', in both cases ™ is of the

7]
order of = .e; It thus appears that the method (B) is preferable.
Instead of H;—= 2 L;sin* 3¢:; I now introduce

;=2 sin } @1
: We have
' da; 2
© —=——(dH; + dG;

“‘ a o Bye A8
4 . 1 08 ¢

M \ d | == ——— dH' _— ‘-L ] i e
. X ni [31' l/ai ( w i g N dGz)
K We find everywhere the denominator 8;1/a;. We can thus simplify

our formulas by putting iy
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S
B Vai'

where a; is a constant, which, in accordance with (B), is determined by
ﬁi‘i "‘"EE— = — %
| atk

— = — #) (1 + 7).

R;=

Further we put

Consequently »; is purely periodic, and we have
atls = a®: (1 4 m).
Therefore
' d
o= — & (14 ) —,
ai

If then we introduce again

’,

; :li— li,

where of course m; requires the same correction

dti=o; - . . .« . . . « . (1D
as 1,, and if we suppose the perturbative function E; expressed in

the variables 2,, m;, a; and 1;, then the equatibns become
AN

'd 2 aR |
- =) 1+v)—2(1 +v1)‘5a1 + L1+ »l) S
h oR; ; OR; :
& = (o) (L) - 20140y o — (14 » o Skt
dr Ni arr
dn; L 1 0R; . ‘ '
=) o . R
d _-3‘ Ri )
T =—38(1+») o
din; 1 dR; BR
'g— = — (4w —‘r — 43 (1+”z) "h
Ni O7%¢ /

Of the first three equations we can arbitrarily choose two for use
in the computations. The simplest formulas are found if we use
A; and = .

Instead of 8; (a) I now introduce the constant g;, which is
delermined by

; _f_m_,_(ii’_"_) . (19)

ai* (c;—n)?

Further we put

\

-10 -
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g,:ﬁ:_:(14—1)1)_”‘3'L I N (XY
& a

Then the terms of R, which are independent of the latitudes
become

R [0 Q""‘2+<1 4)(1—511)[ =t ]+

—3) (1— e L o J I(
14m, J Au 3.7 0, o’ e

where we have put

. (15)

bs 4
7, — J K =Kb .
al’ at

!

8. The intermediary orbit.
The pertarbative function R, consists of a series of terms of the

form
K cos D,

D =ply —ph + ¢t + ¢,
To get the intermediary orbit we take
R, = [Ry].
Hence the argument D must salisfy the condition

(p+9)a+@—pa=0.
The function [R,| includes the “secular” part of R,, for which

g=p, ¢ =—p, and the “critical” part, which becomes non-
periodic as a consequence of the commensurability of ¢: and c,.
oR, 0k,
Since — and — contain only sines, we shall have
02, on,
dy, dm
20 =0
dr dr o
if
2, —2, =k X 180°
or . ’

m,=kX180%. . . . . . . . (16)

k being any integer number.

If we count the time from the epoch of an opposition of II and
1T, and the longitudes from the longitude of 1II at that epoch, then
we have

m,=0 , &, =180° , =x,, =0,

As to the fourth satellite, the condition A, =0 or 180° is

generally not satisfied, since there is no relation between the

AN

-11 -
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longitudes of the fourth satellite and of the others, as there is in
the case of the three inner satellites. 1t is however easy to choose
as origin an opposition of Il and III at which the condition is very
nearly satistied. *)
Then for all satellites 7, and », are constant in the intermediary
orbit. We take
»=0, and consequently @ =a ; w=n. . . (17

o[R, R, N
L7:] and 3 are constants. These must be deter-

Then also a,

¢ aa, a’)h
mined so that
d (R, —
QBN a8
o,
0 [R)] —
G =—2%xw’t . . . . . . . (19

Then we have
b=ar , n=—ut+4+m , A=(@—x)r+m . (20)

The radius-vector » and the true orbit-longitude w, are now
determined by (4) and (5), and we thus see that the imtermediary
orbit is a Keplerian ellipse with the constant semi-axis a,, the
constant excentricity e, = sin ¢,, determined by 2sin 4 p,=7,, and
the mean anomaly /,=—c,7, and these ellipses rotate in their plane
with the angular velocity — %, common to all satellites.

The 'conditions (18) and (19) serve to determine the two para-
meters y; and n,. For the inner satellites this intermediary. orbit is,
as has already been pointed out, a very good approximation, better
than the fixed Keplerian ellipse. For IV the excentricity as deter-
mined from (18) is extremely small, and the intermediary orbit con-
sequently differs very little from a circle described with the uniform

velocity ¢, — .
(To be continued next page.)

1) Thus e.g. on 1899 June 28, L1h 47m 35s G.M.T. the longitudes counted

from the first point of Aries are:
oA =193%64 , A, =13°64 , A;=193.64 , A, =192°.75.

-12 -
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Astronomy. — “Qutlines vf a new theory of Jupiter's satellites”.
By Prof. W. pe Strrer. (Continued).

(Communicated in the meeting of April 26, 1918).

4. The variational equations.

The constants of integralion of the intermediary orbit satisfy the
conditions (18), (19), and the conditions of symmetry (16). The
constants of integration of the actual orbit however do not exactly
satisfy these conditions. We now put, instead of (17) and (20)

di= (¢ — x) v + mip+ Vi = Vi, @1)
mi= — %t + nip + gi, ni=1; + dy;
Instead of ¢; and dy; 1 introduce %; and £ by
mi cos gi = i + i N 7))

i sin gi == ki

The equations then become

dk; P Of o O

_— e Wi — i) 5o ‘ ‘ YA

G () G R
) .

g =0 ) () e — () kg

.(lu)i \& aR{ f

_;l;_ = (g —~w)ri —2( 4 m’) a; 'a“a‘“ + (1 + v‘.)i-"ié;zz'

dv; @BR;‘

d——-f—::——-S(l +'l’i) 5};‘.

'

We still restrict ourselves to the non-periodic part [E;] of the
perturbative function. Then, if we neglect the squares and products
of 4, ki, w;, v;, these equations are of the form

-

-13 -
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dh;
— =23 a;; k; + 2 b;; wj,
e J+j i w;

' dki , .
L= — i — 2 b,

J J (23)

dv;
T i J
de:
'—‘g—lz——zd','jhj——-ze’,'jvj.
dr

The right-hand members have no constant term. For h; and v;
these terms-are zero in consequence of the conditions of symmetry
(16), since they contain only sines. For £; and w; they are zero
by the conditions (18) and (19).

The equations (23) are satisfied by

hi = 2 ¢;y &4 c0s Gy, W= 6 B0 008 Pgy )
q q

ki= X ¢q 5 sin g wi=2= c::7 &g Sin g (24)
7 q

@ = Byt 4 Wgo. '
Substituting (24) in (23) we find for cig, ¢, ¢, c;, and B, the

conditions

’
1 \
cig Bg + 2 a; j c'jq + E b; ch =0,
J J

digBg + T dijeig ¥ 2 i =0,
j J 9 25)
c:,'q By -+ ;S.: &i; ,ijq + ?‘ eij c;; =0,
c:_’; Bq/‘l" ?"d,-j ¢jq + :72 € j G.;'Iq = 0, ]
The condition that it shall be possible to determine c;, ¢’y .. ..
from these equations 'is' that their determinant is zero. This gives
an equation of the sixteenth degree in 8,. To each root 8, belongs
a set ci;.... There are however not 16 different values of 8,. To
begin with it is evident that, if we change g, to —q, and conse- -
quently 8, to —p,, and if at the same time we replace ¢’y and ¢y
by —c'iy and —c";, the equations (25) are still satisfied, and (24; is
not affected at all. It follows that if’8, is a root, then also —@, is
a root.
Further there are siz roots 8 = 0. Each term in the equations (24),
i.e. each root B, represents an oscillation of the true motion with

-14 -
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respect to the intermediary orbit with the period 2 =a/3. Each of
these oscillations corresponds to a small change of the initial values,
iL.e. a small deviation of the constants of integration from those
of the intermediary orbit. The term corresponding.to a root 8=10
is not an oscillation, but a constant correction to one of the elements,
which does not affect the character of the motion. Now there are
six possible deviations, i.e. six constants of integration by a change
in which "the intermediary orbit is not essentially altered. These are:

1. A change of the zero of the longitudes and the time. This
evidently does not affect the motion at all, and since two constants
of integration are involved, it corresponds to two roots 8 =20.

2. A change of n,—n, = Z: and of x. The first is evidently

only a change in the unit of time. The other does affect the motion
of the three inner satellites, but only in so far as the intermediary
orbit is replaced by another of entirely the same character.

3. A change of c, say to ¢, 4 dc,. We can then call ¢ 0”04
‘ agmn ¢, and nothing essential will be altered.

4. A change of w, In the intermediary orbit we assumed
o, = 0. In doing this we neglected a small quantity, and evidently
the exact amount of the neglected guantity is of no importance.
This corresponds to the fact that all coefficients bz and e are zero,
as is found when they are worked out.

It must therefore be possible to transform the equation of the
16® degree in B to an equation of the 5t degree in (3*. This is
effected as follows.

By differentiating the second and fourth of (23) we find equations
of the form:

d2k1
—+ EAUIC 4 sz wj = 0,
(26)
dw;
%y = Gijly + = D 0 =0.
Hence we find for ¢';, ¢";p, and B, the conditions
¢'ig By — 2 Aij c'jq — 2 B;; a‘;fq =0,
(@7)

ﬂ —"2' Cl_] GJq Y.D,JG =0- :

iq 19 !

The determinant of these equations is

-15-



A B A ... A, B...... B,
4, A=fe A Baeeno B,,

A= 4, Ay ooinn. ‘A, —~p By ... B, .. (28)
s Chyeven ¢, D,-p.. D,
¢, Coprrnenn C;i. Dy ....D,—B

Now it can be shown that
n, Ait 4+ my Ais + my Aiz + 1, A+ B+ B + Big+ By= 01)
4By +2Bp+ Bis=0, " (29)
By=20, ‘

and the same equations remain true if 4;; is replaced by Ci,, and
B;; by D;;. It follows that the equation A =0, which is of the '
8th degree in B, has three roots p*=0, and can therefore be
reduced to an equation of the fifth degree. To prove (29) it would
be necessary to develop the coefﬁcignts Aij, Bi; . ..., which cannot
be done here. The proof will be given in a more detailed publica-
tion that will soon appear in the Annals of the Observatory at
Leiden (Vol. XII, Part I).

There are thus 5 different values of g*;. To each of these belongs
a set of values of ¢, and ¢";y, which are found from (27), and
of ¢, and ¢y, which are then found from the first and last of (25).

The first four elements of the diagonal of the determinant A are
approximately - ;

A ==

All other elements are at least of the third order. It follows that
four of the roots 8, are very nearly equal to =, the fifth being
much smaller. If we neglect the masses of the satellites and the
compression of the planet, then this fifth root becomes zero, and
the four others are rigorously equal to x. The motion — x of
the perijoves in the intermediary orbit is then exactly cancelled
by the variations, and since in that case also ;= 0, and the inter-
mediary orbit is a circle, the varied orbit consists of four Keplerian
ellipses with the excentricities & and the fixed perijoves @, as it
evidently must be.

If we consider the constants of integration & as quantities of the
first order, like 71}‘), and if we put

Qi= Pt + Wo =uxr -+ Wi

1) If follows from (18) that % .n; is of the second order, and consequently u;
of the first.
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then the effect of the variations on the radius-vector and the longitude
is found to be, to the first order

Iri=—4a % ci:)’ £q 008 (g —a; 2 14 (¢iq + ¢'ig) &g cos (i—T) +
q
dw; = ‘f c:.'qsq sin @y + f f(ig - ¢ig) &g 8in (2 —T0g) + '

+ (cig— ¢'ig) gg sin (ci T 4~ pg)}-

As a first approximation we have a;iz——x, a;; and b;; being
of the second order. Also with the same approximation, for
gq=1....4, 3, ==, and consequently from (25) ¢;;= ¢’y approxi-
mately. The difference c¢;;—c’i; is thus of a higher order, and the
last term of (29) can be omitted. Further also d;; and e;, are at
least of the second order, and consequently by the last of (25)
¢"iy is of a higher order than ¢ and c¢"y. It follows that the first
term of dr; can also be omitted in the first approximation. The
equations (29) then have entirely the form (6). At the same time we
see the reason why the inequalities II and III are so much smaller
in the radius-vector than in the longitude.

5. The perturbations.

We must now take into account the part of the perturbative

function - _
R — [Ri},
which containg terms whose argument D varies with the time,
thus D= Ev. We will only give the theory in its broad outlines.
For details we refer to the publication in the Leiden Annals. We
put for abbreviation '
hi = xi, ki =y, V= Xif{4, a;i:":yi+4.'
The differential equations then assume the form

dx;

— = FeagsinEr + = 2 fijEsinErx; + 2 2 g; peosEry;,

dv g i E i E

4 , (30)
D - 2 oy, goosBix— 2 2 f's 5 poos By xj — 2 3y's, gsin Bt y,,g

dr E j E J

where i and j take the values from 1 to 8. The arguments are of
the form
D=Ev=Fkt+Fkern,
k and £ being any integers, positive, negative or zero. If we take
only £=~#% =0, the equations (30) are reduced to (23). Thus we
have, e.g. ‘ - '
Sfi0=20, 9i,j,0 = ai,), i j44,0 = b;; etc.
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The equations (30) can be satisfied by
Xi = X A; pcos Bx + 2 XU ; 18 cos (¢; + Er), ‘
- E i E
31
yi= Z A psin Ev 4 T EZM'; ; pe; sin (@) -I—E't),', ¢
E j B

where
i = Bt + wio.

Subqtituting these in (30) we find again equations of condition
for 3, M;qx and M';, . There is an infinite number of these equations.
Hence the condition for B, is an infinite determinant put equal to
zero. It is evident however that if )

- : =73
is a root, then all numbers of the form
B==xB thktke, (ol = — ...+ o)

are also roots, since changing @8 to ' does notaffect x; and y; beyond
a change in the notation by which the different coefficients’ are

distinguished.
It is mnot difficult to get an 1nt1mte determinant for 3* instead

of 8. If we put
) Pij =14 (Mi;E+ M,j—5)
P p=4% (M j,8— Mj —B)
Qi 2= 4 M 5,58+ M j,— ),
Q2=+ M, ; g~ Mij —5)
Then the equations become
BP,E+ EP\ g+ % z Z{ (gig, - + gi.5,548) QjuF —
— (i, r—E+ fij, r4B) Pt =0,
BP'i g+ EP g+ % ,E ?{ (95, j, P—E — i, j, F4+E) Qj,F —
— (fij, F—E— fi, 5,5+ B) Bjr} =0,
BQiz + BQipt 4 T ZH'5. -5 + §ij r4B) G F +
(f 45, F—=E + ['i,j, r4+B) Bip} =0,
BQie + EQir+ i 2 E‘ 955, 7—8 — ¢4, 748 Qj,F +
(ft,J,F—E ~ /i, pyE) P p}=0.

where we have omitted- the index g in 8y, Pigr, Pigr ete. It is
only necessary to consider these equations for positive values of E.
The sums however include all values of 7. We have

. (32)

P p=DF,—p Q,r=— Qi—r
Pirp=—Pi_p Qir=qQ;_nr
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Multiplying the second and third of (30) by B, and then substi-
tuting in them the values of BP;g and BQiE derived from the first
and last we find equations which contain only P'ir and QE.
These have the form

/
B —E)Que + = ‘EGLJ,E,FQ'J',IP + = AEH:,],E,F P'j F. Q
} J
(33)
E—E) Pyp+ 220, EFQ)r+ 3 zH 44, B, FP'J,F»)
i F i F

the coefficients G, H, G’, H’ being all at least of the second order.
We have

. — (| ‘, —n
_Pz,O——-Gz, Pz+4,0—02 ’ Ql,O-——-cu Ql+4,0—-ci

Pli,O =0, Qi0=0-

The infinite determinant resulting from the elimination of P’ and
Q - from (33) has, for each argument F, 16 rows and columns,
corresponding to the 16 unknowns P’z and Q;z For E=O0 there
are only 8 unknowns, and also the first of (33) becomes an identity
for E=0, so that there are only 8 columns and rows. The deter-
minant formed by the elements common to these 8 columns and
rows may be called the central determinant.

All elements of the determinant outside the diagonal are of the
second order!). The elements of the diagonal have the form
G+ B — B, where (G is of the second order at least. In the
central square we have £ =0, outside the central square Z has a
finite value, and therefore G4 E* is of the order zero. The manner
in which the determinant is reduced to its central square will be
explained by a simple example, in which I take for each argument
E only 2 instead of 16 rows and columns, and of the rest of the
determinant also only 2 rows and columns are wriften. This is
sufficient to illustrate the principle. We then have the transformation

an"‘ﬁ’ @y, Oy @y
Qg au“"ﬁ’ Qyy Ay o
@y Qyy Ayy +E2“”ﬁ’ gy
@4 %y @y a,, B —f

Y This is not correct. There are elements oulside the diagonal of the orders
zero and one. The conclusions reached in the text are however not affected and
remain correct. For a more thorough discussion see Leiden Annals XII. 1. (Note.
added in the English translation).
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b,—B* b, 0 0
' | b by—p 0 0
e, a, Wt E—p d,, ’
a, a,, a,, '+ EE B
where
b,, =a,, — &, a,; — Y, a,,, b, =a,, — &, a,, —Y,
by, = a,, —&, 0, — Y, a,,, by = a,, — 2, 0,, — Y, a4y,
Qyy = gy + @, Ay, + @, Qg ay, =a,, + Y, a5, + Y, @45
gy =0, + 2 0, + 2,a, adyp=a, + Yy, 0, + Y, 8,
and the multipliers z,, z,, y,, y, are determined by
a, + 20, +a,a,—a (0, + E)—yd,=0
a“—}—wlaﬂ—l—w,a,,—m,(aa,+E)—y,¢z4,:0 @y
0+ yi0,+y.0,—y @, +E)—=zd, =0 ‘
Qg+ Y1031 + Yy 80—y, @y, + E)— 2,0, =0

The determinant is thus reduced to the product of two determinants.
In our case we will in this way “peel off” 16 1ows and columns
at a time, instead of two. It fo]lows from (31) that x; and yi are
of the second-order at least. The corrections

’ biy — aij

to be applied to the inner terms are thus of the fourth order. If
now we proceed to remove the rolumns and rows of another
argument F, the effect of these corrections on the central determinant
will be of the swth order. Consequently, if we agree to neglect
quantities of the sixth order in 8, and therefore, since B itself is
of the first order, quantities of the fifth order (i.e. of the order of
10—1% in B, then the rows and columns of each argument can be
removed separately, independently rof all other arguments. The
determinant finally is reduced to a product of an infinite number
of determinants, of which the central\ one has 8 columns and rows,
and all others 16. Each of these corresponds to one argnment == Z.
As has been pointed out above, to each voot 8, belongs a root
8, + E and a root B—F. It is thus evidently only necessary to
determine the 8 roots of the corrected central determinant. The
corrections which have been applied to the elements of the central
square are at least of the fourth order. These 8 roots will therefore
differ very little from those of the uncorrected determinant A, of
which three are zero. For the corrected determinant the relations
(29) do not hold, and also the a priori reasoning by which we
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showed that there must be six roots 3 —0, do not apply here, since
x;=—= y;=0 is not a particular solution of the equations (30). The
three roots of the corrected determinant corresponding to the three
zero roots of A =0 may therefore differ slightly from zero, but
they will in any case be extremely small, and for all practical
purposes the other five roots are the only important ones.

It remains to determine the coefficients A,z and A4';z. We have

.

the equations '

EAig+ 4 = %: {fi., F (45, E—F — 4 B4F) +
J

+ 95,7 (A, 0-F + Ajp4R)} + i g = 0,(

, . (36)
EAip+ 4 2 f {55, F (45, 8-F + 4j,54F) — \ :
J

— 94 j,Fr (AB—r— A'p4F)} + di g =0,
from which the coefficients can be solved by successive approximation.
Nearly always the first approximation

oK
Ai,E:—_.zE'”a A’i,E:——-

@i g
E

will be sufficient.
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