Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Jong, C. de, Determination of the constant of Precession and of the Systematic Proper motions of the stars, by the comparison of Küstner's catalogue of 10663 stars with some zone-catalogues of the 'Astronomische Gesellschaft', in:
KNAW, Proceedings, 19 I, 1917, Amsterdam, 1917, pp. 65-97

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
growth in experiments lasting $3^{1 / 2}$ hours; that drawn in full represents the growth in experiments of 7 hours. At and above 35° practically no growth takes place in the second period of $3^{1} / 2$ hours.

In conclusion the temperature coefficient has been calculated for intervals of 10°, relating to the observations during $31 / 2$ hours.

We see, as has been indicated by Cohen Stuart ${ }^{1}$) in his study of the subject, that van ' T Horr's rule at most applies only over a small range; for the rest the coefficient falls with rise of temperature.

Utrecht, Aprrl 1916. Botanical Laboratory of the University.

Astronomy. - "Determination of the constant of Precession and of the Systematic Proper motions of the stars, by the comparison of Küstner's catalogue of 10663 stars with some zone-catalogues of the "Astronomische Gresellschaft"". By C. de Jong. (Communicated by Prof. E. F. van de Sandr Bakhuyzen).
(Communicated in the meeting of April 28, 1916).

1. Introduction.

The research, the results of which will here be given in an abbreviated form, originated in a subject for a prize essay which the University of Leiden gave out in 1914, that of determining the constant of precession and the systematic proper motions by a comparison of Küstner's Catalogue of 10663 stars (Verofff. Bomn $\mathrm{N}^{0} .10$) with Zone-Catalogues of the "Astronomische Gesellsebafi". The essay which I wrote, was awarded the prize by the Faculty of Natural Science in Leiden. Prof. E. F. van de Sande Bakhuyzen then suggested to me to continue the research and make it into a complete whole by using all the available material, i.e. that for which the difference of epoch with Küstnir is not too small, and redncing it in a strictly systematic manner; this suggestion I followed willingly.

It is indeed of importance to derive the ronstant of Precession and the elements of the motion of the sun from the above mentioned material; it is the only combination of catalogues with at all considerable difference of epoch in which, for both, the magnitude-error has been eliminated or determined with sufficient accuracr. For the zone-catalogues of the Astr. Ges. two determinations of the error in

[^0]question have been made by Auwers, while researches also have been carried out at Leiden for the zone observed there. Kuistner, by placing gauze screens in front of the objective of the telescope, has eliminated the error in a very satisfactory manner. Moreover I had the privilege of discussing various difficulties with Prof. Bakhuyzen himself, and of experiencing bis continued interest in my work, for which I take this opportunity of thanking him very sincerely.

2. Material used.

With Kitstner's Catalogue (Aequin 1900) the following zonecatalogues of the Astr. Ges. (Aequin 1875) were compared in R.A. and Decl.:

1. Berlin A, Decl. $+15^{\circ}$ to $+20^{\circ}$;
2. Berlin $B,,+20^{\circ},+25^{\circ}$;
3. Leipzig $\mathrm{I},, \ldots+10^{\circ}, \ldots+15^{\circ}$;
4. Leiden, $,+30^{\circ},+35^{\circ} .{ }^{1}$)

The positions of the latter were reduced from 1875 to 1900 by means of the mean of the precession-values given in the two catalogues (constants according to Peters-Struve). Küstner's catalogue (Kü) proved to have the following numbers of stars in common with the zone-catalogues, with the epochs as given:

Number of stars Epochs Difference of epochs

Be A	768	$1870,5-1896,5$	26,0 years
Be B	812	$1881,0-1897,0$	$16,0 \quad$ ",
Lei I	711	$1874,3-1896,45$	22,15
Leiden	926	$1873,8-1898,0$	24,2

Catalogue Berlin Becker (Be B) has only a small difference of epoch with Küstner, but its great accuracy compensates this to a - great extent.
3. Immediate results of the comparison.

To the differences $\Delta \alpha$ and $\Delta d K u ̈-A . G$. found directly by the comparison various corrections had first to be applied, in order to make them suitable for further discussion. These corrections are the following:

1. The reductions of the A. G. catalogues to the system of Auwers's fundamental Cutalogue of the A. G. These were assumed according.
[^1][^2]to Auwers's tables occurring in A.N. 3844, with the exception of the A.R. Leiden, for which the magnitude equation lately deduced by Dr. E. F. v. D. S. B. was adopted; ${ }^{1}$)
2. the reduction of Kii to the Fundamental system of Auwers, only needed for the Decl. and applied according to the table in the introduction to Kistner's Catalogue, p. 35 ;
3. the variation daring the difference of epoch of the reductions $\Delta \alpha_{\sigma_{k}}$ and $\Delta \delta_{z}$ of Auwers' old Fund. Cat. to the new Cat. of the Berliner Jahrbuch (A.N. 3927);
4. the variation during the difference of epoch of the corresponding: reductions $\Delta \alpha_{j}$ and Δd_{j}.

Reductions 1 and 2 were introduced everywhere completely, 3 was not immediately applied to the results of the comparison, while of 4 only parts were added to the coordinate-differences found. Besides 1 and 2 the following corrections were applied on account of 4 :
a. to the differences Ku-A.G. in R.A.:

Be A	+0.020	instead	of $+0^{5} 0205$
Be B	+0.012	,	,+0.0128
Lei I	+0.018	,	$"+0.0185$
Leiden	0.000	$"$	$"+0.0202$

b. to the differences Kü-A.G. in Decl.

The remaining parts of 4 were brought into account after the solution of the equations. For Be A use is also made of the "Reduction der aus den Zonenbeobachtungen abgeleiteten Deklinationen auf A. G. C." occurring on p. 131 of the Introduction to this Catalogue. The corrections 3 are solved separately.

From the differences in a and d thus corrected various means were formed. In order to be able to test the influence of the magnitude of the stars used - either on account of remaining magnitude-errors or of cosmic influences - upon the constants derived from them, groups according to magnitude were formed, and that for each hour of the right ascension separately. In this it proved preferable, on account of the limited number of stars, to confine ourselves to two groups according to magnitude. The division was made according to the magnitudes given by $\mathrm{Kü}$; the magnitude 8.50 was taken as the limit. Thus
${ }^{1}$) Annalen der Sternwarte in Leiden, 9, 386.

1. a "bright" group, called group B.
2. a "faint" group, called group F.
were formed.
Further the ever difficult question of the exclusion of stars had now to be weighed. Newcomb, in his deduction of the precessional constant from the Bradley stars, ex̆cluded all stars with proper motion above certain limits depending upon the magnitude and entirely ignored these. In this way he loses more than $1 / 5$ of the whole number of stars. In the reduction of the material of this paper it did not seem advisable to confine oneself to this method. Besides the deduction of the results in Newcomb's manner I made a second calculation practically without exclusion, that is, only some extremely large differences were excluded. The work was therefore done in two ways:
3. all stars (with the exception of a few very large differences) are used; solution A;
4. stars with P.M. above certain limits are excluded: solution E. There were, therefore, four solutions made: BA, BE, FA, FE.
Excluded unconditionally were: (see 1):

$$
\begin{aligned}
& \text { in } \operatorname{Be} A \text { all stars with } \Delta a>055 \text { or } \Delta \delta>7^{\prime \prime} 5 \text {; } \\
& \text { in } B e B \quad, \quad, \quad, \quad \Delta a>0.35 ; \Delta \delta>5.0 \text {; } \\
& \text { in Lei I ", ", } \Delta a>0.4 \text {, } \Delta \delta>6.0 \text {; } \\
& \text { in Leiden ,, " , } \Delta a>0.5 \text {,, } \Delta \delta>7.5 \text {. }
\end{aligned}
$$

These are altogether only about twenty in number. Moreover, in all four catalogues the double stars are unconditionally excluded, being respectively $18,31,15$ and 37 in number. It is unnecessary to point out that this last exclusion is certainly justified. As regards the unconditional exclusion on account of too large differences it may be further remarked that in this the two coordinates have also exercised an influence upon each other, as stars with too great a Δu are also excluded in ' δ, and vice versa. In this way the A groups were formed.'

For the Egroups the following values are accepted as the greatest Limits for the E-groups.

Catalogue	4thmagnitude	$\begin{gathered} 5^{\text {th }}-7 \text { th } \\ \text { magnitude } \end{gathered}$	8thmagnitude	9thmagnitude
Be A	$0^{5} 20 \quad 30$	$0^{5} 15 \quad 2{ }^{\prime \prime} 2$	$0^{5} 12 \quad 178$	$0^{3510} 1 / 5$
Be B	0.121 .5	$0.10 \quad 1.5$	0.081 .5	0.061 .5
Lei I	$0.20 \quad 3.0$	$0.15 \quad 3.0$	$0.12 \quad 3.0$	$0.10 \quad 3.0$
Leiden	0.202 .5	0.202 .5	$\begin{array}{ll}0.20 & 2.5\end{array}$	$0.20 \quad 2.5$

j 㿾
allowable proper motion during the interval between the epochs.
In this the two coordinates have had no influence upon each other; a star which had to be omitted in the computation of the E-mean of the Δa on account of too large a valne was not excluded from the Δd on that account. In this way in forming the Egroups for each catalogue about 100 stars were excluded.

As in the discussion of the results from the comparison between Kü. , and: Be A a great difference became apparent between the values of the precession-constant m derived from the bright and from the faint groups (that is from BA and BE on the one hand and from FA and FE on the other) it was thought desirable to institute a further research into this point. For this purpose the fainter group in Berlin A was split into two, one between magnitude 8.50 and 9.15 , the other below 9.15 . For both groups, called $F_{:}$and F_{z} solutions A and E were made. In the following table these groups are found as $\mathrm{F}_{1} \mathrm{~A}, \mathrm{~F}_{1} \mathrm{E}, \mathrm{F}_{2} \mathrm{~A}$ and $\mathrm{F}_{2} \mathrm{E}$.

As already said, in the formation of the Egroups the two coordinates had no influence upon each other. The opposite point of view might also be defended, while it may be said in favour of the method here followed, that it is illogical to exclude stars from one coordinate because of a large accidental error in the other. In any case it seemed desirable to see what would be the influence of the exclusion, also according to the other coordinate. This was done for the R.A. of Berlin A; for this catalogue E^{\prime} groups were formed for which the same exclusion-limits were used as in the E groups, but in which exclusion also took place on account of the other coordinate. The groups formed on this principle are called BE^{\prime} and FE^{\prime}.

In the following table I have collected the hourly means formed after the different principles; in this table 0^{h} means the group from $23^{n} 30^{\mathrm{m}}$ to $0^{n} 30^{\mathrm{m}}$, etc. while under n the number of stars used is given. The unit is in the R.A. $0^{s} .01$, in the Decl. $0^{\prime \prime} .1$.

Mean Differences Ku-A.G.

1) Berlin A, Rıght-Ascensions.

Hour	$B A$		$B E$		$F A$		$F E$	
				n			$\Delta \alpha$	n
0	$+9.15$	15	+3.72	11	-1.30	12	+2.42	9
1	$+10.00$	10	+0.92	4	+4.42	14	-0 19	11
2	$+5.82$	12	+6.07	10	-0.01	14	$+0.21$	10
3	+ 2.22	9	+2.22	9	+2.46	10	+0.83	9
4	+10.56	14	+6.16	11	+2.85	10	-0.58	9
5	$+2.51$	15	+207	12	+269	15	+2.69	15
6	-1.01	23	-0.04	22	-0.25	23	+0.72	19
7	$+2.45$	11	+1.42	10	+2.51	19	$+0.55$	17
8	- 3.58	15	-1.67	14	-1.55	24	-0.73	21
9	-1.36	17	-0.44	15	+0.31	18	-179	15
10	-3.89	12	-3.89	12	-5.66	21	-2.44	17
11	- 5.70	12	-2.82	10	-7.80	20	-6.19	16
12	-12.02	8	-4.68	5	-683	17	-4.24	14
13	--5.94	11	-5.94	11	-6.03	19	-4.52	17
14	-13.89	13	-8.22	8	-4.73	18	- 6.42	16
15	-7.00	8	-7.00	8	-4.13	23	-3.06	17
16	-4.16	11	-2 37	10	-5.43	22	-4.22	20
17	-4.88	14	-1.92	12	-0.81	22	-1.28	20
18	-0.26	13	-0.26	13	096	19	-1.73	18
19	-0.82	10	+0.63	9	-1.34	19	-1.34	19
20	-- 2.08	17	-2.08	17	+054	21	+0.54	21
21	$+1.72$	13	+0.66	12	+2.65	22	+1.24	${ }^{-} 20$
22	+ 4.62	10	+4.62	10	$+0.96$	20	-0.22	19
23	+ 5.29	10	-0.04	7	-0.18	17	+0.67	11

Hour	$F_{1} A$		$F_{l} E$		$F_{2} A$		$F_{2} E$	
0	-2.78	6	+2.62	4	+0.18	6	+2.26	5
1	+5.57	6	-2.34	5	+3.55	8	+1.60	6
2	-1.49	7	+0.13	6	+1.28	8	+0.32	4
3	+4.07	6	+1.46	5	+0.05	4	+0.05	4
4	+3.61	7	-1.40	6	+1.07	3	+1.07	3
5	+2.22	10	+2.22	10	+364	5	+3.64	5
6	+1.51	9	+0.79	7	-1.38	14	+0.68	12
7	+1.23	10	+1.23	10	+3.93	9	-0.43	7
8	-2.01	11	-2.01	11	-1.16	13	+0.68	10
9	-0.21	8	-3.70	6	+0.73	10	-0.52	9
10	-5.88	8	-2.62	5	-5.14	14	-2.37	12
11	-6.27	7	-4.98	5	-8.64	13	-6.74	11
12	-7.69	11	-3.49	8	-5.23	6	-5.23	6
13	-5.27	13	-4.13	12	-7.37	6	-5.04	5
14	-6.77	6	-6.77	6	-371	12	-6.21	10
15	-4.67	6	- -236	5	-3.94	17	-3.35	12
16	-6.81	8	-5.66	7	-4.71	14	-3.53	13
17	-3.07	10	-1.53	9	+107	12	106	11
18	-3.14	10	-3.14	10	$+1.46$	9	+0.04	8
19	-0.07	12	-0.07	12	--3.53	7	-3.53	-
20	+0.38	12	+0.38	12	+0.76	9	$+0.73$	9
21	+3.08	13	+2.12	12	+2.32	9	+ 26	8
22	-1.31	11	-1.31	11	+3.72	9	+129	8
23	-2.82	8	+0.67	3	+2.18	9	+0.68	8

2) Berlin A, Declination.

Hour	$\because \quad B A$		$\because \quad B E$		$\therefore \quad F A$		$\because \quad F E$	n.
0	$\bigcirc 0.99$	15	-0.99	15:	+ 0.46	12	-1.64	8
1	$+0.92$	$10 \cdots$	$\div 0.97$	9	$\because 7.16$	14	$\because 6.05$	10
2	$\div 5.78$	12	-5.78	12	$\div 6.60$	14.	-.7.08	12
3	$\bigcirc 4.31$	9	$-4: 31$	9	$\div 12.19$	10 !	-7.68	- 8
4	-6.39	14^{*}	$\bigcirc 4.98$	12	-6.62	10	-0.79	8
5	-7.97	15	-4.92	14	-13.43	15	-10.04	12
6	-5.32	23	-5.32	23	-7.94	23	-5:51.	21
7.	-6.08	11\%	$\therefore 3.11$	10	-4.84	19	-5.72	17
8	$\div 5.27$	15	$\because 2: 88$	14	$\div 10.44$	23.	-6.20	19
9	$\because 6.37$	17.	-4.39	16	-6.41	18	$-.5 .58$	15
10	-7.53	12	$\therefore 7.53$	12	-5.43	21	-6.66	20
11	-0.45	12.	-0.45	12	-- 8.23	20.	- 5. 21	17.
12	-2.59	8	-2.59	8	-6.68	17.	-4.74	13.
13	-3.25	11	-3.25	11	- 4.49	19	$\div 3.35$	18:
14	+0.91	13	-0.60	10	-6.53	18	-5.53	13
15	$\cdots 9.55$	8	-4.64	7	- 4.26	23	$\div 4.92$	20
16	-3.59	11	-8.01	10.	- 7.29	22	$-.6 .18$	19
17	+0.69	14	+0.69	14:	-3.71	22	-2.74	21
18	$+0.19$	13:-	+0.19	13	$\div 8.81$	19	-.8.81	19 :
19	-6.55	12	-6.55	12	-.-. 7.34	19.;	-.5.30	17:
20	-2.21 ${ }^{\text {- }}$	17	-0.25	16	-3.28	21.."	-3.46	19
21.	-1.63	13.	-3.21	12	$-.5 .47$	23	-4.48	20
22	-5.13	10	-5.13	10	-.3.99	20	-. 3.99	20
23.	$\cdots 6: 73$: 10:	-2.35	8 :	- 8.7 .7	17.	-4.11	13 :

74
3) Berlin B, Right-Ascension

Hour	$B A$		$B E$		$F A$		$F E$	
	$\triangle c$		$\triangle \alpha$	n		n	$\Delta \alpha$	n
0	$+2.70$	8	+1.10	7	+0.12-		-0.17	18
1	+2.57	15	+1.16	12	+2.27		+0.01	16
2	$+2.70$	7	-1.94	5	-1.30	20	-0.73	15
3	$+2.37$	13	$+0.27$	12	-1.14	19	-1.53	17
4	+3.35	23	+2.46	20	+1.42	13	+0.53	12
5	$+3.53$	15	+1.72	13	+2.96	15	+2.65	13^{-}
6	+0.10	21	+0.91	20	-2.29	19	-0.08	13
7	+0.00	19	$+0.00$	19	-1.08	18	-0.72	17
8	+1.29	15	-0.67	14	-0.81	15	-0.68	13
9	-3.01	12	-0.58	10	-1.35	22	-0.41	21
10	-2.93	12	-1.84	9	-2.06	16	-1.59	15
11	-3.27	7	-3.27	7	-3.29	21	-1.97	16
12	-3.22	9	-3.22	9	-4.62	24	-1.32	15
13	-4.41	12	-4.41	12	-0.87	19	-0.15	13
14	-2.70	11	-270	11	--4.72	20	-3.48	17
15	-2.15	8	-2.15	8	-1.42	18	-1.77	17
16	-0.79	8	0.79	8	+0.42	20	+0.69	15
17	-1.37	12	-1.74	10	-1.74	30	-1.72	28
18	3.18	20	-2.64	19	-3.07	16	- 3.22	11
19	-0.17	24	-0.19	20	-1.78	16	-1.30	15
20	+1.79	17	+1.79	17	-0.03	12	- -0.03	12
21	+1.27	15	+1.12	13	-0.31	17	+0.95	15
22	+3.72	16	+0.68	14	-1.09	17	-0.93	15
23	+1.21	12	+1.21	12	-0.11	17	-0.13	13

4) Berlin B, Declination.

Hour	$\Delta d^{B A}$		$\triangle \delta^{B E}$		FA		$F E$	
0	-4.75	8	-1.15	6	-5.05	22	-4.2	19
1	-6.05	15	-6.05	15	-10.0	19	-8.0	16
2	-6.75	7	-6.75	7	-6.3	19	-7.7	15
3	-5.65	13	-4.05	12	-4.1	19	-3.5	18
4	-8.35	23	--5.95	19	-8.7	13	-7.7	12
5	-8.45	15	-8.45	15	-10.0	16	-7.1	13
6	-4.75	21	-4.75	21	-9.8	19	-7.0	17
7	-8.55	19	-5.55	15	-8.8	18 !	-7.7	16
8	-5.35	15	-5.35	15	-6.6	15	-5.3	14
9	-7.35	12	-2.55	9	-2.9	22	-3.9	21
10	-5.85	12	-2.45	10	-5.3	16	-4.5	15
11	-8.65	7	-4.95	6.	-9.2	20	-6.8	17
12	-3.45	10	--3.45	10	-9.4	24	-5.6	19
13	-6.35	12	-5.25	11	-11.4	19	-6.3	13
14	-6.25	11	-6.25	11	-4.9	20	-4.3	19
15	-5.65	8	-5.65	8	-5.7	18	-5.7	18
16	-6.9	8	-3.25	7	-6.4	20	-5.2	18
17	-4.4	12	-0.05	10	-2.3	30	-1.3	29
18	-4.85	20	-2.95	17	-7.1	16	-6.4	15
19	-4.25	24	-3.25	20	-5.3	16	-5.3	16
20	-0.15	17	-0.15	17	-4.3	12 -	-2.1	11
21	$\therefore 2.05$	15	-0.65	14	-3.9	17	-3.9	17
22	-4.05	16	-4.05	16	-4.9	17	-3.9	16
23.	-1.55	12 ,	-3.15	11	-9.5	17.	. -8.65	16

5) Leipgig I, Rığht-Ascension.

Hour	$B A$		- . $B E$		$F A$		$F E$	
	$\Delta{ }^{\prime}$	n		n		n	$\triangle a$	n
0	- 1.60	15	-1.58	13	-1.73	13	-0.18	11
1	+ 0.37	7.	+0.37	7.	-1.25	22	+0.25	18
2	+10.70	7	+784	5	$+1.80$	15	-0.19	12
3	+3.38	10	-120	8	-188	12	-0.82	11
4	+ 8.28	13	+377	10	+0.22	16	-0.28	12
5	-006	9	-0.06	9	+5.98	23	$+3.44$	20
6	- 0.26	17	+2.24	15	+106	25	+0.89	23
7	-1.62	11	1.62	11	-1.68	15	-1.68	15
8	-7.97	15	-6.06	13	-2.58	16	-1.92	13
9	- 602	13	-3.56	11	-0.32	12	-3.94	10
10	-900	10	-6.15	8	-3.32	11	-3.32	11
11	-633	9 (4.11	8	-7.28	16	-5.35	14^{-}
12	-11.04	5	-9.95	4	-594	16	-4.99	15
13	-4.85	11	-6.34	8	-1.54	15	-232	14
14	-4.06	104	-4.32	8 .	-4.06	20	-4.21	19
15	-0.18	8	-0.18	8	-4.24	13	-3.05	10
16	-4.90	10	-490	10	-5.40	20	-3.86	18
17	-3.33	14	--333	14	-6.00	14	-356	12
18	-292	14	-2.92	14	-4.33	15	-2.90	14
19	+ 216	15.	+1.46	14	-2 40	26	-1.69	23
20	+1.08	13	+1.08	13.	-0.10	22	+0.10	20
21	+2.90	22	+1.80	20	+432	17	$+2.88$	15
22	+2.45	12	+4.06	11	-0.73	23	-0.02	22
23	-113	7	+077	$6{ }^{\text { }}$	-1.20	19	-0.57	15

6) Leipsıg l, Declination

Hour	$B A$		$B E$		$F A$		$F E$	
	$\triangle d^{\prime}$	n	$\Delta \delta$	n		n	$\triangle \delta$	$n{ }^{2}$
0	+1.47	15	+1.47	15	+ 4.31	13°	1+4.31	13
1	+9.29	7	+5.17	6	$+2.36$	22	$+2.36$	22
2	+5.71	7	+5.71	7	+ 0.07	15	+ 007	15
3	+1.90	10	$+1.90$	10	-6.75	12	-6.75	12
4	-5.23	13	-5.23	13	-600	16	-6.50	14
5	--1.89	9	-189	9	-9.26	23	-8.28	22
6	+194	17	-0.62	16	-256	25.	-2.56	25
7	-2.82	11	-2.82	11	-0.93	15	-0.93	15
8	-5.67	15	-5.67	15	-6.69	16	-6.69	16
9	-7.38	13	-5.42	12	-10.00	12	-10.00	12
10	+2.40	10	$+2.40$	10	- 7.82	11	- 7.82	11
11.	+2.11	9	+2.11	9	-6.12	16	-6.12	16
12	$+2.00$	5	$+2.00$	5	-0.62	16	-0.62	16
13	-4.64	11	+0.50	10	-6.67	15	- 4.93	14
14 -	$+0.20$	10	$+0.20$	10.	-3.50	20 ,	-3.50	20
15	+3.75	8	-0.86	7.	-1.69	13	$+1.00$	12
16°	$+5.60$	10	$+5.60$	10	-4.35	20	-2.93	$19-$
17	-6.28	14	-6.28	14	-6.57	14.	- 3.69	13
18	+2.71	14	+2.71	14	-0.93	15	-0.93	15
19	+1.00	15	+1.00	15	-2.73	26	≥ 1.52	25
20	+5.15	13	$+5.15$	13^{\prime}	-1.77	22	-177	22
21	$+5.55$	22	+4.29	21	+1.12	17	+1.12	17*
22	$+0.17$	12	+017	12	+1109	23)	+ +1.09	23
23	-0.29	7	-0.29	7	-2.74	19	-2.74	19

7) Leiden, Right:Asçension.

Hour	$\because \quad B A$	$\triangle \dot{\alpha} \quad \dot{n}^{B E}$	$\because \quad F A$	$\therefore \therefore \quad F E$	n
0	-3:71 12	$1-2.33 \cdot 11 \ldots$	+ 2:91 21	+1.24	20
1.	+4:34 18:	$+0.2816$	+ 1.2919 .	$+3: 89$	17
2 :	$-7.00 \quad 16$	$-5.00 \quad 14$	$+0.95 \quad 16$	+0.95	16
3	+ $1.04 \quad 14$	+1.17. 13	- 5.1423	-4.23	21
4	:-3.48 10	$-3.48 \quad 10$	+1.89 18	-0.07	17.
5	$\therefore-0.48 \quad 15$	-1.1513°	$\div 0.08 \quad 24$	-0.08	24
6.	$\therefore-1.0818$	$-1.12 \quad 16$	-.0.10 17 :	$-0: 10$	17.
7	$\because 2.0619$	-2.0619	$-1.97{ }^{\prime} 22$	-1.08	21.
8	$-2.65 \quad 18$	-0.34 . 15	$-2.41{ }^{\prime}$	-1.48	23
9	-6.3514	$\div 3.42 \quad 12$	$\bigcirc 3.38$ -	-2.12	24.
10	-7.11 16	$\bigcirc 5.07 .13$	$-3.90 \quad 23$	$\bigcirc 2.92$	21
11.	$\because-11.21 \quad 16$	$\therefore 7.94 \quad 14$	$\div 6.91$	-4.18	19
12	!-12.15 17	$\bigcirc 9.37 \quad 12$	$-8.98 \quad 18$	$\bigcirc 7.30$	15 -
13:	- 6.268	$-0.78 \quad 7$	$\div 5.36 \quad 31$	-3.53	23.
14	$\because 0.30 \quad 5$	-10.07 2	$\bigcirc 12.26$ 34	-7.44	25
15	- 12.60 11	-5.13 7	$-10.63 \quad 27$	-9.02	22
$16:$	$-9.27 \quad 12$	-1.96 . 8	-6.1428	$\bigcirc 2.37$	22
17.	$\because 3.51 \quad 11$	$-6.23 .9$	$-3.70 \quad 25$	-4.04	24.
18	-2.22 14	$-1.82 \quad 13$	$-2.30 \quad 23$	$\div 2.30$	23
19	$\because 0.14-22$	-1.7921	$-0.36 \quad 17$	-0.36	17
20	$\therefore 3.08 \quad 24$	$\underline{-2.77-22}$, $\div 0.6019$	-0.65	18
21	$\div 2.2113$	$-2.21 \quad 13$	+ 4.6920	+4.69	20
22	-0.27 9	-0.27 9	+ 1.97\% 20	$+1.97$	20
23.	+0.14	$-0.40 \quad 11$	$\div 2.7917$	-2.08	16:

8) Leiden, Declination.

4. Method of discussion the results. Solution of the equations.

In order to render the determination of the constants as simple and as systematic as possible, and thereby to be able to conveniently make use of the results obtained in a previous research by Dr . E. F. v. d. Sande Barhoyzen and myself concerning the influence exercised upon the determination of the constant of Precession and the systematic Proper-motions by the connection between the value of the parallax of the stars and their apparent distance from the galactic plane ${ }^{2}$), the hourly 'means were represented by formulae of the form :

$$
\begin{align*}
& \Delta \alpha=a+b \sin \alpha+c \cos a \quad . \tag{1}\\
& \Delta \delta=a^{\prime}+b^{\prime} \sin \alpha+c^{\prime} \cos \alpha \quad . \tag{2}\\
& \hline
\end{align*}
$$

and the values of the coefficients were deduced from these equations.
The same weight is given to all hourly means evers where, in spite of the sometimes considerably diverse number of stars upon which they are founded. By this means we gained the very material advantage that all the inequalities depending upon the sines or cosines of multiples of a become eliminated.

Moreover the centennial variations of the reductions Δu_{α} and $\Delta \delta_{\alpha}$ of Auwers's Old Fund. Cat. to his néw one were developed in formulae of the same form. These expressions, as being probably known with. sufficient accuracy - which was doubted at. first were added to the corresponding terms of the formulae (1) and (2).

The following table contains the values of the coefficients of both formulae jer 100 years; in this the centennal variations of the reductions Δa_{σ} and $\Delta \delta_{\alpha}$ have been taken, into account.

In order to facilitate the further ralculations, instead of the coefficlents b and c, the quantities $b \cos \delta$ and $c \cos d$ are given in the table. The results are all expressed in seconds of arc.

[^3]Coefficients of the rormulae for $\Delta \alpha$ and $\triangle d^{\text {PER }}$ century.

- Catalogue	$B A$	$B E$	$B E^{\prime}$	$F A$	$F E$	$F E^{\prime}$	$F_{1} A$	$F_{1} E$	$F_{2} A$	$F_{2} E$
1) Coefficient a										
Be A	- $0^{\prime \prime} 25$	$-0^{\prime \prime 2}$	$-0^{\prime \prime} 24$	-0"62	-0"66	$-0^{\prime \prime} 55$	-0'88	$-0^{\prime \prime} 77$	-0"41	-0/54
Be B	+0.06	-0.45		-0.92	-0.58					
Lei I	0.93	-0 90		-1.15	-1.00					
Leiden	-1.14	-0.65			+0.16					
Leiden	-1.14	-0.65		-0.39	$+0.16$					
11) Coefficient b cosi										
Be A	+1.33	+0.87	+0.79	+0.58	+0.41	+0.33				
Be B	+0 68	+0.40		+0.34	+0.36					
Lei I	+0.10	+0.09		$+0.90$	+0 32					
Lerden	+0.18	+0.22		+0.39	+0.22					
	+0.18	+0.22					*			
III) Coefficient coos o										
Be A	+4.23	+2.38	+2.41	+2.13	+1.62	+1.59				
Be B	+2.80	+1.80		+1.37	$+0.71$					
Lei I	+366	+2.96		+1.73	+1.72					
	+2.19	+1.40		$+2.56$	+1.02					
	+2.19	+1.40		+2.56	+1.92					
IV) Coefficient a^{\prime}										
Be A	-1.52\|	-1.29		-2.55	-2.01					
	-3.39	-2.49		-4.22	-3.44					
Be B	-3.39	-2.49		-4.22	-3.44					
Lei I	-1.10	-1.20		-3.23	-3.03					
	-2.09	-1.54			-078					
Lerden	$\left.\right\|^{-2.09}$	-1.54								
V) Coefficient b^{\prime}										
	$\|-0.68\|$	(1)38								
Be A	-0.68	-0.38		-0.67	-0.29					
Be B	-1.10	-1.05		-0.88	-0.77					
	-0.84	-0.82		-0.82	-1.09					
Lei I	-0.84	-0.82		-0.82	-1.09					
Leiden	-1.69	-1.27		-0.81	-0.67					
VI) Coefficient c^{\prime}										
Be A	+0.02	+0.03		+0 03	$+0.11$					
Be B	+0.67	+0.19		$+0.21$	-0.23					
Lei'I	+0.84	+0.58		+1.22	$+1.05$					
Leiden.	+0 18	-0.31		+0.06	0.12					
Leiden	+018	-0.31		10.06	1					

Proceedings Royal Acad. Amsterdam. Vol. XIX.

5. Correction-terms.

The following relations now apply ${ }^{1}$:

$$
\begin{aligned}
a & =\Delta m-0.04 X \sin \delta+0.22 Y \sin \delta \\
b \cos \delta & =\Delta n \sin \delta+0.93 \lambda-0.04 Y \cos ^{2} \delta \\
c \cos \delta & =-\left(0.93 Y+0.20 Y \cos ^{2} \delta-0.04 X \cos ^{2} \delta\right)
\end{aligned}
$$

$a^{\prime}=-0.93 Z \cos \delta-0.10 Z \cos ^{3} \delta-0.21 X \cos \delta \sin ^{3} \delta-0.03 Y \cos \delta \sin ^{2} \delta$
$b^{\prime}=0.93 Y \sin \delta+0.04 X \cos ^{2} \delta \sin \delta+0.08 Z \cos ^{2} \delta \sin \delta$
$c^{\prime}=\Delta n+0.93 X \sin \delta+0.20 X \cos ^{2} \delta \sin \delta+004 Y \cos ^{2} \delta \sin \delta+0.43 Z \cos ^{2} \delta \sin \delta$ where Δm and Δn represent the corrections of the constants of precession m and n and X, Y, Z the components of the motion of the sun.
The following are considered as correction-terms:
in $a \quad$: the terms that do not depend upon Δ_{m}

These correction-terms are calculated by meaus of values for the constants deduced from a preliminary solution:

B-groups	F-groups
$\mathrm{X}=+0^{\prime \prime} 43$	$+0^{\prime \prime} 43$
$\mathrm{Y}=-2^{\prime \prime} 4$	$-1^{\prime \prime} 6$
$\mathrm{Z}=+1^{\prime \prime} 9$	$+2^{\prime \prime} 5$

They are then subtracted from the immediate results of the equations. The following table contains the results thus corrected. (See p. 83).

The tigures in this table will now serve for the determination of the constants of precession and solar motion ${ }^{\circ} \Delta m, \Delta n, \mathbf{X}, \mathbf{X}, \mathbf{Z}$, the actual unknown quantities of our problem. For this purpose, however, the relative weights of the differences in a and $\boldsymbol{\delta}$ between Küstner and the four zone-catalogues must first be deduced:
6. Relative accuracy of the differences formed. Weights to be attributed to them.
Autuers ${ }^{9}$) gives a table of the mean errors of the various zonecatalogues of the A. G. deduced from a comparison with Ronberg. There are also values for the mean errors given in the zone-catalogues themselves. Both are given below p. 84.

[^4]Corrected values of the coefficients.

Mean errors of the catalogues and of the differences.

Catalogue	m.e. position zonecat	m.e. position Küstner	m. e.' difference	m.e. diff. per annum $\angle a \cos { }^{\circ} \angle \Delta o$	$\begin{gathered} \text { Weight; } \\ \text { of } \\ \text { Lacos } \angle o \end{gathered}$
a) according to AUWERS:					
Be A	05034 $0^{\prime \prime} 47$	05021 0/29	0s040 0"55	$0^{\prime \prime} 022 \quad 0^{\prime \prime} 021$	1.992 .18
Be B	02530	. 020.27	. 032.40	. 028 . 025	$1.22 \quad 1.54$
Lei I	. 043 . 55	. 022.31	. 048 . 63	. 031.028	1.001 .22
Leiden	. 050.52	. $020 \quad .25$. 054.58	. 029 . 025	1.07154
b) according to data in the catalogues:					
Be A	0s034 0"45	0s021 $0^{\prime \prime} 29$	0s040 0'54	$0^{\prime \prime} 022 \quad 0^{\prime \prime} 021$	1.621 .78
Be B	. 027 . 38	. 020 . 27	. $034 \quad 47$. 029.029	$0.93 \quad 0.93$
Lei I	. 037 . 47	. 022 . 31	. 043 . 56	. 028 . 025	1.001 .26
Leiden	. 044.49	. $020 \quad 25$. 048 . 55	026 . 023	$1 \begin{array}{lll}16 & 1.48\end{array}$

As weights the means of those according to a and b are taken, namely:

Catalogue	Weight of	
	$\Delta \mu \cos { }^{\circ}$	$\Delta \delta$
Be A	1.8	2.0
Be B	11	12
Lei I	1.0	1.2
Leiden	1.1	15

7. Determination of the actual unknown quantities.

The correction-terms having been applied, the equation

$$
a=\triangle m
$$

now holds.
In the further calculations I have kept the B groups and the F groups apart, but for the rest l have simply taken the means of the results of the different methods. After this, means were formed from the four catalogues with the weights given in $\$ 6$. I thus obtained, always placing the 4 catalogues under one another in the same order, the following results for Δm.

Groups B	Groups F
$-0^{\prime \prime} 10$	$-0^{\prime \prime} 52$
0.00	-0.62
-0.80	-1.00
-0.62	+0.08
Mean : $-0^{\prime \prime} 33$	$-0^{\prime \prime} 51$

These are corrections which should be appled to \dot{m} of StruvisPeters. To obtain the corrections for Newcomb's m the difference between the values for m Peters- Newcomb should he added. Newcomb ${ }^{1}$) gives the following values:

Centenmal precessional motion for 1850 ,

	m	n
Peters-Struve	$4607^{\prime \prime} 63$	$2005^{\prime \prime} 64$
Nwwomb 1896	4607.11	2005.11

From the differences Peters- N_{98} :

in m	$+0^{\prime \prime} 52$,
in n	+0.53,

it becomes evident that the values m and n of Struve-Pefers do not correspond to one another, when we adopt the most probable value for the planetary precession. I reduce my results therefore to Newcomb's values:

	Corrections to	Newcoub's m
	Groups B	. Groups F
	+ $0^{\prime \prime} 42$	+ $0^{\prime} 00$
	+0.52	-0.10
	-0.28	-0.48
	-0.10	+0.60
Mean :	+ 0'19	$+0^{\prime \prime} 01$

Finally attributing equal weights to the B , and F groups .
B and F groups together
$\Delta i n$ (centennial) Nuwсомв $=+0^{\prime \prime} 10 \pm 0^{\prime \prime} 13$ (m e).
The mean error is deduced from the comparison of the above 8 values for Δm with their mean.

From the equation

$$
b \cos d=\Delta n \sin \delta+0.93 X
$$

X can be determined, if $\Delta n=-0^{\prime \prime} 16$ is substituted as deduced from the preliminary solution. The results for $0.93 X$ then are
${ }^{\text {l }}$) The Precessional constant, p. 10.

$$
\begin{aligned}
& \text { Groups B } \quad \because \text { Groups } \mathrm{F} \\
& \begin{array}{rlr}
0.93 X=. & +0^{\prime \prime} 96 \quad \therefore \quad & +0.43 \\
& +0.52 \quad & +0.36
\end{array} \\
& +0.04 \quad+0.59 \\
& \text { Mean: } \frac{+0.22 \ldots+0.35}{+0^{\prime} 52} \\
& X=+0^{\prime \prime} 56 \quad, \quad+0^{\prime \prime} 46 \\
& \text { From } \quad c \cos \delta=-\left(0.93+0.20 \cos ^{2} \text { d) } Y\right.
\end{aligned}
$$

Y may be determined. The following values were found \vdots

Groups B	Groups F
$Y=-2^{\prime \prime} 69$	$-1^{\prime \prime} 59$
-2.08	-0.94
$\because-2.94$	-1.52
-1.66	-2.08
Mean	$-2^{\prime \prime} 38$

The equation

$$
a^{\prime}=-\left(0.93+0.10 \cos ^{2} \text { d) } Z\right.
$$

gives the unknown Z. The iesults are as follows:
Groups B Groups F

$Z=$	$+1^{\prime \prime} 45$	$+2^{\prime \prime} 35$
	+3.16	
+	+4.10	
	+2.14	+3.10
	+2.17	+1.30
Mean	$+1^{\prime \prime} 92$	

From . $\quad b^{\prime}=0.93 Y \sin \delta$
a second value for Y may be deduced.
I find the following values, in which the fact has been taken into account that the weights of the values for Y obtained from the 4 catalogues are very divergent in consequence of the factor sind:

$0.54 Y$	$=$	Groups B
$0.1 " 16$	Groups F	
$0.42 Y$	-1.35	$-1^{\prime \prime} 08$
$0.24 Y$	$=-1.04$	-1.08
$0.75 Y$	$=-2.31$	-120
Mean: Y	$=-3^{\prime \prime} 01$	-123

Finally from the equation

$$
c^{\prime}=\Delta n+\left(0.93+0.20 \cos ^{2} \delta\right) X \sin { }^{\prime \prime} \delta
$$

Δn can be deduced, if the value for X found from the R.A. is substituted in it.

I find thus for Δn (Struve-Peters):

$$
\begin{aligned}
& \text { Groups B Groups E } \\
& \Delta n \text { Str.-Pet. }=-0^{\prime \prime} 34 \quad-0^{\prime \prime} 36 \\
& -0.03-0.53 \\
& +0.42 \quad+0.81 \\
& -0.66 \quad-0.69 \\
& \text { Mean : - } 0^{\prime \prime} .20 \quad-0^{\prime \prime} .24
\end{aligned}
$$

or, deducing corrections to Newcomb's n :

Groups B	Groups F	
$\Delta n N_{90}=$	$+0^{\prime \prime} 19$	$+0^{\prime \prime} 17$
	+0.50	+0.00
	+0.95	+1.34
Mean:	-0.13	$+0^{\prime \prime} .33$

B and F together: Δn Newcomb (centennial) $=+0^{\prime \prime} .31 \pm 0^{\prime \prime} .18$:
Another method of determining Δn and X consists in solving both unknowns at the same time from sets of two equations with two unknowns, that is from:
and
$b \cos \boldsymbol{\sigma}=\Delta n \sin \boldsymbol{\sigma}+0.93 X$
$c^{\prime}=\Delta n+\left(0.93+020 \cos ^{2} \delta\right) X \sin \delta$.
\cdot In this way 1 tind the following values for X and Δn (StrevePeterses):
$\left.\begin{array}{cccc}\text { Groups B } & \text { Groups } \mathrm{F} & \mathrm{B} \text { and } \mathrm{F} \\ X & \Delta n & X & \Delta n \\ +1^{\prime \prime} 17 & -0^{\prime \prime} 54 & +0^{\prime \prime} 53 & -0^{\prime \prime} 39\end{array}\right]-0_{n}^{\prime \prime} 46$

In connection with the weights given to the R.A. and the Decl. I attribute to the results from the 4 catalogues the weights $1.9,1.2$; '1.1 and 1.3. I then find as mean values:

\therefore Groups B	Groups F	B and F
$\therefore=+0^{\prime \prime} 60$	$+0^{\prime \prime} 57$	
Δn Str.-Pet. $=-0.21$	-0.30	$-0^{\prime \prime} 26$

therefore as correction Δn to Newcomb:
Groups B Groups F B and F
$\Delta_{n 2}($ Newcomb $)=+0^{\prime \prime} .32 \quad+0^{\prime \prime} .23 \therefore \quad \therefore+0^{\prime \prime} .27$,

By substituting the final mean value of Δn (Struve-Peters) $=-0^{\prime \prime} .24$ for the preliminary value - $0^{\prime \prime} .16$ in the equation

$$
b \cos \delta=\Delta n \sin \delta+0.93 X
$$

a second approximation for Y is obtained from the R.A. only. In this way I find as the mean value from the four catalogues

$$
X=\begin{array}{ll}
\text { Groups B } & \text { Groups F } \\
+0^{\prime \prime} .58 & +0^{\prime \prime} .48
\end{array}
$$

The result for Δn from the Decl. only does not change perceptibly, if we substitute for I these final values in place of the approximate ones.

Funally I accept the means of botb determmations of Δn and X as my final result.

8. Conclusions.

- In the foregoing the following final values are found for the unknowns:

	Groups B	Groups F	B and F
Δm (Newcomb)	$+0^{\prime \prime} 19$	$+0^{\prime \prime} 01$	$+0^{\prime \prime 1} 10$
Δn (Newcomb)	+0.32	+0.26	+0.29
X	+0.59	+0.52	
Y from the R.A.	-2.38	-1.54	
Y from the Decl.	-3.01	-2.36	
Mean (weights 2 and 1)	-2.59	-1.81	
Z	+1.92	+2.59	

Let us first consider the value of $\Delta m,+0^{\prime \prime} 10 \pm 0^{\prime \prime} 13$, and of $\Delta n,+0^{\prime \prime} 29 \pm 0^{\prime \prime} 18$. From both it is possible to deduce a correction of the luni-solar precession accepted by Newcomb; I find:

$$
\begin{array}{ll}
\text { from } \Delta m: & \Delta p=\frac{\Delta m}{\cos \varepsilon}=+0^{\prime \prime} 11 \pm 0^{\prime \prime} 14 \\
\text { from } \Delta n: & \Delta p=\frac{\Delta n}{\sin \varepsilon}=+0^{\prime \prime} 72 \pm 0^{\prime \prime} 45
\end{array}
$$

These values clearly show a difference, in the same direction as remanns in the results found by Newcomb, even after correction for the systematic differences of distance. We now find.

$$
\Delta p(\text { Decl. })-\Delta p(\text { R.A. })=+0^{\prime \prime} 61 \pm 0^{\prime \prime} 47
$$

However, it is not very surprising to find such a difference occurring here. It is only 1.3 times as large as its mean error and
may for the greater part be accounted for hy' the influence which the accidental errors must have in the comparison of the zonecatalogues with Kustner's, in consequence of the small difference of epoch. With regard to the possible systematic errors.
a. errors due to magnitude-equations
b. an error in the adopted motion of the equinox
c. systematic errors in the fund. system dependent upon a and d on the other hand, the research here detailed is certainly not behnd other determinations of the constants of precession from faint stars.

As regards a, the errors due to magnitude have been eliminated in a very satisfactory way, undonbtedly better than has been possible in any other simular research, while the effect of the errors b and c does not depend upon the difference of epoch of the catalogues themselves.

The question as to whether to the system N_{1}, also adopted by -Auwhrs, must be applied an appreciable correction of the form

$$
\Delta E=\Delta E_{0}+\Delta E^{\prime} \times T
$$

in which ΔE^{\prime} represents a correction to the centenmal motion of the equinox, is discussed by Newcomb ${ }^{1}$). If a correction of this form is introduced, a corresponding one must be applied to the Δp from the A.R. namely:

$$
\text { Corr. } \Delta p=+1.09 \Delta E^{\prime}
$$

Of the probable value of ΔE^{\prime} Nefcomb makes an estumate. He comes to the conclusion that we may assume $\Delta E^{\prime}=+0^{\prime \prime} 30$. If we do that here also, our results become:

$$
\begin{aligned}
& \Delta p(\mathrm{RA.})=+0^{\prime \prime} 44 \pm 0^{\prime \prime} 14 \\
& \Delta p(\text { Decl. })=+0.72 \pm 0.45
\end{aligned}
$$

which values agree very satisfactorily with one another.
In order that I might form some opmion upon the question in how far systematic errors depending upon α and $\boldsymbol{\delta}$ in the p.m. of the New Fundamental Catalogue of Auwbrs could have exercised an influence upon the results, a comparison was made between the N. F. K. of Auwers and the Fund. Cat. of Newcomb. On the basis of the data occurring in the N. F. K. of the Berliner Jahrbuch ${ }^{2}$) a table was drawn up of the differences in μ_{x} and μ_{o} (N F. K.-Nuwcomb) for four groups of stars, corresponding in declination to the four zonecatalogues. Excluding a few very large differences I found as means:

[^5]Differences in centenn. proper motion N. F. K. -Newcomb 1900

	$\Delta \mu_{\mu}$	$\Delta \mu_{\delta}$
$\delta+10^{\circ}-+15^{\circ}$	$-0^{\mathrm{s}} 0057$	$-0^{\prime \prime} 105$
$\delta+15^{\circ}-+20^{\circ}$	+0.0154	+0.060
$\delta+20^{\circ}-+25^{\circ}$	+0.0003	+0.254
$\delta+30^{\circ}-+35^{\circ}$	+0.0028	+0.210

The values of $\Delta \mu_{>}$and $\Delta \mu_{i}$ were smoothed by formulae of the form :

$$
\begin{aligned}
& \Delta \mu_{\alpha}=a+b \boldsymbol{d} \\
& \Delta \mu_{\dot{a}}=a^{\prime}+b^{\prime} d
\end{aligned}
$$

this is advisable as the zone-positions are based upon fundamental stars some of which lie e_{s} outside the zones. I found:

$$
\begin{array}{ll}
a=+0^{\mathrm{s}} 0010 & b=+0 \mathrm{~s} 0001 \\
a^{\prime}=-0^{\prime \prime} 216 & b^{\prime}=+0^{\prime \prime} 015
\end{array}
$$

and with this the smoothed values

$\Delta \mu_{\sigma}$	$\Delta \mu_{\delta}$
$+0^{5} 002$	$-0^{\prime \prime} 03$
+0.003	+0.05
+0.003	+0.12
+0.004	+0.27

These values are subtracted from the differences for each star. -From the residual values 2 -hour-groups according to R.A. were formed for the four declination-groups together.

In the following table are collected the mean values for the two-hour-groups, where 0^{h} represents the group from R.A. $23^{h 1}$ to 1^{h} etc.

Differbnces N.F.K. - Newcomb dependent upon the A.K.

α	$\triangle \mu_{\mu}$	$\triangle \mu_{i}$	Stars
$0^{\text {h }}$	$+0^{3} .004$	$-0^{\prime \prime} .11$	10
2	- . .032	+ . 12	. 7
4	-. 004	+ . 03	16
6	-. 000	+ . 01	10
8	+ . 011	+ . 11	9
10	+ . 027	+ . 01	11

a	$\Delta \mu_{s}$	$\Delta \mu_{0}$		Stars
12	+ . 009	$+$. 04	8
14	+ . 019	-	. 12	6
16	+ . 013	$+$. 02	10
18	+-.001	$+$. 23	8
20	- . 016	-	. 14	10
22	- . 035	-	. 00	9

These values I have represented by formulae of the form:

$$
\begin{aligned}
& \Delta \mu_{\nu}=x \sin a+y \cos a \\
& \Delta \mu_{0}=w^{\prime} \sin a+y^{\prime} \cos a
\end{aligned}
$$

attributing equal weight to each 2 -honr group. I found:

$$
\begin{array}{ll}
x=+0^{\mathrm{s} .002} & y=-1.5 .021 \\
x^{\prime}=+0^{\prime \prime} .023 & y^{\prime}=-0^{\prime \prime} .012
\end{array}
$$

so that
$\angle \mu_{j}$ (N. F. K.-Newcomb) $=$ smoothed value $+x \sin u+y \cos a$
$\Delta \mu_{0}($ N. F. K. - Newcomb $)=$ smoothed value $+x^{\prime} \sin \mu+y^{\prime} \cos \alpha$.
If, therefore, my results which hold good for the system of the
N. F. K. of the Berlmer Jabrbuch, are to be reduced to the system of Newcomb's catalogue, the above quantities must be added to the differences in a and δ per 100 years, with reversed sign.

Theśe systematic corrections are therefore:
in Δu per 100 years : $\left\{\begin{array}{l}-0^{\prime \prime} .03 \\ -0.04 \\ -0.04 \\ -0.06\end{array}\right\}-0^{\prime \prime} .033 \sin \alpha+0^{\prime \prime} .314 \cos \alpha\left(\begin{array}{l}\text { Lei I } \\ \text { Be A } \\ \text { e B } \\ \text { Leiden }\end{array}\right.$
in $\Delta \delta$ per 100 years : $\left\{\begin{array}{l}+0^{n} .03 \\ -0.05 \\ -0.12 \\ -0.27\end{array}\right)^{\prime \prime}-0^{\prime \prime} .023 \sin a+0^{\prime \prime} .012$ cos $a\left\{\begin{array}{l}\text { Lei l } \\ \text { Be A } \\ \text { Be B } \\ \text { Leiden }\end{array}\right.$
The addition of these corrections changes my values for the unknowns in the following way
corr. $\Delta m \quad$ per century $-0^{\prime \prime} 045$
$\begin{array}{lllll}" & X & & & -0.03 \\ " & Y \text { (R.A.) } & " & " & -0.26 \\ " & Z & " & +0.11 \\ " & Y \text { (Decl.) ", } & " & -0.07 \\ " & \Delta n & " & " & +0.01\end{array}$
The results then become:

$$
\begin{aligned}
& \Delta m+0^{\prime \prime} 055 \\
& \Delta n+0.30
\end{aligned}
$$

	Gr. B	Gr. F
X	$+0^{\prime \prime} 55$	$+0^{\prime \prime} 49$
Y (R.A.)	-2.64	-1.80
Y (Decl.)	-3.08	-2.43
mean (weight 2 and 1)	-2.79	-2.01
Z	$+2.03^{-}$	+2.70

Let us now examine first what is found for the luni-solar precession μ.

I find from $\Delta n \cdot \quad ~ \quad \Delta p=+0^{\prime \prime} .06$
from $\Delta n: \quad \Delta p=+0.75$
or, if we adopt the correction to the motion of the equanox,
from $\Delta m: \quad \Delta p=+0^{\prime \prime} .39$
from $\Delta n: \quad \Delta p=+0.75$
from which, agan combming with weights 2 and 1:
from R.A. and Decl.: $\quad \Delta p=+0^{\prime \prime} .51$.
From the two values for Δp, found if we adopt Auwers's New System, follows in the same way
from R.A. and Decl. $\quad \Delta p=+0^{\prime \prime} .53$.
The agreement of the two results makes it probable that systematic errors dependent upon \boldsymbol{u} and \boldsymbol{d} cannot have a great influence upon our results.

Taking the mean, therefore, I get as final result

$$
\Delta p \text { Newcomb }=+0^{\prime \prime} .52
$$

As Newconis's final result of 1896 remains quite unchanged by taking the systematic differences of distance of the starsinto account (These Proc. 18. 692) my result is $0^{\prime \prime} . b$ greater than his.

From my value for Δp follows
Δm NewComb $=+0^{\prime \prime} .48$
Δn Newcons $=+0.21$

The values for the yearly precessional motions which follow from the research here detailed are therefore:

Yearly precessional motions for 1850 :
$p=$ lunisolar precession $=50^{\prime \prime} 3736$
$p^{\prime}=$ general precession $=50^{\prime \prime 2505}$
$m=$ precession in R. A. $=46^{\prime \prime} 0759$
$n=$ precession in Decl. $=20^{\prime \prime} 0532$
$P=$ Newcomb's constant $=54$ " 9124 .

In the second place we will discuss the results obtained for the parallactic motion, if we successively adopt the two systems.

For the components of the parallactic motion the following values are found:

	In AuWERS's system.		In Newcomb's system :	
	Groups B	Groups F	Groups B	Groups F
	$+0^{\prime \prime} 59$	$+0^{\prime \prime} 52$	$+0^{\prime \prime} 55$	$+0^{\prime \prime} 49$
Y	-2.59	-1.81	-2.79	-2.01
Z	+1.92	+2.59	+203	+2.70

From the values in this table I deduce the following values for the coordinates of the apex, A and D , and for the total solar motion and its projection upon the plane of the equator.

	In Auwers's system:		In Newcomb's system:	
	Groups B	Groups F	Groups B	Groups F
	28205	$286^{\circ} 0$	$281{ }^{\circ} 1$	$283{ }^{\circ} 7$
	$18^{\mathrm{h}} 50 \mathrm{~m}$	19 h 4 m	$18 \mathrm{~h} \mathrm{44m}$	$18{ }^{\text {h }} 55 \mathrm{~m}$
$V \overline{\overline{X^{2}+Y^{2}}}$	$2{ }^{\prime \prime} 65$	1"88	2"84	$2^{\prime \prime} 07$
D	$+35^{\circ} 9$	$+54^{\circ} 0$	$+3505$	+5205
$v \overline{\mathrm{X}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}}$	$3^{\prime \prime} 28$	3'20	$3^{\prime \prime} 49$	3"40

Let us first consider the results obtained for the R.A. and Decl. of the apex. It is not possible here to institute a critical comparison of my results with those of others which would in itself form a research. For the sake of orientation in the problem I will merely quote some results obtained by previous investigators along the same lines.

The results deduced for A and D from the Bradley stars by Nefcomb and corrected for the systematic difference of distance, according to the research published in these Proceedings, by - 1° and $+^{\prime} 2^{\circ}$ respectively were 273° and $+33^{\circ}$; in the same way the results of L. Srruret (corrected by Newcomb)-become 272° and $+37^{\circ}$. From the comparison of the whole material of his Albany-zone with Latande and Bessel, Boss found for stars of a mean magnitude $8{ }^{\mathrm{m}} .7: 264^{\circ}$ and $+54^{\circ}{ }^{1}$), while later on ${ }^{9}$) he accepted as final result
${ }^{\text {1) }}$ A. J. 9, 28
${ }^{2}$) A. J. 21, 168:
from rarious researches for stars $8^{\mathrm{m}} .5$ with small P.M.: 279° and $+45^{\circ}$.

My results, which apply to mean magnitudes (photom. magnitudes of Kustner), of $7^{\mathrm{m}} .25$ for the bright gronp and of 9 m .19 ,for the fainter group, remain almosit the same, whether we take Auwens's system or Newcomb's as basis. Comparing them with the above, it is seen that my values for A belong to the greatest so far obtained, while those for D for my bright group agree very well with those from the Bradler stars and the results for my faint group do not differ much from the corresponding ones of Boss. The large difference between the value for D in my two groups, which is the result of the abnormal relation of the two values found for the Z-component, is a striking result, to which I shall return further on.-
In the second place, my results for the amount of the parallactic motion must be further considered, both those for the projection of this motion upon the plane of the equator and those for the total motion. We observe first that, for both motions, the reduction to Netromb's system gives somewhat larger values than that to Autrers's system. Naturally both for the bright and for the faint group.

For the equatorial motion the ratio of group B to group F is according to the two systems $1: 0.71$ and $1: 0.73$, whlle the ratio between the mean distances of the groups, according to the later researches (Comp. Kaptery and Weersina Publ. Gron. 24, 15), should be 1:0.63. Here the agreement is, therefore, fairly good, but the result is totally different, if we consider the total motion. For this we find for the faint group results which are only 3% smaller than those for the bright group.

However, before endeavouring to draw any conclusion from this, we must consider the significance of my results, in-connection with the methods used concerning the exclusion of stars of large proper motion. As mentioned above I made one set of solutions (method A) in which practically only the double stars were excluded (besides the donble stars for the four catalogues together only 21 stars) and another set (method E) in which a considerable number of stars with a somewhat large P.M. were excluded. Finally the mean results from these methods were accepted as the final result.

This method was certainly justifiable, where a determination of the precessional motion was aimed at, and perhaps is so still, when we only desire to derive the coordinates of the apex of the parallactic motion. If we wish, however, to determine the amount of this motion, it will be seen that the significance of the results beco-
mes uncertain by the method used. It is necessary, therefore, to consider the results according to the methods A and E separately.

For this purpose I calculated, from the values of the 6 coefficients, after correction for the subsidiary terms, the components $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ of the solar motion for the A and E groups of each of the catalogues separately, and combined these results with the previously adopted weights.

In this way I found adopting the system of Auwers's N. F. K.

	BA	BE	FA	FE
X	$+0^{\prime \prime} 74$	$+0^{\prime \prime} 42$	$+0^{\prime \prime} 62$	$+0^{\prime \prime} 34$
Y (R. A.)	-3.02	-1.74	-1.79	-1.29
Y (Decl.)	-3.34	-2.68	-2.55	-2.17
Y (mean; weights 2 and 1)	-3.13	-2.05	-2.04	-1.58
Z	+2.13	+1.70	+289	+2.29

and for the farther constants derived from these

	BA	BE	FA	FE
A	28303	$281{ }^{\circ} 6^{\prime}$	28609	$282^{\circ} 1$
	$18^{\text {n }} 53{ }^{\text {m1 }}$	18 h 46 m	19 hm	$18^{\text {h }} 48 \mathrm{~m}$
$\sqrt{X^{2}+Y^{2}}$	$3^{\prime \prime} 22$	$2^{\prime \prime} 09$	$2^{\prime \prime} 13$	$1^{\prime \prime} 62$
D	+3304	$+39^{\circ} 1$	$+53^{\circ} 6$	$+54^{\circ} 7$
$V \overline{\mathrm{X}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}}$	- $3^{\prime \prime} 86$	- $2^{\prime \prime} 70$	3/59	$2^{\prime \prime} 80$

It may be regarded as a salisfactory result of the last calculation that the coordinates of the apex, gained by the A and E methods, do not differ greally, and also differ only slightly from my previous results. On the other hand, the result that the Z-component is found larger for the faint than for the bright stars, becomes even more striking, now that it proves to hold good for the results deduced separately by the A and E method. Further, as was to be expected from former results, the amount of the parall. motion gained by the two methods differs considerably, which again shows that the parall. motion increases greatly with the total P. M. The
results of the method A are the only ones that bave a sharply defined meaning. They give us the parall. motions for the mean of the stars of magnitudes 7.25 and 9.19 .

We will, therefore, consider these only, and we will deduce, beside the results above obtained for Auwers's system, rhose which are found, if we adopt Newcomb's, which can be done at once by applying to the 3 components the differences deduced above.

I then find, repeating the first mentioned values in order to facilitate the comparison:

	In Auwers's System		In Newcomb's System	
	Group BA	Group FA	Group BA	-Group FA
X	$+0^{\prime \prime} 74$	${ }^{+} 0^{\prime \prime} 62$	+ $0^{\prime \prime} 70$	$+0^{\prime \prime} 58$
Y	-3.13	-- 2.04	-3.33	-2.24
Z	$+2.13$	$+2.89$	+ 2.24	$+3.00$
A	28303	$286{ }^{\circ} 9$	28108	$284{ }^{\circ}$
$\sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}}{ }^{1}$	$3^{\prime \prime} 22$	$2^{\prime \prime} 13$	$3^{\prime \prime} 40$	$2^{\prime \prime} 31$
D	$+3304$	$+53^{\circ} 6$	+ 3304	+5204
$v \overline{X^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}}$	$3^{\prime \prime} 86$	3"59	$4^{\prime \prime} 07$	$3^{\prime \prime} 79$

Here we see again that all the essential features of our results are independent of the choice of the fundamental system.

For the ratio between the equatorial motions for the bright and the faint group we now find $1: 0.66$ or $1: 0.68$, or for a difference of one magnitude 1:0.81 or 1: 0.82 , which agrees very satisfactorily with the ratio of the distances given by Kapteyn and Weersma 1:0.63 or for one magnitude 1.0.79. All agreement, however, disappears again, when we consider the total motion, and thus include the Z-components. In my last results also, the motion in the Z-direction is found to be much greater for the faint stars than for the bright ones and even if we take into consideration that of the centennial motions here derived, barely a fifth part has actually been observed, our result still rèmains very striking. If we consult the results yielded by the four catalogues separately, we find that the Leiden zone gives a normal result, namely faint: bright $=0.67: 1$, while from the 3 others we derive a very abnormal ratio. Other investigations, which gave greater values for D deduced from faint stars, than when bright stars were used, might point to abnormal circumstances in
the same direction. The result here found is, however, more striking', for, as the declinations were determined in exactly the same way for faint and for bright stars, the greater value for Z (the constant term in Δd) which the former give, cannot be ascribed to constant errors of the declinations of the catalognes used. If systematic errors of the catalogues are to be made responsible for our result, it can only be the consequence of residual magnitude-errors in declination.

This point certainly deserves further investigation. Another point that has not been investigated so far is the possible presence in the diffërences Küstner-Zonecatalogues of terms dependent upon multiples of α.

Mathematics. - "Pencils of twisted cubics on a cubic suriface". By Prof. Jan da Vries.
(Communicated in the meeting of March 25, 1916).

1. The straight lines of a bisextupel of a cubic surface $\boldsymbol{\Phi}^{3}$ will be indicated in the usual way by a_{k} and b_{l}; the remaining straight lines by $c_{k l}$. In order to arrive at the wellknown representation of $\boldsymbol{\Phi}^{3}$ on a plane $\boldsymbol{\tau}$, we lay $\boldsymbol{\tau}$ through the straight line c_{12} and consider b_{1}, b_{2} as directrices of a bilinear congruence of rays. Any point P of Φ^{3} is then represented by the intersection P^{\prime}, on τ, of the ray passing through P. The intersections A_{1}, A_{2} of b_{1}, b_{2} represent a_{1}, a_{2}, whereas $a_{3}, a_{4}, a_{5}, a_{6}$ are represented by their intersections $A_{3}, A_{4}, A_{5}, A_{6}$. The representation of the straight line b_{6} is the conic β_{k}, which is determined by the five carclinal points $A_{l}\left(l=1=h_{2}\right)$; the straight line $c_{k l}$ is represented by $A_{k} A_{l}$. From this representation it may be deduced that any twisted cubic ϱ^{3} lying on $\boldsymbol{\Phi}^{3}$ has a sextuple as chords and is not intersected by the associated sextuple.
2. A ϱ^{3} having the sextuple b_{k} as bisecants is represented by a straight line of τ; a plane pencil with vertex $C^{\prime \prime}$ is therefore the image of a system of ρ^{3} all passing through the point C. Such a system we shall call a pencil; C we call the singular noint of the pencil (ρ^{3}). All ϱ^{3} rest on the 15 straight lines $c_{k l}$ and have the straight lines b_{k} as chords ${ }^{1}$).

To (ρ^{3}) belong six degenerated figures. For the straigbt line $C^{\prime} A_{k}$

[^6]
[^0]: - 1) G. P. Gohen Stuart. A study of temperature coefficients and van 't Hoff's rule. Proc. Kon. Akad. van Wet. Amsterdam, 1912.

[^1]: ${ }^{1}$) The comparison with Leiden in R.A. had been made before at the Leiden Observatory; I was able to use the results.

[^2]: M

[^3]: ${ }^{1)}$.These Proceedings. 18, 683-695.

[^4]: 1) These Proc. 18, 684, 693
 $\left.{ }^{2}\right)$ Astron. Nachr. 3842-44.
[^5]: ${ }^{1}$) The Precessional Cionstant, p. 69 a f.
 $\left.{ }^{2}\right)$ Veroffentlichungen des Kòngl. Astron Rechen-Instituts No. 33, p. 100 et seq.

[^6]: ${ }^{1}$) In my paper "A simply infinite system of twisted cubics" (These Proceedings Vol. XVIII p. 1464) I arrived at the consideration of such a pencil in an entirely dififerent way

