Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.M.Jaeger & Kahn, J., Investigations on the Temperature-Coefficients of the Free Molecular Surface-Energy of Liquids between -80° and 1650° C.: XVI. The surface tension of some Halogenides of Sulphur, Phosphorus, Arsenic, Antimony and Bismuthum, in: KNAW, Proceedings, 19 I, 1917, Amsterdam, 1917, pp. 397-404

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

If now it is once more remembered that $\mu = \chi \cdot v^{2/s}$, it must be clear, that the cause of this phenomenon can only be found in the supposition, that v is no longer a comparable thing in these series of homologous salts. A suspicion arises more particularly that it is no longer permissible to take in account for the molecular weight Mduring the calculation of $v = \frac{M}{d}$, the values, following from the mere chemical formula of these salts. The significance of this would become evident, if one could suppose, that the degree of dissociation *a* of every one of these salts is a *different* one at the *same* temperature. Thus an indirect indication would be found here for the decision of the problem not solved completely up to this date; if molten salts must be considered to be electrolytically dissociated only partially or totally; and more particularly this question would be definitively answered in favour of the *partial* dissociation, when a < 1. In how far this conclusion with respect to this fundamental problem may be considered to be justified, we also hope to discuss shortly in a second way, in connection with experimental data of another kind. Groningen, Holland, June 1916.

> Laboratory for Inorganic and Physical Chemistry of the University.

Chemistry. — '"Investigations on the Temperature-Coefficients of the Free Molecular Surface-Energy of Liquids between — 80° and `1650° C. · XVI. The surface-tension of some Halogenides of Sulphur, Phosphorus, Arsenic, Antimony and Bismuthum". By Prof. Dr. F. M. JAFGER and Dr. JUL. KAHN.

(Communicated in the meeting of June 24, 1916).

§ 1. In the following paper the measurements of the surfaceenergy' are described, which were made with the substances: sulphurmonochloride; phosphorustrichloride; phosphorustribromide, -phosphorustriiodide; arsenictrichloride; arsenictribromide; antimonytrichloride; bismuthumtrichloride, and bismuthumtribromide. In the case of antimony-tribromide on heating already inmediately a decomposition was observed, the measurements were therefore no longer continued. The determination of the specific gravity of PI_3 appeared not to be possible with the desired accuracy owing to the too rapidly occurring decomposition of the substance under the influence of the water-vapour of the atmosphere.

1

ł

.

Sulphurmonochloride : S_2Cl_3 .					
ture.	Maximum	Pressure H	Surface-		Molecular
Maximum Pres Maximum Pres	in Dynes	tension ∕ in Erg per cm².	Specific gravity d ₄₀	Surface- energy µ in Erg per cm ²	
0° 25.4 50.1 75 90 5 105.4 121	1.641 1.513 1 379 1.259 1.198 1.139 1 075	2187.9 2017.9 1838.8 1678.4 1598.3 1518.1 1433.2	45.4 41.8 38.0 34.6 32.9 31.2 29.4	$ \begin{array}{r} 1.709\\ 1.670\\ 1.631\\ 1.591\\ 1.568\\ 1.544\\ 1.519\\ \end{array} $	$\begin{array}{c} 836.1 \\ 781.7 \\ 721.9 \\ 668.3 \\ 641.7 \\ 614.8 \\ 585.7 \end{array}$

The dark yellow liquid boils under atmospheric pressure at 138° C. At the boilingpoint χ has a value of about: **29.0** Erg The specific weight at 0° C. is 1.7094; at 138°.1 C.: 1.4920 (THORPE). The temperature-coefficient of \varkappa is originally, up to 50° C. about: **2,24** Erg; afterwards it diminishes to about 1.79 Erg. per degree.

2.

		Phosphorus	trichloride : P	Cl ₃	
atúre C.	Maximum Pressure H		Surface-		Molecular
Temperatúre in ° C.	in mm. mer- cury of 0° C.	in Dynes	tension ∕ in Erg per cm².	Specific gravity $d_{4^{\circ}}$	Surface- energy µ in Erg per cm ² .
$\begin{array}{c} -70^{\circ} \\ -20.5 \\ 0 \\ 20.8 \\ 35 \\ 2 \\ 50.3 \\ 64.8 \\ 75.1 \end{array}$	$1.574 \\ 1.332 \\ 1.237 \\ 1.155 \\ 1.093 \\ 1.031 \\ 0.973 \\ 0.932$	2098.4 1776.6 1650.2 1540.0 1457 6 1375.0 1298.1 1243.0	37.4 31.6 29.3 27.3 25.8 24.3 22.9 21.9	$1.744 \\ 1.653 \\ 1.613 \\ 1.574 \\ 1.547 \\ 1.518 \\ 1.492 \\ 1.475$	687.4 601.9 567.3 537.2 513.6 489 9 467.0 450.1

Molecular weight: 137.42.

.

Radius of the Capillary tube: 0.03636 cm. Depth: 0.1 mm.

.

The chloride boils under a pressure of 749 mm. at 75° C. Even at -75° C. it is again a thin liquid, but solidifies, according to TIMMERMANS, at -90° C. At the boilingpoint / has the value: 21.9 Erg. The specific gravity at 16°.4 C. is: 1,582; at 46.2 C.: 1,527; the critical temperature is: 290° C. (RAMSAY and SHIELDS). The temperature-coefficient of μ is relatively small: about 1,61 Erg per degree, as a mean value.

.

§ 2.

399

			<u> </u>		
		Phosphorus	stribromide : P.	Br ₃ .	
c. C.	Maximum Pressure H		Surface-		Molecular
Temperature ın ° С.	in mm. mer- cury of 0° C.	in Dynes	tension ∕ in Erg per cm².	Specific gravity d ₄₀	Surface- energy " in Erg per cm².
20°- 0 20.8 35.3 64.8 75.7 90 99.8 116 125 140 154 170	$\begin{array}{c} 1.939\\ 1.894\\ 1.831\\ 1.795\\ 1.749\\ 1.650\\ 1.650\\ 1.574\\ 1.526\\ 1.438\\ 1.386\\ 1.295\\ 1.213\\ 1.126\end{array}$	$\begin{array}{c} 2585.2\\ 2525.1\\ 2441.0\\ 2392.8\\ 2332.2\\ 2266.2\\ 2200.2\\ 2098.4\\ 2035.2\\ 1916.9\\ 1848.1\\ 1727.1\\ 1617.1\\ 1501.7 \end{array}$	$\begin{array}{c} 45.8\\ 44.7\\ 43.2\\ 42.3\\ 41.3\\ 40.1\\ 38.9\\ 37.0\\ 36.0\\ 33.8\\ 32.6\\ 30.4\\ 28.4\\ 26.3\\ \end{array}$	$\begin{array}{c} 2.972\\ 2.923\\ 2.871\\ 2.837\\ 2.799\\ 2.762\\ 2.735\\ 2.701\\ 2.676\\ 2.636\\ 2.615\\ 2.577\\ 2.542\\ 2.502\\ \end{array}$	927.0 914.8 894.7 883.0 870.0 852.2 832.1 798.1 781.4 741.0 718.5 676.6 637.9 597.0

3

Molecular weight: 270.6. Molecular weight: 270.6. Under a pressure of 750 mm. the compound boils at 170° 2 C The bromide solidifies at -50° C., and melts again at -40° C. At the boilingpoint / has the value 26.2 Erg. The temperature-coefficient of " increases gradually: between -20° and 50° it is: 0.81 Erg; between 50° and 65° C.: 1.22; between 65° and 76° C.: 1.84; between 76° and 100° · 2.03; between 100° and 170° : 2.63 Erg; etc. The specific gravities were calculated from the data given in literature by interpolation. interpolation.

·	1		1
	Maximum I	Pressure H	Surface-
Temperature in °'C.	in mm. mer- cury of 0° C.	in Dynes	tension / in Erg. per cm ²
75°.3 90 9 105.5 121.4 135.5 150	1.999 1.962 1.931 1.898 1.852 1.817	2665.3 2616.9 2574.4 ⁻ 2530.4 2469'.1 2423.4	56.555.554.653.652.451.4
Molecular wei	0.0	adius of the C 04242 cm. epth 0.1 mm.	Capillary tube:

4.

٠,

.

١

Arsenicumtrichloride : AsCl ₃ .						
e Maximum	Maximum Pressure H	Surface-	1	Molecular		
Temperature in ⁶ C.	in mm. mer- cury of 0 C.	in Dynes	tension ∕ in Erg. per cm ² .	Specific gravity d ₄₀	Surface- energy v in Erg. per cm².	
21° 0 20.8 35.3 50.2 64.8 75.7 90 110	1.842 1.708 1.629 1.601 1.544 1.480 1.445 1.354 1.312	2453.8 2277.2 2167.2 2134.4 2057.3 1976.2 1924.4 1805.6 1749.0	$\begin{array}{c} 43.8\\ 41.4\\ 39.4\\ 38.0\\ 36.6\\ 35.1\\ 34.2\\ 32.8\\ 31.0\\ \end{array}$	$\begin{array}{c} 2.245\\ 2.205\\ 2.165\\ 2\ 136\\ 2.105\\ 2.073\\ 2.051\\ 2.016\\ 1.968\end{array}$	$\begin{array}{c} 818.4 \\ 782.9 \\ 754.3 \\ 734.0 \\ 713.9 \\ 691.7 \\ 678.8 \\ 658.5 \\ 632.4 \end{array}$	

The chloride boils at 130°5 C. under a pressure of 757 mm.; its meltingpoint is -13° C. The specific gravity was calculated from the formula $d_{4^{\circ}} = 2.2050 - 0.001856 t - 0.0000027 t^{2}$, derived from the values given in literature. At 0° C. the density is 2,2050; at 20° C. : 2.1668; at 130°.2 C. : 1.9181. The temperaturecoefficient of t' has a mean value of: **1.40** Erg per degree.

Arsenicumtribromide: AsBr ₃ .					
ature C.	Maximum	Pressure <i>H</i>	Surface-	~	Molecular
Temperature in ° C.	in mm. mer- cury of 0° C.	in Dynes	tension ∠ in Erg per cm².	Specific gravity $d_{4^{\circ}}$	Surface- energy µ in Erg per cm ² ,
49 ^{°.6} 74.5 90 105.5 121 135 149.6 *165 *179 7	$1 822 \\ 1.714 \\ 1.647 \\ 1.587 \\ 1.518 \\ 1.467 \\ 1.417 \\ 1.273 \\ 1.244$	2429.1 2285.1 2188.1 2116 9 2023.8 1956.6 1889.1 1697.6 1658.3	49.6 46.6 44.8 43.0 41.0 39.6 38.2 37.0 36.1	3.328 3.261 3 234 3.184 3.143 3.111 3.076 3.041 3.008	1029.5 980.5 947.8 919 3 884.1 859 8 835 6 815.6 801.6

Molecular weight: **314,72**. Radius of the Capillary tube: 0,04242 cM.; in the observations indicated by *, it was: 0.04583 cm. Depth: 0.1 mm.

Under a pressure of 20 mm. the substance boils at 109° C.; the meltingpoint is 31° C. At 50° C. the specific gravity was; 3.3282; at 75° C.: 3 2623; at 100° C : 3.1995. At t° C.: $d_{42} = 3 3972 - 0 002822$ $(t - 25^{\circ}) + 0.00000248$ $(t - 25^{\circ})^2$.

 $(t-25^{\circ})^2$. The temperature-coefficient of ν is up to 120° C. fairly constant; its mean value is 2,05 Erg per degree. Afterwards it decreases gradually, and becomes about 0,98 Erg at 180° C.

Vi.

- ; **`** _ •

t

	7	
_		

		Antimonytr	ichloride SbC	l ₃ .	
ture	Maximum Pressure H		Surface-		Molecular
Temperature in ° C	in mm. mer- cury of 0 C.	ın Dynes	tension⊅ın Erg per cm².	Specific gravity d_{4^0}	Surface- energy " 1n Erg per cm².
74.5 90.4 105 120.6 137 149.8 *165 *178	$\begin{array}{c} 1.803 \\ 1.739 \\ 1.678 \\ 1.616 \\ 1.556 \\ 1.506 \\ 1.342 \\ 1.299 \end{array}$	2403.7 2319 6 2242 5 2148 0 2074.4 2008.4 1789.2 1732.5	$\begin{array}{r} 49.6\\ 47.8\\ 46.0\\ 44.3\\ 42.6\\ 41.2\\ 39.6\\ 38.3 \end{array}$	2.672 2.639 2.606 2.571 2.534 2.505 2.471 2.441	957.4 930.3 902.8 877.3 851.8 830.2 805.2 785.2
Molecu	lar weight · 22		of the Capillary		

Depth: 0.1 mm.

The beautifully crystallised compound melts at 73°.2 C.; under a pressure of 20 mm. it boils at 111° C. The specific gravity can be calculated (Kopp) from the equation: $d_{4^\circ} =$

 $= 2.6712 - 0.002166 (t - 75^{\circ}) - 0.00000072 (t - 75^{\circ})^{2}$. The temperature-coefficient of t is fairly constant and about **1,66** Erg per degree.

8.

		Bismuth	chloride : BiCl ₃		
ature C.	Maximum Pressure H		Surface-		Molecular Surface- energy « in Erg per cm ²
Tempera In ° (in mm. mer-	ın Dynes	tension / in Erg pei cm ² . Specific gravity $d_{4^{\circ}}$		
271 304 331 353 382	2.271 2 119 1.994 1 896 1.782	3028. 2825 2658 2528 2376	66.2 61.8 58.1 55.3 52.0	3.811 3.735 3 682 3.621 3.554	1254.4 1187.0 1126.6 1084.3 1032.4

Molecular weight: 314.38. Radius of the Capillary tube 0.04363 cm. At 18° C. Depth 0.1 mm.

The salt, which melts at 230° C., was purified by distillation in a stream of dry hydrochloric acid. Above 400° C. no reliable measurements were possible, because of the attacking of the platinum capillary tube by the vapours. The measurements can only be considered as approximative ones, because of the partial decomposition of the $BiCl_3$ by the air, which cannot be avoided under these circumstances. The specific weight at 254° C. was: 3.851; at 281° C. \cdot 3789; at 304° C. 3735. At t° C it is $d_{40} = 3860 - 0.0000$ 0.00232 (t-250°). The temperature-coefficient of ν is between 271° and 831° C about 2.14 Erg; between 331° and 353° C.: about 1.92 Erg; and between 353° and 382° C. 1.78 Erg. per degree Celsius.

26

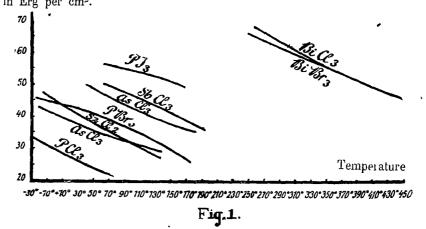
Proceedings Royal Acad. Amsterdam. Vol. XIX.

		Bismut	hbromide: <i>BiB</i>	r ₃ .	
e 1	Maximum	Pressure H	Surface-		Molecular
Temperature in ° C.	$ \begin{array}{c c} U & & Surface-\\ \hline & & & \\ SI & \\ SI & & \\ SI & \\$	Specific gravity d ₄₀	Surface- energy // in Erg per cm		
250° 281 299 320 346 370 389 417 442	$\begin{array}{c} 2.272\\ 2.172\\ 2.103\\ 2.032\\ 1.936\\ 1.836\\ 1.774\\ 1.668\\ 1.575\end{array}$. 3029 2893 2804 2709 2581 2448 2366 2224 2100	$\begin{array}{c} 66 5 \\ 63.6 \\ 61.6 \\ 59.5 \\ 56.7 \\ 53.8 \\ 52.0 \\ 48.9 \\ 46.2 \end{array}$	$\begin{array}{c} 4.598 \\ 4.525 \\ 4.471 \\ 4.416 \\ 4.348 \\ 4.286 \\ 4.237 \\ 4.164 \\ 4.099 \end{array}$	1407.6 1360.6 1328.5 1293.8 1245.7 1191.3 1162.3 1105.8 1055.8
Molecu	lar weight: 44	7,76.	Radius of the at 150 C.	• •	: 0.04381 cm.
Th-	aalt waa arees	und from the	Depth: 0.1 mr		and a
by dis darker	tillation; it m at higher tem	elts at about peratures At 2	purest bismuth 250° C. into 71°.5 C. the den generally : d_{40} =	a yellow liqui isity was : 4.572	d, becoming ; at 301° C.
The 250° ar	temperature-co d 389°, to abo	efficient of <i>y</i>	increases slow degree at high	ly from 1,76 E	Erg between

 \S 3. If now we review the results obtained, on comparison we can derive from them the following conclusions (vid. fig. 1).

1

·


1

Name of the Substance:	Temperature-coefficient of ν :
Sulphurmonochloride	2.24 to 1.79
Phosphorustrichloride	1.61
Phosphorustribromide	0.81 to 2.63
Arsenictrichloride	1.40
Arsenictribromide	2.05 to 0.98
Antimonytrichloride	1.66
Bismuthumtrichloride	2.14 to 1.78
Bismuthumtribromide	1.76 to 2.0

į

۷

Although the values of $\frac{\partial \mu}{\partial t}$ are not great, and generally *smaller* than the normal value of **2.24** Erg per degree', they are however in all cases appreciably greater than such as occurred in the case of the inorganic molten salts; these values here point in every respect to close analogy with the behaviour of organic liquids. Specific Surface-Energy \gtrsim in Erg per cm².

Doubtless the influence of the much lower boiling- and meltingtemperatures, which are typical for these substances in comparison with the salts mentioned, makes itself felt here.

As for the mutual situation of the χ -t-curves (fig. 1), this appears to be quite regular, just as in the case of the alcali-halogenides, but just in the reverse direction, because at the same temperature, x appears to increase with the atomic weight of the element combined with the halogen. A comparison of the χ t-curves of PCl_s , $AsCl_s$, $SbCl_{3}$ and $BiCl_{3}$ on one side, and of PBr_{3} , $AsBr_{3}$ and $BiBr_{3}$ on the other side, shows this immediately. It is remarkable however, that the same is the case here for the halogens: if the χ -t-curves of PCl_s , PBr_s and PI_s are compared with each other, and also those of $AsCl_{3}$ and $AsBr_{3}$, and of $BiCl_{3}$ and $BiBr_{3}$, — it appears, that at the same temperatures the values of χ are the greater, as the atomic weight of the halogen, increases; i.e. just in the reverse direction as formerly was found in the case of the halogenides of the alcali-metals¹). It is very probable that the cause of this striking deviation must be attributed to the much less pronounced contrast in electrochemical character, which the metalloids P, As and Sbshow in comparison with the halogens, in comparison with that of the strongly electropositive *alcali-metals* against those same halogens,

¹) F. M. JAEGER. These Proceedings 17, 568, 570. (1914).

and the degree of dissociation a (no doubt influenced by it) of the molten alcali-halogenides on one side, and the P, As and Sb-halogenides on the other side.

In the case of the *Bi*-salts, which approach already much more closely to the real metallic salts, the influence of the combined halogen manifests itself immediately in another way: the χ -t-curve for $BiBr_s$, although for a greater part coinciding with that of $BiCl_s$, is situated just *beneath* the latter. Previously we found in the case of organic liquids, being also compounds, which do not show an electrolytical dissociation, that the presence of electronegative atomgroups or elements tends generally to increase the values of χ . The specific influence of the substitution of three chlorine-atoms by three bromine-atoms, or of *As* by *Sb*, etc. in the case of these also only slightly associated liquids, perhaps could be thought comparable with the mentioned peculiarity.

For the μ -t-curves the same regularities as for χ -t-curves, are present in this case; contrary to what was found in the series of the alcalisalts also here the μ -t-curves are situated regularly above or beneath each other, all in connection with the atomic weight of the combined elements. The curve for $BiCl_s$ is here certainly situated completely beneath that for $BiBr_s$, while those for $AsBr_s$ and $SbCl_s$ are almost coinciding. (fig.) 2).

Thus contrary to these of the alcali-halogenides, the µ-t-curves Specific Surface Energy

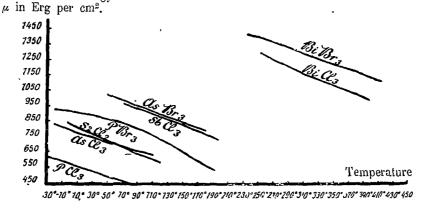


Fig.2.

are here situated in the *same* arrangement as the χ -*t*-curves; an irregularity like that found in the first case, is not observed here, which evidently is connected with the fact, that no appreciable electrolytic dissociation plays a rôle here.

Laboratory for Inorganic and Physical Chemistry of the University. * Groningen, Holland, June 1916.