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from Cabinda and was lighted at night by an aoet_ylene lamp with
reflector. ) .
For the coordinales of the signal with respect to the observa,,
tion-pier I fownd by the measurement of azimuth and distance
Ly =— "1+ L) =— 0".24
thus Signal Matuba ¢p=—35°176"2. 1=—12°10'7"4
On Sept. 25, 1913 at Cabinda J made a time-determination by
means of '3 Ceti in the east and « Ophiuchi in the wesl. The

telescope was twice pointed on each star in each position of the )

instrument, at/mean zenith distances of 59° and 57° respectively.
As correction of the Homwd chronometer I found:

by f Ceti-  — 0'54m35¢19 -

¢« Ophiuchi 35.46 -
Mean - 0h54m35s33 -

On Sept 27 I then determined the azimuth of the ménal by means
of the greatest digression of » Ophinchi (the observation of that of
" @ Ceti failed) and found, counting from the north through the east etc.

Azimuth Signal Matuba A = 353°55'26".1

From this and from ¢' — ¢ = — 16'16" 1 [ calenlated from ALBRRCHT
and from ScHoLs in complete agreement:
M —2=—1"43"65

from which )

Longitude Cabinda Obs. P. = —12°11'51"1 — — 0"48"47-.4".
An error of 30" in the azimuth causes in the longitude one of

0"14 only. )

Physics. — “Note on the model of the hydrogen-molecule of
Bour and Dmeue’. By J. M. Burerrs. (Communicated by
Prof. H. A. l.orenTZ).

R

(Communicated in the meeting of June 24, 1916.)

Miss H. J. van Leecwen has recently published a paper containing
some notes on DuBuws calculation of the dispersion formula of
hydrogen, which calculationis founded on the well-known model of the
H,-molecule'). In that paper it is demonstrated that some of the
vibrations which occur in Dubuwr’s calculations are unstable, and
methods are discussed by which lhe stability of the model may be
ensured.

1) These Proc (1916) Vol. XVIIL, p. 1071.
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One of these méthods, viz. that of introducing as kinemadfical relation
the condition that the moment of momentum of each electron must
' Y . )
preserve the same valne (2—>, is only touched upon in that paper?)

J

and .not fully worked out: [t seems to me, however, that this may
be done in the following way.

The equations expressing these conditions can be written as follows :

. ) 3
mry dl’,]:é; (]tg P

2 A (1)
mr,® dip, ~5m dt

(m: mass of the electron;
r: radius of the orbit ; ;
y: angle of position).

By their form they recall the equations between infinitesimal
changes of the coordinates in a non-holonomic system; only
dt also appears here. Now we may try to form the equations of
motion in a way analogous to the treatment of non-holonomic
systems by introducing into -the formula of D’ALEMBERT'S principle
auxiliary forces (. which do not come into play in any virtual
displacement. A virtual displacement will be defined as an arbitrary
variation of the coordinates, subjected to the relations:

me P dp, =0 | )

mrdp 0 | (2)
or:

dy, = dyp, =0, .
which are derived from (1) by taking ¢ = 0. It appears that in a
virtual displacement the position angles of the electrons must 7ot be
varied; from this it follows easily that only tangential auxiliary
forces @, and Q, may be introduced (i.e. forces which act upon the
coordinates ¥, and ,), which have the task of ensuring the constancy
of the moment of momentum.

{ !

Deduction of the equations of motion.
4. Iree vibrations. \

Notation. Distance of the nuclei: 2a (this is regarded as a
constant). o

Radius of the orbit of the electrons in the normal state: £Z. (For
H,: R=aV'3; He, to which the calculation likewise applies, has |

1} L e p. 1081.
31
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one nucleus at the centre with a double charge, hence for 1ta =0)
Normal angular velocity: w
Distance of electron from centle of orbit: 7= R 4 o, (measured
parallel to the plane of the orbit).
Deviation of an electron normally to the plane of the 01b1t 2.
Angle of position: ¥,= wt -} &,. ~
Furthermore we put.

W=VR +a
a=9, + Q, Yy==z -+ 2, p = F,——m. -
5—"91 — %, e

The quantities o,, 9,, 2, 2,, @, 8, 7, d,  are considered as infinite-

-

simal, likewise g,, ete.

Between a, R, o the relation exists-
2¢°R & “
. W' 4R - @)
which expresses the condition of equilibrium m the stahonary state.

The kinetic energy is found to be:

T=m (447 + dm (0 +e,7) + mB* (9,°+9,7) +

+ mlfEo (3 43,) + 2mBRw (9,9, +0,9,) + imw® (0,°+0,%) +
+ mRw® (9,+0,) + mR'w*.

Potential Energy -

48 o | 20ReHe,)  dete) | dlete)

V= — -+
W 2R ws 4R? 8R®

mRw? =

e’(z1—22)2 ¢ 93 2 2 2 R%9,8 2 1
- 16.R? - WE[( - )(91 "‘92 )—'( —a )(21 -]—z, )]‘i‘
e2¢2
TI6R

(In both expressions terms of the 3ld and higher orders in the
quantities ¢, etc. have been neglected).
D’AremBERT's principle gives the equations -
07 or oV
‘ ‘E(a%})_@_}—a_.‘lﬂ— G =0 .
(the Q. are the auxiliary forces mentioned above).
Hence we get:

4R, —2d’0, 0,10
0,—2Rwd, — %9, _El: o - 14R3 2. 4)
. ¢ [[4R%,—2a%9, 0,+0
92—2Rw192-—_w 92 :7;[ W5 - 141232 M (5)
Q
Ry 2 .
L T 200, = Sm R‘ mR ©
L
-{f Al N
! )
/ 2 i "
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v

M ez(p Qz
.R’l()' 2 g T2 —— e 7
%, + 209, s T (7
e —2R2 —}—4a z, z,—z,
- 8
mt T ] ®)
29 — "
f—l: Rz —|—4az 7 f,] o 9
n SR .
(in deducing these, eq. (3) has aheady been used)
In addition to this, eqq. (1) give the relations . .
B+, (0-49) =m0 (z—”—
25
h
MR+ (04 0)=mBrw (-: ;—)

After development, and with omission of terms of the 27 and
higher orders:

By +20=0 . . . . ... (10
R{h—r—.aow—o N G 2 8

From eqq. (6), ( /) (10) and (11) we get immedately -
ey
Q=—Q=— i
Farther (4) and (5) can be simplified by means of (L0) and (11) into .

8‘3
—|-3w"’91:~—|... 1 -« . . . . (4o

0,

0, + 3w?o, = [ 1 - - . . . . (5)

m .,

Finally, by additon and subtraction of the foregomg equations :
* [ 4R*—2a® 1
c¢+3w’a::a.e~.[——————*f—————] - e s (1)

m | - W 2R3
, ¢t 4R*—2a°
B—I—?»wl;&:[)’.ﬁ. s (13)
¢ —2R*1 44
Y= e T (14)

§

? [—9R? 3
‘ d:d.g—.\:———%;aiﬁ—}—z%jl. .. (15)
Resull for Hydrogen - ‘
¢+ 19288 wa=0 . . . . . . . (I
[+ 14522 0° =0 . . . . . . . (an
v £08096wPy =0 . . . . . . (LI
¢+ 00718 d=0 . . . . . . . @p
31*
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If « and 3, and thus o, and ¢, are solved from (I) and (1I),
eqq. (10) and (11) give 9, and 9,.

It appears from equ’mons (I)——(IV) that we gel 4 stable nodes
of vibration; the unstable vibration D, and the indifferent one C,,
which Miss v. Leerwen gave (I c. p. 1074) have disappeared.

Besides some of the frequencies have changed a little.

Helium : '

’ et wa=0. . . .. ... (DO
B+2wB=0. . . . . . . . (D
y+iePy=0. . . . . . . .(IL)
d+ 0*'d=0. D e e . (I

(N.B. In the He-atom the plane of the 01b1t of the electrons can -

turn freely about the nuecleus; hence the d-motion is here not a true
vibration).

Note.

As the coordinates w, and , do not appear themselves in 7', we
might, in deducing the equations of motion, treat them as cyclic
coordinates, eliminating ¥, (= w -+ 9,) by means of

. A
b= 2amr,?
and forming the kinelic potential according to Rovrs and HermuOLTZ.

This method of eliminating the WP, is used by L. F6PpPL in an invest-
igation on the stability ot BomrR’s model *). If we applied it hele,
the term

cg S, —p—ay

16R 16R
would remain in V, so that we should be obliged fo omit it
altogether, whereas in the calculation given above its influence is

annihilated by the forces @Q, and @,.

B. Forced vibrations. — Dispersion formula.

The course of the following calculation is for the greater part the
same as that followed by Drsur *).

We will make use of two systems of coordinates: One system
is invariably attached to the molecule, the axis of z is laid along
the line which joins the nuecler; the axis of x along the line which
joins the electrons; the axis of y perpendicularly to the laiter in

) Phys. Z. S. 15 (1914) S. 707.
_?) Sitz. Ber. Bayr. Akad. 1915, S. 1.



the plane of the orbit. The other one (the a'y/z-system) is fixed in
space, -and coincides with the former for ¢ =20.
Let the incident electric vibration be F. e, its components along

U

x'y'2-axes

P.ost | Qezst , Res t, | .
where :
FP=TFcsa, Q=FEcsf , R= FEcosvy
Putting
P4 iQ=p,
P— Q =
we find for the ccmponenis along the rotating axes:
X — épez (s— o) L4 \2931 (so) 2 '
Y= _-;-pez(s—wu + —zl-qel(s'l"")i ‘ N o)
Z = Rest

The equations for the forced vibrations can be deduced from (4) —(9)
by adding to the members on the right hand side:
Xe Xe Ve
‘ _;;’JFZ’—@’“&
As only the g-vibration with the ¢p-vibration (which is coupled to
the former by the equations (10) and {11, to which we adhere in
this calculation too), and the y-motion give an electric moment, we

obtain, denoting the frequencies of the free 8- and y-motion by 7, and 7,:

2Xe¢

B4 0 f=— (17
m
27¢

Y4ty =—— B 0 )]
m

Rrp — 20R=20. (19)

q. (19) is deduced by subtracting eq. (10) hom eq (11) The
aumhmy forces Q,, and @, have now differen! values, as they have
also to annilulate ihe Y-component of the incident electric vibration.

The components of the eleciric moment are found to be:

p3 pet (s—u)t L (-}t
M, = — f = Z l: i + 2 ]
n

min®—is—w) 20— fw)
P © ol (s—on) q ot (s+ot ]
T s—w .o
11[ = Rep = 24— - - sﬂ+w 3 (20
m|n?*—(s—w)  n°—(s4w)
2 Rei.\& v
. My = —ey =2~ —srs
mn,* —s*

Trom these quanlities we musi derive the components along the
fixed system of axes:

PN



o ]l[ = My, cos wt — ﬂ[,/ st = S . o

N

L st a |: (cu—s)—{—(w -‘—s)z sin wt gt | (o498 —(o ~8Yisin wt el"":l
=t —| p.
‘m

(w—s)[n, —(w——-s)] '

(@+3) [n,"— (w+8)*]

Part of the function between the [] is /independent of ¢ part of . ‘
it" depends penodlcall) on. ¢ with fxequency . As o has nothing .=~
to ‘do with s (usually @ is much greater than s) we can take the-, .-

mean . of thlS part with 1espect to the t1me1)

reduces to:

M) = gist

~In the same

j}[ —-ezst V
Flnally
j[L — e1st

R

3a)—s

2

3¢o+s ‘r" |
o 1

way we find :

m

9

-

s Bw—s |
—. ¢
g 7P

| (w~-8)[n," f(w;s) ] + (c\d—}—s)[nll‘l_;(w_l_s)ﬂ]v ol

36;145 T, -

2

_((1.)--5) [11 —_ ((u - e) 1

(w+8) [n,*— Lw+9)’]

the formula then -

mn, I_s?

Resultmg moment in the divection of E: SR -
C M=M,. oosa—[—M cosﬂ—{—ﬂ[ cosy_-x. {" . '

S (cos~a—[—oos B). | §2‘——%—6:(cé)s‘"'az—}A—cos%’)'" o 2
i ‘ + 2cosy
@ —@toy] | ny—o

L et

T e gist
m (a)—s) [n1 O

The ‘mean - of this quanhty for all posmble directions of the &'y J z_
, 'system is: . . C A o

g B[S s L
,.ZM——JB‘, \jw—s) Ln -—(w-—s)ﬂ] (w+s)[n _(w+s ::] ](22)
) aS:

. - , .

(,‘OvS2 o= (,'032 ﬂ : cos? /}r: —é) )
I‘01 the mdex of refxachon we have -the founula, ‘
N, M p

n? ——1 ___.491 TR :

C(V,: nutiber' of molecules pel cc)
Hence:

N -3_\.?- Seds L
12—1___47r [ bl wts -+ ]( 3)' I

@@=y —(w—s)”l+<w+8) (@ to]

1) Desug (. ¢ 8. 15) e\plesses this in '1 somewhat dlffeleni foy “in, hls
fmmulac the axes of z and o' mal\e the angle = I'01 ¢t =0, hence he has evexywhele

3m

wl-u instead of wf. Then the mean is taken Tor all values of the phase-angle"

u, Wthh gives the same 1esu1t

SR
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As s is small as compmed to w, we may develop wccmdmg {0
|

‘powels of — thlS gwes when s*, .-, . i§’ neglected:
w .

i uaNe[ 6 g e A '
n —1= - — 2
gm | n°— w? j_-nf e wi(n,*—o?) (n ‘-’——w’)J +’
. P CEN . ] -J
24 w* +
(n @*)? -
Hydem
- From ec;q II and () we get: . ‘
Comt= = 14522 0®; 'ng:o.soés w*,
hence:-._- SR o
1 — 27N’ (19 78 + 250, 4-) :
' < 3m w?

JIf we infroduce thie values : L
' CBIBX10%. g S
N =1 __ . __— 1017 ;. —4.78 10--10, -
E a0 0 T OIXA0T e =48 X ,
. - i 7L—6415><10—°f:

'fmmula (3)-in connecnon with:

R;'_’L." - S
. N MLV W om -
‘gives o '
o w:4856><10”
further: '
o 2 ‘
7N, —1.461 ><10°s
3m. .

Thus the dispersion fmmula .becomes ‘
n—1=1, 22 X 10— + 7.35 % 10—3' £ (29)
DeBir’s founula H S

: 2N X
Ca—1= (19 26 + 75 3——
-

gwes wuh the same’ valtes: :
n——-l:1193><10 -4 +198><10“3 .85

N

The e\peumental formulae - are . (ct DEBIJL Le. pag 20, 22) tlmt‘v '

of J. KocH:
- 71-—1——1361><10-—4 +2908 X 10-97s.2
’cmd that of C. and M.  CuTHBERTSON :
n—1==1.862 X 104 1 2,780 X 10-97 .52,

. In tov,mula (25) the coefficient of s* appears to be much too Zm 'ge. _‘
 Partly this is due to the frequency n, of the (5’—\71bxat10n, which is
- smaller -than the - value of the couespondmg hequency in DEBuw’s ‘

'1)lcp20
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calenlation, this makes one of the resonance frequencies lie much
nearer to the visible spectrum.
We have found:

n, = ] 205 -
while in the original model:
n, = 1.412 &
(cf. the paper by Miss H. J. v. Lerowen. p. 1074).
Resonance occurs if the incident wave motion has one of the values:

s, =mn, +w==22000 -
s,=n, — 0 =0.200w
8§, == n, =0.556 -

2, 1is "the smallest; to it corresponds a wave-length of about 1890

2
N

A units).

Helium.

For Helium: n,* =2 0*=0.7143 «*, and son,’ -— w* <{ 0. Hence
in formula (25) the principal terms Lecome negative, and for values
of s not too high

n < 1.

This is in contradiction with the experimental valnes. (Cf. C. and
M. CuraserrsoN, Proc. Roy. Soe. (A) LXXXIV, p. 13).

SUMMARY.

1. In continuation of the investigation by Miss H. J. van Leruwen
on the instability of Borr and DxBliE’s wmodel of the hydrogen
molecule, a new hypothesis is examined by which the system may
be made stable.

2. The model made stable in this way gives neither for H,,
nor for He a dispersion formula which agrees with the formula
experimentally found.

Note added in the English translation

Since this was wriiten a paper has appeared by C. Davisson
on the Dispersion of Hydrogen and Helium (Phys. Rev (22) VIII,
p- 20, . July 1916).

Mr. DAVISSON uses (he same method to ensure the stability ot the
model, but he arrives at a somewhat different formula (it seems to
me that he overlooks the influence of the conditions (10) and (I1)
and of the auxiliary forces @, and (J, necessitated by them on the
-vibration). As Mr. DavissoN points ont himsell, his formula too
gives for bolh gases vesults wiich are in conflict with the experi-
mental ones.
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