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Mathematics. — “On the values which the function §(s) assumes
Jor s positive and odd.” By J. G. vay pEr Corpur. (Commu-
nicated by Prof. J. C. Kruyveg).

(Communicated in the nieeting of February, 26, 1916)

This article is intended to deduce some formulae that may be used
to calculate §(s) for odd values of the argumentum s> 1; for this
purpose we will express these § functions in the quantities /, (m, n),
I, (m,n) and I (n, «), which have the following significance:
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for 1> e >0, and ninteger 2 0 and also for « =1 and n integer >0.

In order to connect the § function with the quantities I, (m, n),
1, (m,n) and I (n, af we will use the method indicated by Professor
Dr. J. C. Kvuyver in the article: “Sur les valenrs que prend la
fonction §(s) de Riemany pour s entier positif et impair”. (Bulletin
des Sciences Mathématiques, 1896).

If f(y) represents a polynomium in y, which becomes zero for
y =0 aud for y =1, the uniform function

(55

et — 1

is holomorphous in ihe domain of the rectangle bounded by the
lines =0, y=0, =4, y=2x. By applying the theorem of
CavcHy and then putting 8= o, weé therefore find the rvelation
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jf(z;-)—f(%w)‘ el

e dz = — i | f(y)dy + x| f(y)cotgmydy . (1)~
0 0 .
By writing in this formula f(y) = y» (1—y)", we conclude

" z m z n 1 + z " z m
. 1 — L e J\n-1 [ 1 e
(Zmi) ( 2ni> (=D (27:1) ( + Z:n')
f et — 1

0

dz =

! maninl

:-—m—{— 1, (m,n)
for m and n 1nleger and positive and by giving defimte values
to m and =, in this relation we find for §(3)
=" 10,3 -
I g Mt

If, however, f(y) represents a polynomium in y, which disappears
for y =1, but not for y =0, formula (1) will hold good if f{y) is
replaced by f(y)—@1—y) f(0); this produces

j:’f(éi—i)—f (—;;ﬁ 1)—f(0)
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1 1 ’ 1
- — (0 . 1
o + f 1) yf( —)dy——f‘(oy(l-—y)(ﬂ cotg gy —?)dy + f.f(O) dy
3 G . 1 0 1 0 1]
= —_nfj f(y)‘dy+%nif(0):f f(y)(;—motyﬂy)lﬁ f(y)y_f( )d.v/+f(0)lor/ 2.
0 0 ‘ 0

The particular case f(y) = (1 — y)" produces the formula

1 21 \* 1 st \?
f_l_(i;t)_( +ﬂ) & — at ni+1( 1)+;1 oo 2
pr b=y D)+ E oy 2
0

ie, for n = 3:

2 (11 -
L) = 3 F—log2:r—$—l(8,])
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If we reduce the height of the rectangle to halfits original height
and so take it equal to , we find in the same way as in which
(1) has been deduced, supposing 7 (y) is a polynomium in y dis-
appearing for y =0,

f_(i)d,Jrff;_)z —~ff()y+ f/(y)cotq——dy
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U 0

\

The substitution f (y) =y (1—y)* produces the relations

. _ﬁ m 1 + 2‘:—2 n+ (’ﬁ n 1 _i m_ ﬁ n i ﬁ m
I 4 F 7 .4 . 4 2m 27 p
f @z—l ) ~

0

simin!
, —_— 4 [, (m, n)
2(mq n4 1)/

for m and » integer and positive and
20\ s \m 27 \®
o))
f de = —— —1log 2 + I, (m, 0)

ei—1 T 2(m 1)
f01 m integer and positive and consequently in particular
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2
§@) =

< 1 (1,2) = a2 I, (2, 1)_2 il —1,(2,0)).

If f (O ) =/= 0, we replace in (2) f (y) by the polynomium
S (y—f (0) which leads to i

jf(-:;;)—f f(;f;.qt 1)~f(5%.3r-1) — /(0) )
0

2 ==
et—1

!

f 7@y + T (71) — (o) tog 2 +

+.f(01f(§—§coty—é‘z)dy+; J@——@d fj( )(——-—cotf/—)dy'

1

F@)dy + b aif(0) — (1) loy 2 + 7 (0) log m +

1
f(y) f(O) N .. A
*f Off(./)(y- 5 tgz)dJ

and, in consequence for f(y) = (1—y)* in which n represents an
integer positive number,

G,
f dz— — I(n,y %)

T
2,
0

\ /

de= l 2,
e 2w +])+ + 09w —
0 !H;Q’
This formula contains the relation
. 2n?
£B)= F—lgx+1(2,4))

7

pcﬁ ticularly. If we now choose the height of the 1ectangle 2an in
which 1> « >0, the method already followed twice before, ‘produces
the relation

f 2ma) ]‘7.(2:1 et ) ; -
0

F—1 eme de = — mix f(y)dy+aw j(y)ootqazaydy,

0 0

it f(y) represents a polynomlum in y and f(0)=0; if however
/(0) does not disappear, we arrive, by replacing f(y)in this relation
by f(y)— f(0), at the formula

\
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= —,7"(021v - + f(O?f (— — e cotg ::ay) dy-mie | (f{y)-F(0) dy 4- _
ye o -l 7 0

1 L,
_|_6ff(_'7/)_':7_f£0_) dy __aff(y) (é— — 7o coty :ray)dy

1
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1
- N—H0
= f(0) log 2 + § i f(0) — miee | F(y)dy - f ﬂ"—)yﬁ—) dy —
' 0 0

1
1
._ff(y) (— — T oty :ray) dy.
¥
0

[} \
1 oan—lds . @ cos Wrw w sin Quna
= -
e 1)

As for n integer and positive

— 1

eetemr | =1 el =1 nh
0
N ’
cos 2xmwa ® sin 2xnea
many ‘velations containing the series 2 — an - are
1 o 1 #

to be deduced from this formula. But we will vestrict ourselves
to the G&-function and therefore wrile f(y) = (1—y)?**, in which =
represents an integer positive number; if the real part of acomplex
number y is indicated by R(y) it ensues from what preceded that

~ 27 \2n
@ — ] =1
( ) d ( 1)n+1f 271R ] \d
f e—1 * G atemo_1 )7
0 0

2
2N \

=lglt¢ —2——I@Cne) . . . . . . (8)
1% .

In order to find relations for the S-function by means of this
formula, the following auxiliary proposition may be used:

-If @ represents an integer number >> 2 and ¢ describes half the
reduced rest system, modulo a, between O and «, and that in such
a way that the series of the numbers, of which the values are
“successively assumed by ¢, does not contain two numbers, the sum
of which is equal to @, then:
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¢ ad _
1 Ml 3
3

I :'+2i(:‘£3 ’ dla ¢=—1
e —1

The proof of this auxiliary proposition is simple; for if. in the
second member of the relation

a
u(—)d 4
s N/ s (“) s 1/ -

dla edz—1 dla d d=1 5+%
¢ d 1!
d _dd, d -
a =dd, and d,d, = d, and consequently Firrr == 15 written,
a

so that d, is a divisor of the greatest commen divisor (a, d,) of @

and d,, the relation takes this shape,

a
)
d a1
e X r e
da e®—1 g=1 20 aj,d ¢l
) e ¢ —1 e " —1

in which 2 describes the reduced rest system, modulo «, between
0 and @, and so

I 271 2my(2—g) 2m
dla € 1 PR L . ? e
t— +— P

e —1 e
with which the auxiliary proposition has been proved.
From this proposition follows for # >0

a

—1

a
u<_)d |
d - 1 1 1
Lz =i + =3SR[—vu—\s
] ;+
—1 e

(2n)/52n+1) = u(d)dzn

@
,2n]
2f R de=y Su( & df" i dla
.(]1[a dl ! edlz'_l 2 . a2”
0

1

Replace in (3) « by ¢ multiply then both members by 0% and add
a

further all relaiions, which are acquired in this way by making
o assume the values mentioned before; the result is then

azt\2
( ) —02n +12 ,
: —1)» .
Ef 4o EDHEn)

< 2n-1 2
e~-—1 2. gam CertDZu@an . (4
2n 1
= 0% log— 2me E——-—I(zm, )2 .
P a 1 %
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and consequently for n =1 ‘

@ — = ,L(d)d’);(s)—wz ‘<§—z 270 ( 9))

dla

By supposing @ to be nespectlvely equal to 3 1+ and 6, we find
patticularly : - !

e =203 (2 I\ 288 1‘22
O=ma s t\*3) )71 ‘”3 HPs
4n? (3 1 36 .2 37 3
—_— = — ) — —1 -+ —
47( log 3 +]( 4)) 47 (z vy ‘1(2’4))
(3, o L))o 8 sn (8
19(‘“0‘7 TH>% *ﬁ(a V5 \%%))

It 15 evidenl that the relalions found also produce many formulae
for the calculation of &(5), §(7),... ete.; this we will work out
further for the case that the lerms of the series acquired, dimi-
nish quickest ; this happens by writing in (4) « =6 and uw =1, by
means of which the relation

637' 2n
f"’R (”E) ey

1 2.(27)%

(62— 320224 1) § (2n+1)

2n

——zoﬂg—z ——T(@n3)

is found, i.e

6211+3211+2271_1 n—1 ( >9/ §(27—|—1)

O e

2.(2z)?n (2n— 2::)/
(__1)11—{—1 2n 1
+ @ (T - — Zog + I (2n, F))

consequently

n T
29§ (5) = 8a* €(3)-—~(23—lo.a§+1(4, %)),

n 7
- 34(’;‘73 — Zog-3— + £ (6, (l)), etic.

The quantity [(2n,+) occurring in this formula may be determined

from its definition
B/(g)l/
2n, 1—y)? t dy = (2n)!
( n ) [( )u( 0096)5’ (7)/_1(2”) @ + 2n)!

659 ¢ ()=
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but also by means of other series of which the terms diminish
more quickly, for, if ¢ represents an arbitrary integer positive number,

l__zcotqny:_»—g‘( ) §(20) = - -

y 6 6
2 22 ’I 1 2 q 2% -
S (y> 5(20) — = 123 g(i)
sz 6 =1 % yF:1/=1 695
2

2% 1 7 1 ¢ 1
==~ (y ) 5 (20) — = =
yF—_:l 6 /._1 7"" =1 6”“"‘:[/ =1 6M+y _
and therefore '
1
reny=2 [0y £ —2@ i
=1%
+ v (1 J)Zn (1___[1/'?11
=1 GA—J ,=1 62 —{-y
0
. Now is
1 1
A—yp2 f(G/——l (6z—L — (1—yr
6emy ) By Y 6x—1)+ (1—y) 7=
1 2n
= — (62——)2” log (1 ——-——;) -+ 2, (-——1)~ — (6/ _1)‘)11—— ;
and
1 1 1
» (1—3/)2" dy — (6'/.—1— 1)212 (6;; {._1)271_.(1__3/)271
6x+y v= / 6x1-y Y . 62+ 1)-—(1—1y)
0
1 2n 1
= (6% 4 1) log (1 - —-—) — —. (6% + 1)2n—¢;
GZ »—-1

so the calculation of 7 (2n,%) is to be reduced to the calculation of
the ntegral

1
g . o) — =
f(' T2 %“20) gy”?‘( ") =1(20)(20+ 1).(2¢+ 2n).6%

zmd the ratio of two consecutive terms of this series 1s smaller than

1
———— so that, if there is a breaking off in an arbitrary place,
5 (g +1) ’ o & preaing iy place
the rest:term is smaller than the term last used divided by

6 (g 41 — 1. _
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