| Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Citation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| J.G. van der Corput, On the values which the functions assumes for s positive and odd, in: KNAW, Proceedings, 19 I, 1917, Amsterdam, 1917, pp. 489-496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| > Bigital Biolary > 1100000 angle of the 100 and 100 a |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Mathematics. — "On the values which the function ζ(s) assumes for s positive and odd." By J. G. VAN DER CORPUT. (Communicated by Prof. J. C. KLUYVER).

(Communicated in the meeting of February 26, 1916)

This article is intended to deduce some formulae that may be used to calculate  $\zeta(s)$  for odd values of the argumentum s > 1; for this purpose we will express these  $\zeta$  functions in the quantities  $I_1(m, n)$ ,  $I_2(m, n)$  and I(n, a), which have the following significance:

$$I_{1}(m,n) = \pi \int_{0}^{1} y^{m} (1-y)^{n} \cot y \, dy =$$

$$= n! \left( \frac{1}{m(m+1)...(m+n)} - \sum_{1}^{\infty} \frac{r}{(2\varkappa)! (2\varkappa+m) (2\varkappa+m+1)...(2\varkappa+m+n)} \right)$$
for  $m$  and  $n$  integer and positive,

$$I_{i}(m, n) = \frac{\pi}{2} \int_{1}^{1} y^{m} (1 - y)^{n} \cot y \frac{\pi y}{2} dy =$$

$$= u! \left( \frac{1}{m(m+1)...(m+n)} - \sum_{1}^{\infty} \frac{B_{r} \left( \frac{\pi}{2} \right)^{2r}}{(2\varkappa)!(2\varkappa+m)(2\varkappa+m+1)...(2\varkappa+m+n)} \right)$$

for m and n integer, m > 0 and  $n \ge 0$ ,

$$I(n, a) = \int_{0}^{1} (1 - y)^{n} \left( \frac{1}{y} - \pi a \cot y \pi ay \right) dy = n! \sum_{1}^{\infty} \frac{B_{r} (a\pi)^{2r}}{(2\kappa) \cdot (2\kappa + n)!}$$

for  $1 > \alpha > 0$ , and n integer  $\ge 0$  and also for  $\alpha = 1$  and n integer > 0. In order to connect the  $\xi$  function with the quantities  $I_1(m, n)$ ,  $I_2(m, n)$  and  $I(n, \alpha)$  we will use the method indicated by Professor Dr. J. C. Kluyver in the article: "Sur les valeurs que prend la fonction  $\xi(s)$  de Riemann pour s entier positif et impair". (Bulletin des Sciences Mathématiques, 1896).

If f(y) represents a polynomium in y, which becomes zero for y = 0 and for y = 1, the uniform function

$$f\left(\frac{z}{2\pi i}\right)$$

is holomorphous in the domain of the rectangle bounded by the lines x=0, y=0,  $x=\beta$ ,  $y=2\pi$ . By applying the theorem of CAUCHY and then putting  $\beta=\infty$ , we therefore find the relation

$$\int_{0}^{\infty} \frac{f\left(\frac{z}{2\pi i}\right) - f\left(\frac{z}{2\pi i} + 1\right)}{e^{z} - 1} dz = -\pi i \int_{0}^{1} f(y) dy + \pi \int_{0}^{1} f(y) \cot y dy . (1)$$

By writing in this formula  $f(y) = y^m (1-y)^n$ , we conclude

By writing in this formula 
$$f(y) = y^m (1-y)^n$$
, we conclude 
$$\int_0^1 \frac{\left(\frac{z}{2\pi i}\right)^m \left(1-\frac{z}{2\pi i}\right)^n + (-1)^{n+1} \left(\frac{z}{2\pi i}\right)^n \left(1+\frac{z}{2\pi i}\right)^m}{e^z-1} dz = \frac{\pi \imath m! n!}{(m+n+1)!} + I_1(m,n)$$

for m and n integer and positive and by giving definite values to m and n, in this relation we find for 5(3)

$$\zeta(3)\!=\!-\frac{2\pi^2}{3}\;I_{_1}(2,1)\!=\!\frac{2\pi^2}{3}\;I_{_1}(1,2)\!=\!-\frac{2\pi^2}{3}\;I_{_1}(3,1)\!=\!\frac{2\pi^2}{3}\;I_{_1}(1,3).$$

If, however, f(y) represents a polynomium in y, which disappears for y = 1, but not for y = 0, formula (1) will hold good if f(y) is replaced by f(y)—(1--y) f(0); this produces

$$\int_{0}^{\infty} \frac{f\left(\frac{z}{2\pi i}\right) - f\left(\frac{z}{2\pi i} + 1\right) - f(0)}{e^{z} - 1} dz =$$

$$= -\pi i \int_{0}^{1} \{f(y) - (1 - y)f(0)\} dy + \pi \int_{0}^{1} \{f(y) - (1 - y)f(0)\} \cot y \, dy$$

$$= -\pi i \int_{0}^{1} f(y) \, dy + \frac{1}{2}\pi i f(0) - \int_{0}^{1} f(y) \left(\frac{1}{y} - \pi \cot y \, dy\right) \, dy + \int_{0}^{1} f(y) - f(0) \, dy$$

$$= -\pi i \int_{0}^{1} f(y) \, dy + \frac{1}{2}\pi i f(0) - \int_{0}^{1} f(y) \left(\frac{1}{y} - \pi \cot y \, dy\right) \, dy + \int_{0}^{1} f(y) - f(0) \, dy$$

$$= -\pi i \int_{0}^{1} f(y) \, dy + \frac{1}{2}\pi i f(0) - \int_{0}^{1} f(y) \left(\frac{1}{y} - \pi \cot y \, dy\right) \, dy + \int_{0}^{1} \frac{f(y) - f(0)}{y} \, dy + f(0) \log 2\pi.$$
The particular case  $f(y) = (1 - y)\pi$  produces the formula

The particular case  $f(y) = (1 - y)^n$  produces the formula

$$\int_{0}^{\infty} \frac{1 + \left(\frac{zi}{2\pi}\right)^{n} - \left(1 + \frac{zi}{2\pi}\right)^{n}}{e^{z} - 1} dz = \frac{\pi i}{n+1} - \frac{\pi i}{2} + I(n, 1) + \sum_{i=1}^{n} \frac{1}{z} - \log 2\pi,$$

i.e. for n=3:

$$\zeta(3) = \frac{2\pi^3}{3} \left( \frac{11}{6} - \log 2\pi + I(3, 1) \right)$$

If we reduce the height of the rectangle to half its original height and so take it equal to  $\pi$ , we find in the same way as in which (1) has been deduced, supposing f(y) is a polynomium in y disappearing for y = 0,

$$\int_{0}^{\infty} \frac{f\left(\frac{z}{\pi i}\right)}{e^{z} - 1} dz + \int_{0}^{\infty} \frac{f\left(\frac{z}{\pi i} + 1\right)}{e^{z} + 1} dz = -\frac{\pi i}{2} \int_{0}^{1} f(y) dy + \frac{\pi}{2} \int_{0}^{1} j(y) \cot y \frac{\pi y}{2} dy$$
and as:

$$\int_{0}^{\infty} \frac{f\left(\frac{z}{\pi i}+1\right)}{e^{z}+1} dz = f(1) \int_{0}^{\infty} \frac{dz}{e^{z}+1} + \int_{0}^{\infty} \frac{f\left(\frac{z}{\pi i}+1\right)-f(1)}{e^{z}+1} dz$$

$$= f(1) \log 2 + \int_{0}^{\infty} \left\{ f\left(\frac{z}{\pi i}+1\right)-f(1) \right\} \left\{ \frac{1}{e^{z}-1} - \frac{2}{e^{2z}-1} \right\} dz =$$

$$= f(1) \log 2 + \int_{0}^{\infty} \frac{f\left(\frac{z}{\pi i}+1\right)-f\left(\frac{z}{2\pi i}+1\right)}{e^{z}-1} dz$$

at last:

$$\int_{0}^{\infty} \frac{f\left(\frac{z}{\pi i}\right) + f\left(\frac{z}{\pi i} + 1\right) - f\left(\frac{z}{2\pi i} + 1\right)}{e^{z} - 1} dz =$$

$$= -\frac{\pi i}{2} \int_{0}^{1} f(y) \, dy - f(1) \log 2 + \frac{\pi}{2} \int_{0}^{1} f(y) \cot y \frac{\pi y}{2} \, dy \quad (2)$$

The substitution  $f(y) = y^m (1-y)^n$  produces the relations

$$\int_{0}^{\infty} \frac{\left(-\frac{zi}{\pi}\right)^{m} \left(1+\frac{zi}{\pi}\right)^{n} + \left(\frac{zi}{\pi}\right)^{n} \left(1-\frac{zi}{\pi}\right)^{m} - \left(\frac{zi}{2\pi}\right)^{n} \left(1-\frac{zi}{2\pi}\right)^{m}}{e^{z}-1} dz$$

$$= -\frac{\pi i m! n!}{2(m + n + 1)!} + I_{2}(m, n)$$

for m and n integer and positive and

$$\int_{0}^{\infty} \frac{\left(\frac{zi}{\pi}\right)^{m} + \left(1 + \frac{zi}{\pi}\right)^{m} - \left(1 + \frac{zi}{2\pi}\right)^{m}}{e^{z} - 1} dz = \frac{\pi i}{2(m+1)} - \log 2 + I_{2}(m, 0)$$

for m integer and positive and consequently in particular

$$\zeta(3) = \frac{2\pi^2}{7} I_2(1, 1) = \frac{2\pi^2}{5} I_2(1, 2) = \pi^2 I_1(2, 1) = \frac{2\pi^2}{7} (\log 2 - I_2(2, 0)).$$

If f(0) = 0, we replace in (2) f(y) by the polynomium f(y) - f(0) which leads to

$$\int\limits_{0}^{\infty} \frac{f\left(\frac{z}{\pi i}\right) + f\left(\frac{z}{\pi i} + 1\right) - f\left(\frac{z}{2\pi i} + 1\right) - f(0)}{e^{z} - 1} dz =$$

$$= -\frac{\pi i}{2} \int_{0}^{1} f(y) \, dy + \frac{\pi i f(0)}{2} - (f(1) - f(0)) \log 2 +$$

$$+ f(0) \int_{0}^{1} \left( \frac{1}{y} - \frac{\pi}{2} \cot y \frac{\pi y}{2} \right) dy + \int_{0}^{1} \frac{f(y) - f(0)}{y} dy - \int_{0}^{1} f(y) \left( \frac{1}{y} - \frac{\pi}{2} \cot y \frac{\pi y}{2} \right) dy -$$

$$= -\frac{\pi i}{2} \int_{0}^{1} f(y) \, dy + \frac{1}{2} \, \pi i \, f(0) - f(1) \log 2 + f(0) \log \pi +$$

$$+ \int_{0}^{1} \frac{f(y) - f(0)}{y} \, dy - \int_{0}^{1} f(y) \left( \frac{1}{y} - \frac{\pi}{2} \cot y \frac{\pi y}{2} \right) dy$$

and, in consequence for  $f(y) = (1 - y)^n$ , in which n represents an integer positive number,

$$\int_{0}^{\infty} \frac{\left(1 + \frac{zi}{\pi}\right)^{n} + \left(1 - \frac{1}{2^{n}}\right)\left(\frac{zi}{\pi}\right)^{n} - 1}{e^{z} - 1} dz = \frac{\pi i}{2(n+1)} + \frac{\pi i}{2} + \log \pi - \sum_{1}^{n} \frac{1}{\varkappa} - I(n, \frac{1}{2}).$$

This formula contains the relation

$$\zeta(3) = \frac{2\pi^2}{7} \left( \frac{3}{2} - \log \pi + I(2, \frac{1}{2}) \right)$$

particularly. If we now choose the height of the rectangle  $2a\pi$  in which 1 > a > 0, the method already followed twice before, produces the relation

$$\int_{0}^{\infty} \frac{f\left(\frac{z}{2\pi i\alpha}\right)}{e^{z}-1} dz - \int_{0}^{\infty} \frac{f\left(\frac{z}{2\pi i\alpha}+1\right)}{e^{z+2\pi i\sigma}-1} dz = -\pi i\alpha \int_{0}^{1} f(y) dy + \pi \alpha \int_{0}^{1} f(y) \cot g \pi \alpha y dy,$$

if f(y) represents a polynomium in y and f(0) = 0; if however f(0) does not disappear, we arrive, by replacing f(y) in this relation by f(y) - f(0), at the formula

$$\int_{0}^{\infty} \frac{f\left(\frac{z}{2\pi i\alpha}\right) - f(0)}{e^{z} - 1} - \int_{0}^{\infty} \frac{f\left(\frac{z}{2\pi i\alpha} + 1\right)}{e^{z} + 2\pi i\nu - 1} dz =$$

$$= -f(0) \int_{0}^{1} \frac{dz}{e^{z + 2\pi i\nu} - 1} + f(0) \int_{0}^{1} \left(\frac{1}{y} - \pi\alpha \cot g \pi ay\right) dy - \pi i\alpha \int_{0}^{1} (f(y) - f(0)) dy + \int_{0}^{1} \frac{f(y) - f(0)}{y} dy - \int_{0}^{1} f(y) \left(\frac{1}{y} - \pi\alpha \cot g \pi ay\right) dy$$

$$= f(0) \log 2\pi\alpha + \frac{1}{2} \pi i f(0) - \pi i\alpha \int_{0}^{1} f(y) dy + \int_{0}^{1} \frac{f(y) - f(0)}{y} dy - \int_{0}^{1} f(y) \left(\frac{1}{y} - \pi\alpha \cot g \pi ay\right) dy.$$

As for n integer and positive

$$\frac{1}{(n-1)!}\int_{0}^{\infty} \frac{z^{n-1}dz}{e^{z+2\pi i z}-1} = \sum_{r=1}^{\infty} \frac{\cos \sqrt[2]{n} \tau u}{x^{n}} - i \sum_{r=1}^{\infty} \frac{\sin 2n\pi u}{x^{n}}$$

many relations containing the series  $\sum_{1}^{\infty} \frac{\cos 2\varkappa \pi \alpha}{\varkappa^n}$  and  $\sum_{1}^{\infty} \frac{\sin 2\varkappa \pi \alpha}{\varkappa^n}$  are to be deduced from this formula. But we will restrict ourselves to the 5-function and therefore write  $f(y) = (1-y)^{2n}$ , in which n represents an integer positive number; if the real part of a complex number  $\gamma$  is indicated by  $R(\gamma)$  it ensues from what preceded that

$$\int_{0}^{\infty} \frac{R\left(1 + \frac{zi}{2\pi\alpha}\right)^{2n} - 1}{e^{z} - 1} dz + \frac{(-1)^{n+1}}{(2\pi\alpha)^{2n}} \int_{0}^{\infty} z^{2n} R\left(\frac{1}{e^{z + 2\pi\imath\nu} - 1}\right) dz$$

$$= \log 2\tau\alpha - \sum_{1}^{2n} \frac{1}{\varkappa} - I(2n,\alpha) \quad ... \quad ...$$

In order to find relations for the 5-function by means of this formula, the following auxiliary proposition may be used:

If a represents an integer number > 2 and  $\varrho$  describes half the reduced rest system, modulo a, between 0 and a, and that in such a way that the series of the numbers, of which the values are successively assumed by  $\varrho$ , does not contain two numbers, the sum of which is equal to a, then:

$$\sum_{\rho} R\left(\frac{1}{z+\frac{2\pi i\rho}{a}-1}\right) = \frac{1}{2} \sum_{d\mid a} \frac{\mu\left(\frac{a}{d}\right)d}{e^{dz}-1}.$$

The proof of this auxiliary proposition is simple; for if. in the second member of the relation

$$\sum_{\substack{d \mid a}} \frac{\mu\left(\frac{a}{d}\right)d}{e^{dz} - 1} = \sum_{\substack{d \mid a}} \mu\left(\frac{a}{d}\right) \sum_{\substack{d = 1 \\ e}}^{d} \frac{1}{z + \frac{2\pi i d_1}{d}} - 1$$

 $a=dd_2$  and  $d_1d_2=d_3$  and consequently  $\frac{d_1}{d}=\frac{d_1d_2}{dd_2}=\frac{d_3}{a}$  is written, so that  $d_2$  is a divisor of the greatest common divisor  $(a,d_3)$  of  $\tilde{a}$  and  $d_3$ , the relation takes this shape,

$$\sum_{d \mid a} \frac{\mu\left(\frac{a}{d}\right)d}{e^{dz} - 1} = \sum_{d_3 = 1}^{a} \frac{1}{z + \frac{2\pi i d_3}{a}} \sum_{\substack{d_2 \mid (a, d_3) \\ e}} \mu(d_2) = \sum_{\prime} \frac{1}{z + \frac{2\pi i \prime}{a}},$$

in which  $\lambda$  describes the reduced rest system, modulo a, between 0 and a, and so

$$\frac{1}{2} \sum_{d \mid a} \frac{\mu\left(\frac{a}{d}\right)d}{e^{dz} - 1} = \frac{1}{2} \sum_{\rho} \left(\frac{1}{z + \frac{2\pi i \rho}{a} - 1} + \frac{1}{z + \frac{2\pi i (r - \rho)}{a} - 1}\right) = \sum_{\rho} R\left(\frac{1}{z + \frac{2\pi i \rho}{a} - 1}\right),$$

with which the auxiliary proposition has been proved.

From this proposition follows for n > 0

$$\sum_{\rho} \int_{0}^{\infty} z^{2n} R\left(\frac{1}{z + \frac{2\tau i\rho}{a}}\right) dz = \frac{1}{2} \sum_{d_1 \mid a} \mu\left(\frac{a}{d_1}\right) d_1 \int_{0}^{\infty} \frac{z^{2n} dz}{e^{d_1 z} - 1} = \frac{(2n) / \zeta(2n+1) \sum_{d \mid a} \mu(d) d^{2n}}{2 \cdot a^{2n}}$$

Replace in (3)  $\alpha$  by  $\frac{\mu}{a}$  multiply then both members by  $\varrho^{2n}$  and add further all relations, which are acquired in this way by making  $\varrho$  assume the values mentioned before; the result is then

$$\sum_{\rho} \int_{0}^{\infty} \frac{R\left(\varrho + \frac{azi}{2\pi}\right)^{2n} - \varrho^{2n}}{e^{z} - 1} dz + \frac{(-1)^{n+1}(2n)!}{2 \cdot (2\pi)^{2n}} \, \mathcal{S}\left(2n+1\right) \sum_{d \mid a} \mu\left(d\right) d^{2n} \\
= \sum_{\rho} \varrho^{2n} \left\{ \log \frac{2\pi\varrho}{a} - \sum_{1}^{2n} \frac{1}{\varkappa} - I\left(2n, \frac{\varrho}{a}\right) \right\}. \quad (4)$$

and consequently for n=1

$$(2a^{3} - \sum_{d|a} \mu(d) d^{2}) \varsigma(3) = 4\pi^{2} \sum_{\rho} \varrho^{2} \left(\frac{3}{2} - \log \frac{2\pi\varrho}{a} + J\left(2, \frac{\varrho}{a}\right)\right).$$

By supposing a to be respectively equal to 3, 4 and 6, we find particularly:

$$\begin{split} \zeta(3) &= \frac{2\pi^2}{13} \left( \frac{3}{2} - \log \frac{2\pi}{3} + I\left(2, \frac{1}{3}\right) \right) = \frac{8 i^2}{13} \left( \frac{3}{2} - \log \frac{4\pi}{3} + I\left(2, \frac{2}{3}\right) \right) \\ &= \frac{4\pi^2}{47} \left( \frac{3}{2} - \log \frac{\pi}{2} + I\left(2, \frac{1}{4}\right) \right) = \frac{36 i^2}{47} \left( \frac{3}{2} - \log \frac{3\pi}{4} + I\left(2, \frac{3}{4}\right) \right) \\ &= \frac{i^2}{12} \left( \frac{3}{2} - \log \frac{\pi}{3} + I\left(2, \frac{1}{6}\right) \right) = \frac{25\pi^2}{12} \left( \frac{3}{2} - \log \frac{5\pi}{6} + I\left(2, \frac{5}{6}\right) \right). \end{split}$$

It is evident that the relations found also produce many formulae for the calculation of  $\zeta(5)$ ,  $\zeta(7)$ , ... etc.; this we will work out further for the case that the terms of the series acquired, diminish quickest; this happens by writing in (4) a=6 and  $\mu=1$ , by means of which the relation

$$\int_{0}^{\infty} \frac{R\left(1 + \frac{6zi}{2\pi}\right)^{2n} - 1}{e^{z} - 1} dz + \frac{(-1)^{n+1}(2n)!}{2(2\pi)^{2n}} (6^{2n} - 3^{2n} - 2^{2n} + 1) \cdot 5(2n+1)$$

$$= \log \frac{\pi}{3} - \sum_{1}^{2n} \frac{1}{z} - I(2n, \frac{1}{6})$$

is found, i.e.

$$\frac{6^{2n} + 3^{2n} + 2^{2n} - 1}{2 \cdot (2\pi)^{2n}} 5(2n+1) = \sum_{n=1}^{n-1} (-1)^{n-1} - \left(\frac{3}{\pi}\right)^{2r} \frac{5(2\varkappa + 1)}{(2n-2\varkappa)!} + \frac{(-1)^{n+1}}{(2n)!} \left(\sum_{n=1}^{2n} \frac{1}{\varkappa} - \log \frac{\pi}{3} + I(2n, \frac{1}{6})\right),$$

consequently

$$\zeta(3) = \frac{\pi^{2}}{12} \left( \frac{1}{2} - \log \frac{\pi}{3} + I(2, \frac{1}{6}) \right),$$

$$29 \zeta(5) = 3\pi^{2} \zeta(3) - \frac{\pi^{4}}{36} \left( \frac{25}{12} - \log \frac{\pi}{3} + I(4, \frac{1}{6}) \right),$$

$$659 \zeta(7) = 72 \pi^{2} \zeta(5) - \frac{2\pi^{4}}{3} \zeta(3) + \frac{\pi^{6}}{5.3^{4}} \left( \frac{\pi^{6}}{20} - \log \frac{\pi}{3} + I(6, \frac{1}{6}) \right), \dots \text{ etc.}$$

The quantity  $I(2n,\frac{1}{6})$  occurring in this formula may be determined from its definition

$$I\left(2n,\frac{1}{6}\right) = \int_{0}^{1} (1-y)^{2u} \left(\frac{1}{y} - \frac{\pi}{6}\cot g\frac{\pi y}{6}\right) dy = (2n)! \sum_{r=1}^{\infty} \frac{B_{r}\left(\frac{\pi}{6}\right)^{2r}}{(2\pi) \cdot (2\pi + 2n)!}$$

but also by means of other series of which the terms diminish more quickly, for, if q represents an arbitrary integer positive number,

$$\begin{split} \frac{1}{y} - \frac{\pi}{6} \cot g \frac{\pi y}{6} &= \frac{2}{y} \sum_{\rho=1}^{\infty} \left( \frac{y}{6} \right)^{2\rho} \, \xi \, (2\varrho) = \\ &= \frac{2}{y} \sum_{\rho=1}^{\infty} \left( \frac{y}{6} \right)^{2\rho} \, \left| \, \xi \, (2\varrho) - \sum_{\rho=1}^{q} \frac{1}{\varkappa^{2\rho}} \right| + \frac{2}{y} \sum_{\rho=1}^{\infty} \sum_{\rho=1}^{q} \left( \frac{y}{6\varkappa} \right)^{2\rho} \\ &= \frac{2}{y} \sum_{\rho=1}^{\infty} \left( \frac{y}{6} \right)^{2\rho} \, \left| \, \xi \, (2\varrho) - \sum_{\rho=1}^{q} \frac{1}{\varkappa^{2\rho}} \right| + \sum_{\rho=1}^{q} \frac{1}{6\varkappa - y} - \sum_{\rho=1}^{q} \frac{1}{6\varkappa + y} \end{split}$$

and therefore

$$I(2n, \frac{1}{6}) = 2 \int_{0}^{1} (1-y)^{2n} \sum_{\rho=1}^{\infty} \frac{y^{2\rho-1}}{6^{2\rho}} \left\{ \zeta(2\rho) - \sum_{j=1}^{q} \frac{1}{\varkappa^{2\rho}} \right\} dy +$$

$$+ \sum_{j=1}^{q} \int_{0}^{1} \frac{(1-y)^{2n}}{6\varkappa - y} dy - \sum_{j=1}^{q} \int_{0}^{1} \frac{(1-y)^{2n}}{6\varkappa + y} dy$$

Now is

$$\int_{0}^{1} \frac{(1-y)^{2n}}{6\varkappa - y} dy = \int_{0}^{1} \frac{(6\varkappa - 1)^{2n}}{6\varkappa - y} dy - \int_{0}^{1} \frac{(6\varkappa - 1)^{2n} - (1-y)^{2n}}{(6\varkappa - 1) + (1-y)} dy =$$

$$= -(6\varkappa - 1)^{2n} \log\left(1 - \frac{1}{6\varkappa}\right) + \sum_{\varphi=1}^{2n} (-1)^{\varphi} \cdot \frac{1}{\varrho} (6\varkappa - 1)^{2n - \varphi};$$

and

$$\int_{0}^{1} \frac{(1-y)^{2n}}{6\varkappa + y} dy = \int_{0}^{1} \frac{(6\varkappa + 1)^{2n}}{6\varkappa + y} dy - \int_{0}^{1} \frac{(6\varkappa + 1)^{2n} - (1-y)^{2n}}{(6\varkappa + 1) - (1-y)} dy =$$

$$= (6\varkappa + 1)^{2n} \log\left(1 + \frac{1}{6\varkappa}\right) - \sum_{\rho=1}^{2n} \frac{1}{\varrho} \cdot (6\varkappa + 1)^{2n-\rho};$$

so the calculation of  $I(2n, \beta)$  is to be reduced to the calculation of the integral

$$2\int_{0}^{1} (1-y)^{2n} \sum_{\rho=1}^{\infty} \frac{y^{2\rho-1}}{6^{2\rho}} \left(\zeta(2\varrho) - \sum_{\nu=1}^{q} \frac{1}{\varkappa^{2\rho}}\right) dy = 2.(2n)^{r} \sum_{\rho=1}^{\infty} \frac{\zeta(2\varrho) - \sum_{\nu=1}^{q} \frac{1}{\varkappa^{2\rho}}}{(2\varrho)(2\varrho+1)...(2\varrho+2n).6^{2z}}$$

and the ratio of two consecutive terms of this series is smaller than  $\frac{1}{6^2 (q+1)^2}$ , so that, if there is a breaking off in an arbitrary place, the rest-term is smaller than the term last used divided by  $6^2 (q+1)^2 - 1$ .