Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

A. Smits, On the Influence of the Solvent on the Situation of the Homogeneous Equilibrium. I, in: KNAW, Proceedings, 19 I, 1917, Amsterdam, 1917, pp. 708-712

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
of which the first has only been mentioned as yet. The second differs from the first only in this that the melting-point diagram possesses a eutectic point.

Fig. 3 represents in this case the T, v-projection of the threephase regions of the pseudo system witl the two phase regions of the unary system lying in them.

This figure, which does not call for any further elucidation, also represents a case not considered up to now, for which the solid phase lies between the two others on one three-phase region for $S+L+G$, the situation on the other three-phase region being the usual one. At present there is no reason to prefer one representation (Fig. 2) to the other (Fig. 3).

In conclusion it may still be pointed out that as is known, HgI_{2} at high temperatures begins to split up appreciably into $\mathrm{Hg}_{3} \mathrm{I}_{2}$ and I_{2}. This splitting up is disregarded'here, because evidently it is not essential here for the phenomenon of allotropy.

SUMMARY:

On the ground of new researches a modification was applied to the representation of the system mercuryiodide, which has entirely obviated all the former difficulties and in consequence of which an altogether satisfactory concordance with the observed phenomena was obtained.

Anorg. Chem. Lab. of the University.
Amsterdam, Sept. 1916.

Chemistry. - "On the Infuence of the Solvent on the Situation of the Homogeneous Equilibrium". I. By Prof. A. Smits. (Communicated by Prof. F. A. H. Schreinemakers).
(Communicated in the meeting of Octöber 28, 1916).

1. It is universally known that the solvent frequently greatly influences the situation of the homogeneous equilibrium. This has appeared ${ }_{5}^{t}$ for instance in the determination of the equilibria of the triazol carbonic acid esters in different solvents, carried out by Dimroth ${ }^{1}$), and from von Halban's ${ }^{2}$) researches on the conversion

[^0]of para bromine phenyldimethyl allyl ammonium bromide, besides from the study of the equilibria between, the.keto- and enol forms of the acetyl acetic ester made by Kurt Meijer ${ }^{1}$). In spite of various attempts the explanation of this. phenomenon has not jet been found. Yet it seems to me that the solution might be given in the following way.

For this purpose we start from the equation:

$$
\begin{equation*}
Z=E-T H+P V \tag{1}
\end{equation*}
$$

When with constant P and T we now differentiate with respect to \bar{n}_{1}, we get:

$$
\begin{equation*}
\left(\frac{d Z}{d n_{1}}\right)_{P . T}=\left(\frac{d E}{d n_{1}}\right)_{P I}-T\left(\frac{d H}{d n_{1}}\right)_{P T}+P\left(\frac{d V}{d n_{1}}\right)_{P T} . \tag{2}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left(\frac{d Z_{i}}{d n_{1}}\right)_{P \cdot T}=\mu_{3} \tag{3}
\end{equation*}
$$

It should further be noticed that as we consider solutions here, $\left(\frac{d V}{d n_{1}}\right)_{P . T}$ is very small.

With regard to P it may be said that when the solrent has a slight vapour tension and the expetiment is made in vacuum, this quantity is very small too. But also when an open ressel is used, and P is 1 atm., the term $P\left(\frac{d V}{d n_{1}}\right)_{P . T}$ is so small, that we may safely neglect it by the side of the others.

Just as in general the entropy may be split up into a concentration entropy and a concentration term, we can write here for the entropy increase when 1 gr . mol. is added reversibly:

$$
\begin{equation*}
\left(\frac{d H}{d n_{1}}\right)_{P . T}=\left(\frac{d H}{d n .}\right)_{C=1}^{P T}-R \ln C_{1} . \tag{4}
\end{equation*}
$$

so that we get:

$$
\left.\mu_{1}=\left(\frac{d E}{d n_{1}}\right)_{P . T}-T\left(\frac{d H}{d n_{1}}\right)_{P \cdot T}^{C=1} \right\rvert\,+R T \ln C_{1} \quad .
$$

Now on summation over all reacting components, we get:

$$
\begin{equation*}
\Sigma v \mu=\Sigma v\left(\frac{d E}{d n_{1}}\right)_{P . T}-T \Sigma v\left(\frac{d H}{d n_{1}}\right)_{P=1}+R T \Sigma v \ln C_{1} . \tag{6}
\end{equation*}
$$

If we now put:

$$
\left(\frac{d E}{d n_{1}}\right)_{P . T}=E_{1} \text { and } \cdot\left(\frac{d H}{d n_{1}}\right)_{\substack{P \cdot T \\ C=1}}=H_{1}
$$

1) Ber. 47. 832 (1914),
we get.

$$
\begin{equation*}
\Sigma v \mu=\Sigma v_{1} E_{1}-T \Sigma v_{1} H_{1} C_{=1}+R T \Sigma v_{1} \ln C_{1} \ldots . \tag{7}
\end{equation*}
$$

If we now bear in mind that in the state of equilibrum :

$$
\Sigma v_{u}=0 \text { and that } R T \Sigma v_{1} \ln C_{1}=R T \ln K_{C}
$$

it follows from (7) that:

$$
R T \ln K_{C}=-\Sigma v_{1} E_{1}+T \Sigma v_{1} H_{1} C=1
$$

or

$$
\begin{equation*}
\ln K_{C}=-\frac{\Sigma v_{1} E_{1}}{R T}+\frac{\Sigma v H_{1} C=1}{R} \tag{8}
\end{equation*}
$$

Before we proceed it should be pointed out that $\Sigma v_{1} E_{1}$, which quantity denotes the change of energy at the temperature of observation, is practically independent of the temperature, and may, therefore, be considered as a constant; because the sum of thespecific heats of the second member of the equation of reaction diminished with the sum of the specific heats of the first member yields a quantity perfectly negligible here as was lately fully demonstrated by Dr. Scueprer ${ }^{1}$).

The solution of the problem now under discussion, is exceedingly simple, when the sum of the entropies $\Sigma v_{1} H_{1} C \Rightarrow 1$ has the same value in the different solvents, at least so little different that the deviations can be entirely neglected by the side of the sums of the energies $\Sigma \mathbf{n}_{1} E_{1}{ }^{2}$).
This case can of course only be expected when the influence of the solvent on the dissolved substance is of exclusively physical nature.

If we, therefore, apply equation (8) to the same equilibrium in , two different solvents I and $I I$, the just mentioned supposition comes to this that in the equations:

$$
\begin{equation*}
\ln K_{T}=-\frac{\left(\Sigma v E_{\tau}\right)_{I}}{R T^{\prime}}+C_{I} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln K_{I I}=-\frac{\left(\Sigma v_{1} E_{1}\right)_{I I}}{R T}+C_{I I} \tag{10}
\end{equation*}
$$

the relation:

$$
\begin{equation*}
C_{I}=C_{I I} \tag{11}
\end{equation*}
$$

${ }^{1)}$ This part of these Proceedings p. 656.
$\left.{ }^{2}\right)$ This assumption is of the same nature as that untroduced by Dr. Sohmerer in his paper 'On the Velocity of Substitutions in the benzene nucleus". He assumed there that the "difference in substitution entropy would be zero for the different hydrogen atoms". 'These Proc. Vola XV. p. 1118.
holds for the entrony constants, so that, when we put $\left(\Sigma n_{1} E_{1}\right) I=$ $=Q_{I}^{*}$ and $\left(\Sigma v_{1} E_{1}\right) M=Q_{I I}$

$$
\begin{equation*}
\ln \frac{K_{I}}{K_{I I}}=\frac{Q_{I I}-Q_{I}}{R T} \tag{12}
\end{equation*}
$$

Thns formula expresses that the difference in situation of the chemical equilibrium in the two different solvents must be ascribed to a difference in heat of reaction.

Now it is at once clear that a difference in thermical effect of the same reaction in different solvents is due to the difference in heat of mixing of the reacting components in the different solvents.

If we, namely, consider the simple conversion :

$$
A \rightleftarrows B+Q
$$

we can think this heat-effect split up into three factors.

1. the differential heat of unmixing of $A=-Q_{M_{A}}$,
2. the heat of reaction of the conversion of 1 gr . mol. of hquid A in 1 gr . mol. of liquid $B=Q_{R}$,
and 3 the differential heat of mixing of $B=Q_{M_{B}}$;
hence

$$
Q=-Q_{A_{A}}+Q_{R}+Q_{H_{B}}
$$

We get, therefore, for the heat effects in the two solvents:

$$
\begin{equation*}
Q_{I}=-Q_{d_{A_{I}}}+Q_{R}+Q_{M_{B}} \quad . \quad . \quad . \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{I I}=-Q_{A_{A}}+Q_{R}+Q_{M l_{B}} \cdot \cdots \cdot \tag{14}
\end{equation*}
$$

so that

$$
\begin{equation*}
Q_{I I}-Q_{I}=\left(Q_{M_{A_{I}}}-Q_{M_{A}}\right)-\left(Q_{A_{B}}-Q_{M_{B}}\right) \tag{15}
\end{equation*}
$$

If we now indicate the difference in heat of mixing of A in the two solvents by $Q_{A_{A_{1-1 l}}}$, that of B by $Q_{M_{B 1-11}}$, our equation (12) becomes

$$
\begin{equation*}
\ln \frac{K_{I}}{K_{I I}}=\frac{Q_{M_{A_{1-I I}}-Q_{M_{B}}}}{R T} \tag{16}
\end{equation*}
$$

i. e. the influence of the solvent on the situation of the chemical equilibrium is due to the difference in heat of mixing for the reactiny components in these different solvents.

To test this conchasion it will, thercfore, be sufficient to determine by the side of the constants of equilibrium the heats of solution
of the reacting substances in different solvents, because the difference in heat of solution of e.g. A in different solvents is equal to the difference of heat of mixing.
3. Another conclusion to which the supposition made here leads, is this: It follows from equation (12) that when $K_{I}>K_{I I}$, also $Q_{I I}>Q_{I}$. If we now differentiate (12) with respect to T, we get:

$$
\begin{equation*}
\frac{d \ln \frac{K_{I}}{K_{I I}}}{d T}=\frac{Q_{I}-Q_{I I}}{R T^{2}}=\text { negatice } . \tag{17}
\end{equation*}
$$

from which therefore follows that when $K_{I}>K_{I I}$ the difference $\ln K_{I}-\ln K_{I I}$ will diminish on increase of temperature, i.e. the difference in situation of the equilibria in the two different solvents will decrease at higher temperature.
4. It is almost superfluous to point out here that when the supposition $C_{I}=C_{I I}$ is not introduced, we obtain through subtraction of equation (10) from (9) the equation:

$$
\begin{equation*}
\ln \frac{K_{I}}{K_{I I}}=\frac{Q_{I I}-Q_{I}}{\cdot R T}+C_{I}-C_{I I} \quad . \quad . \tag{18}
\end{equation*}
$$

which likewise gives

$$
\frac{d \ln \frac{K_{I}}{K_{I I}}}{d T}=\frac{Q_{I}-Q_{I I}}{R T}
$$

on: differentiation with respect to T, but this equation in itself could not convey any special meaning to us. In virtne of (12) it could be concluded that when $K_{l}>K_{I l}$, also $Q_{I l}$ must be $>Q_{I}$, and this gave rise to the conclusion under 3.
5. In conclusion it may be pointed out that when it should appear that the difference $C_{I}-C_{I I}$ may not be neglected the above given consideration will lead us to the knowledge of this difference, so that at any rate a study in this direction rill lead us to a deeper insight in this so important phenomenon.

Anorg. Chem. Laboratory of the

 University of Amsterdam.Amsterdam, 17 October.

[^0]: ${ }^{1}$) Lieb. Ann. 3 3ry, 133 (1910).
 ${ }^{2}$) Zeitschr. f. phys. ('hem. 67, 129 (1909).

