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.Chemistry. “In-, s mono--and devariant equilibrin.”” XI. By Prof. F.

A. H. SCHREINEMAKERS.

\

(Communicated in the meeting of Oclober 28, 1916).

18.  Binary systems with two indifferent phases.

After the general considerations [Communication X]about systerns
with two indifferent phases, we shall apply them now to binary
systems.

When in the invariant point of a binary system occurs the equili-
beium: F, 4 F, 4+ F, - F,, then only one type of P,T-diagram
exists; we find it in fig. 2 (I). )

When in a binary system, however two indifferent phases occur
and, therefore, also two singular phases, then two types of P71+
diagram exist [figs. 1 and 2].:We may deduce them in different ways.

When in the concentration-diagram of fig. 2 (1) /, and F, ave the
indifferent phases, then F, and F, are the singular ones; 'F, and F,
have then the same composition, so that the points #, and F, coin-
cide [fig. 1]. Then we have the singular equilibria :

. (M)=F,+F, [Curve (M) in fig. 1]
F)=F +F,+F, [Curve (3) in fig. 1]
(Fy=F + F,+ F, [Curve 4) in fig. 1]

and further the equilibria:
() = Fp+:Fy +.0, [Curve (1) in fig. 1]
(F)y=UF + F,+ F, [Curve (2) in fig. :i1].

We may:deduce the type.of P,T-diagram.from-fig. 2 (I). As (3)
and (4) are the singular curves, they must, therefore, coincide. It
follows from our previous considerations that this coincidence may
take place in fig. 2 (I) only in sueh a way that curve (3) coincides
with the prolongation of (4) and therefore also curve (4) with the
prolongation of (3). Then we obtain a type of P, 7-diagram, as in
fig. 1, in which carve (M) is bidirectionable. This diagram contains
two™ bundles :of curves; the one bundle consists: of the.curves (1),
4) and (2), the other only of curve (3). Curve (M) is a middlecurve
of the (M)-bundle.

We are able to find the bivariant regions in,this P,7-diagram in
the same way as in other diagrams -Between the curves (1)-and
(4) is situated the region (14) = 23, between the curves (1) and (2)
we find the region (12) = 34, ete. In.fig. 1 those .regions are indi-
cated ; they are the same.as in fig. 2 (I), with this difference, how-
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ever, that the region 12 from fig. 2 (I) is missing in fig. 1 and is
replaced by the singular curve (M)=F, + F,.

We have seen in the previons communication that each region
which extends over ihe stable or metastable part of a singular curve,
contains the two indifferent phases. In fig. 1 the region 34 extends
over the singular curves; and therefore it contains the two indifferent

phases F, and F,.

Ig. 1.

When in the concentrationdiagram of fig. 2 (I) #, and F, are
the indifferent phases, then F, and F, are the singular phases,
F, and F; have then the same composition, so that the points #, and
Fy coincide [fig. 2]. Then we have the singular equilibria :

(My=1F,+ Iy, [Curve (M) in fig. 2]
Fy=F,+ 1{’3 + F, [Curve (1) in fig. 2]
F)y=0+F,+F, [Curve (4 in fig. 2]

and further the equilibria:
=18+ I+ £, [Curve (2) mn fig. 2]
) =F, + F,+ F, [Curve (3) in fig. 2].

"When we wish to deduce the type of P, 7T-diagram from fig. 2 (I)
then, as (1) and (4) are the singular curves, we have to'let them
coincide. Then we obtain fig. 2. The three singular curves (M),
(1) and (4) coincide now in the same direction; the (M )-curve is,
therefore, monodirectionable. Consequently the P,7 diagram consists
of three onecurvieal bundles.

“In order to find the bivariant regions, we have to bear in mind
that between the curves (1) and (3) the region (13)= 24 is situated,



-, -

715

between the curves (1) and (2) the region (12) = 34; etc.; then we
find the regions indicated in fig. 2. Those regions are the same as
in fig. 2(I); only the vegion 23 from fig. 2 (I) is missing in fig. 2,
it is veplaced by the singular eurve (M)=F, 4+ F,.

In fig. 2 the region 14 extends itself over the metastable parts
of the singular curves (M), (1) and (4); indeed this region contains
the two indifferent phases F, and F,.

Now we have let the phases /, and F, coincide and also F, and
F, in the concentration-diagram of fig. 2 (I), we might as well have
made F, and F, coincide. Thén we obtain however a same type of
P,T-diagram as i fig. 1. Consequently only two different types of

P,T-diagram may occur; they are represented in figs. 1 and 2.

We are able to deduce the rypes of P,7*diagram also in the
following way. In communication X we have viz. seen that we
may distinguish three main types, viz. I, 114 and 115.

In main type I curve (M) is monodirectionable; the P, 7 diagram
of a binary system has then the same appearance as that of a
unary system. Therefore, it-consists, as in fig. 2, of three one-
cuarvical bundles; one of these curves represents then the three
singular curves. [In fig. 2 they are the curves (M), (1) and (4).]

In main type II4 curve (M) is bidirectionable and a middle curve
of the (M)-bundle [fig. 3 (X)], we obtain then for a ternary system
a type of P,7-diagram as in fig. 1.

In main type I1B curve (M) is bidirectionable and a side-curve
of the (M)-bundle [fig. 4 (X)]. As in this type, besides the (M )-curve,
still five curves at least have to occur, in binary systems a P,7-
diagram of this type cannot exist.

We can also find the types of P,7-diagram with the aid of the
reactions, which may occur between the phases of the invariant
point.

In order to find the type of P,7-diagram, which belongs to the
concentration-diagram of fig. 1, we consider the reactions, which
may occur between the phases and the partition of the curves, resulting
from those.

'ZPI (_—>' {12
()| (M) ()
'-l?l + -1{14 2 ]Pa -117'2 + .1?4 2 1{3
FEYE) | ) | (F) NURYCARRIARNC AL

We see that this partition of the curves is in accordance with
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fig. 1. It is evident that we can also find easily the type of P,7-
diagram with the aid of this partition of the cuarves. v
We find from the concentration-diagram of fig. 2

FZF,
(Fa) | (M) | (F)
I+ F,ZF, A+ Z2E,
() (F) | () | (Fy) ) (F) | () | (Fy).

Hence we find a type of P, 7T-diagram as in fig. 2.

We are also able o deduce the types of P,7-diagram with the
aid of the series of signs. In order to find the series of signs, we
have ,to know two reactions, each between the four phases-of the
invariant point. We can easily deduce those' reaction’s from the
concentration-diagrams of figs. 1 and 2; for the concentration-diagram
of fig. 1 we find then series of signs 1, for that of fig. 2 the series
of signs 2.

Series of signs 1 (fig. 1) Series of signs 2 (fig. 2)

F, F, F, P, F, 7. F, T
£ = [+ Fl=|=]
—{'o] 0|+ —loloi+
—|+{—o0 —[+l+10

In sevies of signs 1L F, and F,, in series of signs 2 F, and £,
are the indifferent phases; they have opposite signs in series of
signs 1 and they have the same sign in series of signs 2. The
positions of the curves with respect to one another as mn the
figs. 1 and 2 follow immediately from those series of signs.

It is appareni from the previous considerations that two types of
P,T-diagram [figs. 1 and 2] may occur in binary systems with two
indifferent phases. Those types are in accordance with the rules
which we ‘have deduced in the general considerations |Communica-
tion X|. We found amongst others:

1. The two 1indifferent phases have the same sign or in other
wovds: ~the singular equilibrium (A/) is transformable into the in-
variant equilibrium (M) and reversally. Curve (J) is monodirection-
able; the three singular curves coincide in the same direction.
|fig. 1(X)].

2. The two indifferent phases have opposite sign or in other
words: the singular equilibrium (Af) is not transformable. Curve
(M) is bidirectionable, the two other singular curves coincide in
opposite direction [fig. 2 (X)].
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In order to examine whether the two indifferent phases F, and
£, in fig. 1 have the same sign or not, we take e.g. the reaction:
Fr+F2F o0 /,—F, -+ F,=0.

Hence it appears that 4, and F, have opposite signs so that the
singular equilibrium (/)= #, <+ F, is not transformable. Moreover
the lalter appears also at once from fig. 1; it appears viz. from the
position of the points 7, F, F,, and F, with respect to one another,
that a complex of the phases #, and F, can never be converted
into the mvariant equlibriom #, + I, + F, + F,.

In accordance with rule 2 curve (J/) must be therefore bidirect-
1onable and the two other singular curves [(3) and (4)] have to coincide
in opposite direction. We see that this is in accordance with fig. 1.

In the same way it appears that the indifferent phases F, and
I, from fig. 2 have the same sign and that the singular equilibrium
(M)=F,+ F, is transformable. In accordance with rule 1 curve
(M) must then be monodirectionable and the three singular curves
have to coincide in the same direction. This is in accordance with

fig. 2.

Now we shall contemplate more in detail some P,T-ciagrams.
We take a binary system: water 4 a salt S, of which we may
assume that S is not volatile; consequently the gasphase G consists
of water-vapour only. When no hydrates of the salt .S occur, then
we find in the cryohydratic point the invariant equilibrium :

‘ Iee + G+ L+ 8,

in which L is the solution saturated with ice - .5. As the water-
vapour G and the ice I [fig. 4] have the same composition, Gand
lce arve the singular phases, L and S the indifferent ones. Con-
séquently we have the singular equilibria:

M)y=1Ice + @ [curve (M)in fig. 4].

(Ly=1Ice+ G+ S [curve (L) in fig. 4).

S)=Ice+ G+ L [carve (S) or ¢t fig. 4 and ¢¢ fig. 3]
and further the equilibria:

(Iley =G + L+ S [curve () or ¢qa fig. 4 and qa fig. 3|

(" =leet+ L+ S [ecurve (&) fig. 4].

In fig. 3 a concentralion-temperaturediagram of this binary system
is drawn; Wand S vepresent the two components, ¢ is the cryohy-
dratic solution L. The curves q¢ and qa go towards higher tempe-
rajures starting from q; gt is the ice-curve, it represents the solutions
of the equilibrium (S) =Ice + G + L; ga represents the solutions,
saturated with the salt .S, viz. the solutions-of the equilibrinm
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(leey= G+ L+ 8. Curve ¢t terminates in the point #: the melting-
point of ice under its own vapour-pressnre, consequently the triple-
point: water -4 vapour +ice. Curve ¢q terminates in the melting-
point « of the salt .S.

<

Fig. 8. Fig. 4.

We find in fig. 4, besides the P,7-diagram, also the concentration-
diagram; as ice and watervapour have the same composition; in
this the points / and G coincide.

We find in fig. 4 besides the curves (M), (L), (S), ({) and (G)
also the triplepoint ¢ of the water. Three curves start from this
triplepoint; # is the evaporationcurve (equilibrium: water -~ vapourj;
s is the meltingcurve of the ice (equilibrium : ice 4~ water); {g is
the sublimationcurve of the ice (equilibeium : ice 4~ vapour). This
sublimationcurve #g of the ice is, therefore, at the same time the
singular curve (M) = Ice + G of the binary system.

This (M )-curve is bidirectionable, for the invariant point ¢ of.
course cannot be a terminating-point of this curve; at the one side
of the point ¢ it coincides with the singular curve (S) =Jce+G+L,
at the other side of the point ¢ with the singular curve (L) = lce
+ G4 S

The reaction Ice+ SZ> L may occur between the phases of
curve (G) Ice + S+ L consequently curve (G) is the common
melting-curve of ice and salt S. In general it proceeds upwards
starting from the point ¢ fairly parallel to the P-axis. When at the
veaction Ice -+ S— L the volume increases; then it goes starting
from ¢ towards higher temperatures; when the volume decreases,
it goes towards lower temperatures. In tig. 4 we have assumed that
it proceeds, just as the melting-line ts of the ice, starting from ¢
towards lower temperatures.

It follows from fig. 3 that in fig. 4 curve ga must be situated
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below ¢i. For this we draw a horizontal line xyzu in fig. 3;
assume that all the points of this line represent liquids. (Those hqu]ds
ave then parily stable, partly metastable). In the point « this liquid
is water, while the percentage of salt increases starting from x
towards u. Consequently the vapourpressure decreases along this line
starting from 2 towards w.

The horizontal line axyzu is represented in fig. 4 by the vertical
line ayeu-, -as the vapourpressure in the point = is practically zero,
this point has not been drawn in fig. 4; it is situated in the imme-
'diate vicinity of the Z-axis. The point @ is situated on the metastable
part of curve #v, point y on curve (¢f) = (S) and point z on curve
ga = ([). Hence it is apparent that curve ¢a must be situated,
therefore, below ¢

As the concentration-diagramn of fig. 4 is the same as that of fig. 1,
the P,T-diagram of fig. 4 must belong also to the same type as
that of fig. 1. We see that this is the case; both P,7T-diagrams
[fig. 1 and 4] consist viz. of a threecurvicali and a onecurvical
bundle; in both diagrams curve M) is also a middle-curve of the
(M )-bundle. ‘

Just as the P,7-diagram of fig. 1 the reader may deduce also
that of fig. 4 in different ways; just as in fig. 1 we are able to
draw the bivariant regions also in fig. 4. As this tigure would be then
overfilled with letters, 1 give in (1) a symbolical representation,
[Compare communication IV], The reader may indicate them in a
P, T-diagram, which is drawn on. a larger scale.

Stab. (G (SY(M) (0 (L) () @
lee + L G+ L G-+S | lee+ S

S4+L——8+ I - @
| .
Metast. (L) @ W8 (1I )

When in the binary system: water -4 salt S occurs a hydrate H,

then the equilibrium:
lee+ G+ L+ H

may occur in the cryohydratic point ¢. When this point A is sitnated
as in fig. 3, in which ¢b vepresents the solutions, which are saturated
with H under their own vapourpressure, then the P, 7-diagram is
the same as in f jg. 4; in this we have only to replace (S) by (H)
and o by b. Curve ¢b in fig. 4 obtains then in its further proceeding
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first a point of maximumpressure and afterwards a point of maxi-
mum. temperature. -
The hydrate H however may be situated also as in fig. 5; curve
agmb of this figure represents the solutions; saturated with.H under
their own vapourpressure ; the solutions of the dotted ‘part bmq are then
metastable. Now we have the following singalar equilibria :
(M= Ice + G [Curve (M) fig: 6]
Ly =lee+ G+ H [Curve (L) fig. 6]
(Hy=1Ilce+ G+ L [Curve (H) or ¢t in fig. 6 and g¢in fig. 5)
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and further' the equilibria
(leey= G 4 L4 H [Curve (/) or qu fig. 6 and ¢a fig. 5)
() =lece+ L+ H [Curve (G) fig. 6]

Besides the curves (A/), (L), (H), (I) and G we find in fig. 6
also the triplepoint ¢ of the water, #s: the melting-curve of the ice
and fv the evaporationcnrve of the water.

It appears from a comparison of the figs. £ and 6 (hat curve
(S)=q¢ from fig. 4 is replaced in fig. 6 by curve (H)= gi. Curve
([) = qu, which represents the equilibrium G -+ 1. -+ H, proceeds
in fig 4 from ¢ towards higher 7' and P, i fig. 6 this cnrve
proceeds, however, starting from ¢ towards lower 71" and P. The
metastable part ¢mb of this curve has its point of maximum tempe-
rature in the vieinity of the point m [figs. 5 and 6].

Wlhen we draw n fig. 5 the horizontal line ayzu and in tig. 6
the vertical line xyzu corresponding withi this then we see that the
different curves must be situated with respect to one anothetr, as is
drawn in fig. G. B

As the concentrationdiagram of fig. 6 is the same as that of fig. 1,
the P, 7-diagram of fig. 6 must therefore, belong to the same type
as that of tig. 1. We see thal this is really the case.

Now we take the binary system: water - salt .S, of which S
occurs in two modifications .S, and Sz..In fig. 7 ¢ is the solution,
saturated with the two modificatious under its own vapourpressure.
Consequently we have the equilibrium : -

GHI+S+S

Curve (g8) [fig. 7] represents the solutions of the equilibrium
G+ L 4 8g; it terminates in the meltingpoint 3 of the modification
Sz Curve dg represents the solutions of the equlibrium G4 L-4-S,,
the metastable prolongation gu of this curve terminates in the mefa-
stable meltingpoint « of the modification S,.

Curve o represents the solutions of the equlibrium S,4-Se+L ;
with this we have assumed that this curve proceeds starting from
¢ lowards higher temperatures.

We have the singular equilibria :

M)y=3S8,+ Sz [Curve (M) fig. 8]
L)y =8 +8:+ G  [Curve (L) fig. 8]
(@) =8, + S+ L [Carve (() or go fig. 8 and go fig. 7]

and further the equilibria:
46
Procecdings Royal Acad Amsterdam. Vol. XIX,

-10 -
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(S)=G+ L+8: [Curve(S) or ¢3 fig. 8 and ¢B fig.-7]
(S)) = G+ L 4.8, [Curve(Sg) orgd fig. 8 and ¢d fig. 7]
When S, and Sz are notl volatile, then G consists of watervapour
only. 1f they are volatile, then ' contains also S. The niore
S is contained in (, the move the point G' shifts towards the right
in the concentration-diagram of fig. 8. As long as the four phases
with respect to one another are situated, however, as in fig. 8, the
P,T-diagramtype remains the same. -
As it appears from the change in volume at the reaction S, 2 Sz
which is generally small, the (M)-curve proceeds general fairly
parallel to the P-axis; it terminates towards lower pressures in the

w

3 £ I
Fig. 7. Fig. 8.

LN

%

k"’

triplepoint . S, + Sz 4+ vapour §. It may proceed from this triple-
point as. well towards higher as towards lower temperatures; in
figs. 7 anid 8 we have assumed that it goes {owards higher 7

The position of the curves ¢3 and ¢d with respect to one another
in fig. 8 follows from fig. 7: for this we have to draw a horizontal
line, which intersects the stable part of the one and the metastable
part of the other curve.

As the conceniration-diagrams of figs. 1 and 8 belong to the same
type, this must also be the case with the P, 7-diagrams of both
figures. We see that this is really the case.

Now we shall discuss a binary system, in which oceurs a P,7-
diagram of the type of fig. 2. 1*“()1' this we take the syslem: water
-+ salt .S, in which a hydrate H occurs in the two modifications
H, and Hp [fig. 9].

When we represent the solutions of the equilbrium G+ L -+ H,

-11 -
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in a conceniration-temperatare-diagram, then we obtain a curve
dqag,c [fig. 9], which has its maximum of temperature in the vicinity
of the point «. The curve, which represents the solutions of the
equilibrium G' -4 L 4 Hy, is represented by wgBg.z (fig. 9); it has
its point of maximum temperature in the vicinity of the point 8.
The curves inlersect one another in ¢ and ¢, (fig. 9); in this we
have assumed 77, > 77 . The dotted parts of the curves represent
metastable conditions.
Now we have two invariani equilibria, viz.

in the point ¢ : G+ L,+ H, 4 H;
in the point ¢, : G4 L,+ H,+ H;

In fig. 9 the solutions of the equilibria G -4 L 4 H, and
G+ L 4 H; are represented by dgag,c and x¢Bq,z; in the P,7-
diagram' of fig. 10 those equilibria are represented by the same
curves. As we have assumed in fig. 9 T, >» 17, this must also be

the case in fig. 10.
The position of those curves in fig. 10 with respect to one another

follows from fig. 9. On the horizontal line dzc viz. the vapour-
tension of the liquids decreases starting from d towards ¢; in the
P,T-chagram the points d,»,z and ¢ must be sitnated, therefore,
with respect to one another, as in fig. 10. When we draw in fig. 9
also other horizontal lines, then we see that the position of the
curves dac and aJz in fig. 10 is in accordance with that in fig. 9.
In the point ¢ we have the singular equilibria:
MY=H,+ H; [Curve (M) fig. 10] ]
(L)=H,+ H;+ G [Curve (L)=g¢q, fig. 10]
((h =H.+ H;+ L [Carve (G)=qo=qo, fig. 10
and Curve go fig. 9]
and further the equilibria, already diseussed:
(H)=G+ L+ H; [Curve ¢3 figs. 9 and 10]
Hy)=G+ L4 H, [Curve qd figs. 9 and 10].

In distinction of the equilibria OCCill‘l'illg in ¢, we give to the
equilibria occurring in ¢, the index 1. Then we have in the point
g, the singular equilibria:

(M), = H,~+ Hp [Curve () fig. 10]

(L), =H.+ Hs + G [Curve (L), = q,q fig. 10]

(&), =H,+ Hy+ L [Curve (), = q,0, = q,0 fig. 10
and Curve g,0, fig. 9]

and further the equilibria, already discussed:
46%*

-12 -
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(H), =G+ L+ Hz [Cuarve ¢,f fige. 9 and 10] -
(Hy), = G+ L+ H, [Curve g,c figs. 9 and 10]. -
Let us imagine the singular equilibviom (M) =), = H,+ He
in the point ¢. It appears from fig. 9 that a complex H, 4 Hj, ean
not be converted inio the invariant equilibrium of the point ¢ viz.
into G+ Ly+ H.+ H. [We assume that the gas (¢ consisis of
watervapour only, so that point G coincides with W |. The singular
equilibrium (M) = (M), is, therefore, not transformable into the
invarviant equilibrium ¢; curve (A{) is consequently bidirectionable
and does not terminate, therefore, in the pomt ¢, but it goes through
that point.
Let us now imagine the singular equilibrium (M) = (M), in the
point ¢,. It appears from fig. 9 that a complex H, - H; may be-

Fig. 9. Fig. 10,
converted into the invariant equilibrium of the point ¢, viz. into
G+ L, -+ H,+ H;. The singular equilibrivm (M) = (M),, is,
therefore, (ransformable into the invariant equihibrium ¢, ; conse-
quently carve (M) is monodireclionable and terminates in the
point ¢,. The (M)-curve is represented, therefore, in fig. 10 by
eurve ¢,90 = q,qo,.

Further the singular equilibria

L)y=H,+H;+ G and (), =H,+H;+ L
start frow the point ¢,; as the (4/)-curve 15 monodirectionable in
¢, the three singular curves (M), (L), and (G, coincide in the
same direction. The curves (L), and (G), go, therefore, also, starting
from ¢, in the direction towards g.

-13 -
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As the equilibvium (L), = H, 4+ H;-+ G may be converted in
the point ¢ into the invariant equilibrium ¢ viz. into ¢ 4+ L, ++ H, -+ H,s
curve (L), terminates i the poini ¢g. Consequently curve (L}, is
represented in fig. 10 by curve ¢,q.

The equilibrium. (), =H, + H:+ L may not be converted in
the point ¢ into the invariant equilibriom ¢= G'4 L, + H, + H;;
curve (G), does not terminate, therefore, in the point ¢, but it pro-
ceeds further. It is represented in fig. 10 by cnrve ¢, go =4, qo,.
When we represent the solutions of the equilibrinm (G, = H, -+ H:+- L
in fig. 9, then we get a curve as ¢, 0,.

The singular equilibria )

(L\ H+H,+G and (D=H, 4+ H:+ L

start from the point 9. As the (M)-curve is bidirectionable in ¢,
the singular curves (L) and (&) go in opposite direction. Conse-
quently curve (L) goes starting from ¢ fowards lower pressures and
it terminales in ¢,. Curve (G goes starting from ¢ towards higher
pressures, it is represented in fig. 10 by go = go,. The solutions of
the equilibrinm ()= H, + H;+ L are represented in fig. 9 by
curve ¢ o.

Let us now consider the P,7'diagram in the vicinity of the point
q- In this point the equilibrium: G+ L, 4 H. - H; occurs, it
appears from the position of those phases with respect to one ano-
ther in fig. 9 that the P, 7 diagram must belong3 to the type of fig. 1.
We see that this is really the case.

In the point ¢, the equilibrium G 4 L4 —l—I—L—}—H oceurs. In
accordance with (he position of those phases with respect to one
another in fig. 9, it is apparent that the /P, 7-diagram belongs to
the type of fig. 2 in the vicinity of the point ¢, in fig. 10.

The curves o= (GY= H, + Hz -+ L and ¢,0, = (@), =H, +H:; + L
are no separale curves in fig. 9, but paris of one single curve
goro,q,; this curve has a point of maximum- or of minimum-tem-
peratare in its point of intersection » with the line «f (viz.- with
the prolongation of this line). In fig. 9 we have assumed that 7'
is a maximum. In this point r the equilibvium: H, + Hez <L, s
oceurs, in which L,z vepresenis a liquid of the composition H, = H,..

In fig. 10 the point 7 has not been drawn, of course it is situated
somewhere on that part of the (J/)-curve, which ascends staltmg
from the point ¢, for we have assumed in fig. 9 7, > 7,. This
point » is the stable terminating-point of the curves go and 7,0,
and, as we shall see further, the common point of intersection of
three curves viz. of the (M)-curve, of the meltan-lme of HY a,nd
of the melting-line of Hp. o

4

LY T

-14 -
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In the point » viz. the equilibrium: H, -+ Hs ++ L,s occurs; as
the melting-line of H, represents the equilibriam H,4 L. 7 is,
thevefore, also a point of this melting-line. In the same way it
appears that » is also a point of the melting-line of H,.

The melting-line of H, is represented in fig. 10 by «a, that of
H; by Bb. The three curves ea, 36 and (M), therefore must go in
fig. 10 through a same point 7.

-

In the deduction of fig. 10 we have assumed that the gas-phase
(¢ consists of watervapour only; now we shall briefly diseuss the
case that the compounds H; and H, are also volatile.

Then G contains, besides the watervapour, still the substance S.

When we represent in fig. 9 the compositions of the gas-phases
which -may be in equilibrinm with the liquids of curve dec, then

a curve d'a’c’ arises, which is not drawn in fig. 9. This curve is

the vapourcurve belonging to dec. Also a vapourcurve a’g’z’ which
is not drawn belongs to curve a8z. Now we assume firstly that the
vapours, which are in equilibrium with the liquids, contain less of
the substance S than the liquids. Branch d’¢’ is then situated in
fig. 9 more towards-the left than de, branch ¢’«’ more than ce,
branch 2’3" more than a8 and branch z'® more than z8.

The two vapourcurves d’a’¢’ and 2’3z’ intersect one another in
fig. 9 in g and g, ; the vapour ¢ is in equilibrium with the liguid ¢;
the vapour-g, with the liquid ¢,. The point g is always situated al
the left of the line «%, the point ¢, may be situated also,
however, just as e. g. g, at the right of the line af. . We, first
consider the case that the vapour. which is in equilibrium with the
liquid g¢,, is represented by ¢,.

In the same way as we have deduced above fig. 10, we now
find that the P,7-diagram keeps the form of fig. 10. -

The vapours of the equilibrium (L) = H, + H; 4 G'and of(L),
= H, + H;+ G are represented in fig. 9 by curve_gg,. The equi-
libvium H, 4+ H; -+ G has a point of maximum- or of minimum-
temperature, when the vapouwr ' has the composition H, = Hj.
When we produce in fig. 9 curve gg, until it meets in », the line
aB, then the tangent in s, is borizontal. Consequently in », the
equilibrivm H, + H, -+ G,soccurs, in which G, represents a vapour
of the composition H, = Hj.

In fig. 40 this point », is sitnated somewhere on the metastable
part of the (Al)-curve, viz. on the part, descending starting from
the point ¢,. This point 7, is the metastable terminating-point of
the curves (L) and (L), ; at the same time it is, as we easily see,
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a common point of intersection of three curves viz. of the (M)-curve,
of the sublimation-curve of H- and of that of Hz It appears from
the position of the vapourcurves d’a’c’ and a'f’z’ with respect to
the line «f in fig. 9, that the points in which the sublimation-curves
come in contact with the curves deac and 23z in fig. 10, are
situated at the left of ¢,. .
As long as the vapour, which is in equilibrium with the liquid
¢, is represented in fig. 9 by a point ¢, at the left of the line «3,
the P,7-diagram keeps a form as in fig. 10. The P, 7-diagram
changes, however, when the vapour is represented by a point g, at
the right of the line ep. The singular equilibrium (M)= H. -+ H
is then viz. no more transformable into the invariant equilibrinm
¢, = H,+ Hs+ Gy, + L, . Curve (M) is then bidirectionable not
only in point ¢ but also in ¢, (fig. 10); consequently it proceeds
now also in stable condition below the point ¢,. Curve (@), =H,+
-+ Hz -+ L continues to be represented in fig. 10 by ¢,0,; curve
(L), no more goes now, however, starting from ¢, upwards, but
downwards. 3
The vapours of the equilibria (L) = H. + Hz + G and (L), =
= H, + H; 4 G' are rvepresented in fig. 9 by curve gr,g,, which
has in r, a minimum-temperature. In fig. 10 this point », is situated
somewhere on the (M )-curve below the point¢,. This point 7, is the
~ stable terminatingpoint of the curves (L) and (L),. [Now curve (L},
viz. as has already been said above ascends no more starting from ¢, hut
it descends]. Point r, is also now again the common point of inter-
section of three curves,-viz. of the (4 )-curve, the sublimationcurve
of H,-and that of H; The point in which the sublimationcurve of
H, comes in contact with curve dee, is situated at the left of ¢,;
the point in which the sublimation-curve of H, touches curve 28z,
is situated, however, at the right of ¢,.
Now the reader may easily draw the changes in the figures 9
and 10, when the vapours, which are in equilibrinm with the
liquids, contain more of the substance S than the liquids,

(10 be continued.)

Leiden, Inorganic Chem. Lab.
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