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tChemistr,y. - ';112-, Imono-·and divatiant equilibria." -XI. By Prof.- F. 
A. H. SCHREINEl\IAKERS. 

(Communicated in the meeting of Ocloher 28, 1916). 

18. Binal'y systems with two ind(f/'erent plwses. 
Aftel' the general considerations [Oommunication X] about systems 

with two indifferent phases, we shall apply them now to binal'y 
systems. 

When in the invat'iant point of a binal'y system OCClU'S the equili­
brium: PI + 1'1 + Fa + F4' then only one type of P, T-diagnltll 
exists; we find it in fig'. 2 (I). 

'Vhen in a binal'J sy~tem, however two indifferent phases occur 
and, therefol'e, also two singular phases, tIJen two types of P, ~I'­
diagram exist [figs. 1 and 2].:We may deduce them in different ways. 

When in the concentt'ation-diagram of fig. 2 (I) Pa and 114 are the 
indifferent phases, then PI and F 2 are the singular olies; 'FI and F 2 

have then the same composition, so th at the points FI and F 2 coin­
cide [fig. 1 J. Then we have the singlliar equilibria: 

(11) = FI + F 2 [Curve CM) in fig'. 1J 
(Fa) = FI + 112 + F 4 [Ourve (3) in fig. 1 J 
(F4) = FI + F 2 + Fa [Ourve (4) in fig, 1J 

nnd fUl'ther the e,quilibria: 

(FJ = F 2-+.-Fa +,F4 [Om'\'e (1) in 'tig. 1J 
C1:(2) = FI + Fa + F 4 [Curve (2) in fig. :1 J, 

We may' deduce the type, of P, T-diagram ,from' fig. 2 (1). As (3) 
and (4) are the singular curves, they must, therefore, coincide. It 
follows from our pl'evious considerations that this coincidence may 
take pluce in fig. 2 (I) only in such a way that curve (3) coincides 
with the prolongation of (4) and therefore a1so C'urve (4) with the 
pl'olongation of (3). Then we obtain u type of P, T-diagram, as in 
fig. 1, in wbieb C'lll've (ill) is bidirectionable. Tbis diagram contains 
two' buudl(3s lof curves; the one bundie consists ' of I the, C'llrves (1), 
(4) and (2), the other ouJy of curve (3). Curve (i11) is a middleClll'\'e 
of Jhe (M)-bundle. 

We are able to find the bivariant regions in, th is P, l~diagl'am iu 
tlle same way as in other diagrams . Between the CUl'\'es (1)· alld 
(4) is situated the l'egion (14) = 23, betnreen the curves (1) and (2) 
we find the region (12) = 34, etc. 111l fig. 1 Lhose, regions are indi­
cated; they are the same, as in fig. 2 (I), with this ditference, how-
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ever, that the l'egion 12 from fig. 2 (I) is missing in fig. 1 and is 
replaced by thE' singular curve (LV) = F1 + 112 , 

We have seen in the previons comml1nication that each reg-ion 
which extends over the stabIe Ol' mefastable part of a smgulal' CUl've, 
contains the two indifferent phases. In fig. 1 the l'egIOIl 34 èxtends 
over the singular curves; and thel'efOl'è it contains the two indifferent 
phases Fa and F 4 • 

14 
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f2,J 
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(M) 
IIt} 
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FIg. 1. FIg. 2. 

When in the concentl'ationdiagl'am of fig. 2 (I) FI and 11\ are 
the indifferent phases, th en F1 and Fa are the smglllal' phases, 
F 2 alld Fa have then the same composition, so that the points F J and 
Pa coincide [fig. 2]. Then we have the singular eqnihbria: 

(M) = F 2 + Fa [Curve CM) in fig. 2J 

(F]) = F 2 + Fa + F 4 [Curve (1) in tig. 2J 
I 

(F4) = Ft + F 2 + Fa [Curve (4) in fig. 2J 

and further the equilibria: 

(F2 ) = 111 + Fa + F 4 

(F)=F +F. +F (:1 1 2 4 

[Curve (2) 111 fig. 21 
[Curve (3) in fig. 2]. 

'When we wish to deduce the type of P, T-diagl'arn from fig. 2 (I) 
tIJen, as (1) and (4) are the singlliar curves, we have to lIet them 
coincide. Tben we obtain fig. 2. The three singular curves (11{), 
(1) anel (4) coincide now in the same direction ; the (Jlf)-clll1Ve is, 
therefol'e, monodil'ectionable. Consequemly t he P, T-diagram cOl1sists 
of three oneclU'vical bundIes. 
'In order ro linel the bintrittIlt regions, we have to beat' in mind 

that between the curves (1) and (3) the l'egiun (13) = 2'* is situttted, 

I / 

IM) 

T 
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between the curves (t) and (2) the l'eglOll (;1.2) = 34,; etc.; then we 
find the regioll'l indicated in fig. 2. Those regions are the same as 
in fig. 2 (I); only the region 23 from fig. 2 (I) is missing in fig. 2, 
It is replaced by the singular curve (M) = J?~ + Fa. 

In fig. 2 the l'eglOn 14 extends itself over the metastable pads 
of Lhe singlliar cnrves (jJ;f), (L) and (4); mdeed this reg ion contams 
the two indifferent phases Fl and F 4 • 

Now we have let the phases li\ and Fz coincide nnd also Pa and 
Ps in the concentration-diagra.m of fig. 2 (I), we might as weIl have 
made F3 alld F 4 coincide. Thèn we obtain however a same type of 
P, T-diagram as m fig. 1. Consequently only two different types of 
P, T-chagram may occur; they are repl'esented in figs. :1 and 2. 

We are able to dedllce tbe rypes of P,T-dIagram also m tlle 
followll1g way. In comm1ll1lcation X we have viz. seen that we 
may distingllish t11ree mam types, VIZ. I, HA and lIB. 

In main type I cnrve (kJ) is monodirectionable; the P, T-diagram 
of a binary system has then the same appearauce as that of a 
unary system. Therefore, it· conslsts, as Il1 tig. 2, of three one­
cllrviral bllndles; one of these curves represents then the three 
smgular curves. [In fig. 2 they are the curves (11f), (1) and (4).J 

In main type HA curve (M) is bidirectionable and a middle curve 
of the (Ll.1)-bnndlc [fig. 3 (X)J, we obtam then for a ternary system 
ct type of P,T-dragram as in fig. :1. 

In main type HE curve (J11) is bidirectlOnable and a sirle-curve 
of the (JVl)-bundle [fig. 4 (X)]. As in tlns type, besides the (M)-cul've, 
still ti ve curves at least have to oceul', in binary systems a p, T­
diagram of th is type cannot exist. 

We ean also find the types of P,T-diagram wIth the aid of the 
reactlOns, which may occnr between the phases of the invariant 
point. 

In order to find the type of P, ~T-diagl'am, which belongs to the 
coneentration-diagram of fig. 1, we consider the reactions, whieb 
may occur between the phases and the partition of the curves, resulting 
from those. 

We see that tbis partition of tbe eur\ es is in accordance with 
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fig. 1. It is evident that we can also find easily the type of P, T­
diagram with the aid of Ihis partition of the cnrves. 

We find from the coucentl'ation-diagl'am of fig. 2 

F2~Fa 
(F'2) I CM) I (F3) 

~+~~~ ~~+~~~-
(FI) (F4 ) I (F2) I (F3) (PI) (F4 ) I (Fa) I (F2)· 

Hence we find a type of P, T-diagram as 111 fig. 2. 

We are also able io e1educe the types of P,T·diagram with the 
aid of the series of sign&. In order' to find the sel ies of signs, we 
have I to lmow two reaetions, each between the four phases- of the 
invariant point. We call easily deduce those I reaetion's ti'om the 
concentration-diagrams of figs. 1 and 2; fot' the concentl'ation-diagram 
of fig. 1 we finel then series of signs 1, fol' that of fig. 2 dlt' senes 
of signs 2. 

Series of SigllS 1 (fig. 1) 
FI F3 F 4 F 2 

+/-/+/+ 
o I + + 

. - 0 0 + 
- + 0 

Sel'iéS of signs 2 (fig. 2) 
F 2 FI F 4 Fa 
+/-/-/+ 
o 
- 0 0 
- + .+ 

+ 
+ o 

In series of signs 1 Fa alld F4' in series of signs 2 FI anel F4 

are the indifferent phases; they have opposlte signs in series of 
signs 1 anel they have the same sign in series of slgns 2. The 
positions of the cm'vei:> with respect to one anothel' as m tbe 
figs. 1 anel 2 follow immediately from those series of signs. 

It is apparent ft'om the previous considerations that two types of 
P, T-diagram [tigs. 1 and 21 may OCCUl' in binary systems with two 
indifferent phases. Those types are in accordance with the rules 
whieh we I have deduced in the general considerations L Communica­
ti on XJ. We found amongst others: 

1. The two mdifferent phases have the same sign or in oiller 
words: -the singular equilibrium (1Il) is transformabie into the in­
variant eqnilibrium (.L1l) and reversally. Curve (111) is monodirection­
able; th~ three sÏrJg ular curves coincide in Ihe same dlrection. 
l fig. 1 eX)]. 

2. The two indiffel'ent phases have opposite sign or in other 
words: the singular eqnilibrium (.L11) is not transformabie. Curve 
(M) is bidirectionable, the two othel' singlllal' curves coincide in 
opposite directioll [fig. 2 (X)j. 

, I 
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In order to examine whetbel' ihe two indiffel'ent phases Fa and 
R4 in fig. 1 bave the same sign Ol' not, we take e.g. the J'eaction: 

FI + F 4 ;: Fa or PI - Fa + F 4 = O. 
Hence it appear& that .F1 anel F 4 have opposite signs so that th'e 

singulal' eqllllIbl'illm (Lll) = F, +.F2 is not transformabie. l\Ioreovel' 
the Jatter appeat'S also at once fl'om fig. 1; it appears viz. from the 
position of tlle points F 1 ,F2 ,l?a, and F 4 with respect to one another, 
that a cQmplex of the phases F 1 and F 2 can never be converted 
into the ll1variant eqmlibrium Fl + l?2 + Fa + ft~, 

In ac~orc1ance with ruJe 2 curve (Jf j must be therefore bidirect­
lOnable and the two othel' singuJar CUl'ves [(3) and (4)J have to coinciele 
in oppositp, direction. We see that this is in accordance with fig, 1. 

In the same way it appears that the indiffel'en t phases FI and 
F 4 from fig. 2 have the same sign anel that the singular equilibrium 
(;Jif) = l?2 + Fa is tran&formable. In accordance with l'ule 1 curve 
(JU) must then be monodirectionable and the three &ingular curves 
have to coincide in the same direction, This is in accordance with 
fig', 2. 

Now we shal1 contemplate more in detail some P,T-chagrams. 
'Ve take a binary systcm: water + a saIt 8, of which we may 
assume that 8 is not volatile; conseqnently the gasphase G consists 
of water-vapoUl' only. When no hydrates of the salt 8 occur, then 
we finel in the cryohydratic point the invariant equilibrium: 

I lee + G + L + S, 
in which L is the solution saturated with ice + 8. As the water­
VapOll!' G and the ice 1 [fig. 4] have the same composition, G alld 
lee are the singlllar phases, L anel 8 the indifferent ones. Con­
s~quently we have the singular equilibria: 

(M) = lee + G [curve (JI) in fig. 4]. 
(L) = Jee + G + 8 [curve (L) in fig'. 4). 
(~) = Iee + G + L [cl1l've (S) Ol' qt fig. 4 and qt fig. 3 J 

and flll'ther the equilibria: 
(Iee) = G + L + 8 [curve (1) or qa fig. 4: and qa fig. 31 
CO) =Iee+L+S [curve (0) fig. 4]. 

In fig,3 a concentmtion-temperaturediagram of this binary bystell1 
is elrawn; lF and S l'epl'esent the two components, q is the cryohy­
dratic SOllltioll L. The curves qt and qa go towal'd& highet' tempe­
l'utu{'es sturtillg from q; qt is the ice-curve, it represents the solutions 
of tile equilibrium (8) = fee + G + L; qa represents the soilltions, 
satUl'uted with the salt S, \'iz. the soluiions~ of the equilibrinm 
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([ce) = G + L + S. Cnrve qt terminates in the point t: ihe melting­
p8int of iee nnder its OWll vapolll'-preSSlll'e, consequent]}' tbe triple­
p::lÎnt: water + vapotll' + iee. Ourve qct tel'minates in the melting­
p8int (( of the salt S. 

(S) 

:I ··-.... ·-----.. ·S 
w ,;l " s f .t. 

Fig. 3. Fig. 4. 
u 

We find ill fig. 4, besides the P, T-diagram, also the concentra.tion­
diageam; as iee and watervapoll1' ha\re the same composition,- iJl 
this the points 1 a.nd a coincide. 

We find iu fig. 4 besides the curves (M), (L), (S), (l) and (G) 
also the t1'Ïplepoint t of tbe water. Thl'ee curves start from this 
triplepoint; ÜJ is the evaporationenrve (equWbl'inlTI: water + vapoUl'); 
ts is tlle meltingcurve of the ice (equilibrium: iee + water); tq is 
tile '3nblimationclll've of the iee (eqnilIbrium: iee + vapour). This 
subJimatiol)cUl've tq of the ice is, therefore, at the same time the 
singular curve (.111) = 1 ce + G of the binary systtlnl. 

This (M)-curve is bidireetionable, for the inyariant point q of, 
course cannot be a terminating-point ot: this curve; at the onc side 
of the point q it coineides with tbe singnlar cu~ve (8)=Iee+G+L, 
at the othel' side of the point q with 1he singulal' curve (L) = lee + 
+G+8. 

The reaction Jee + 8;: L may occur between the phases of 
curve (G) = lee + 8 + L; consequently CU1've (G) is the eommon 
melting-cul'VE' of ice and salt S. In genentl it proceeds upwards 
starting from Ihe point q fairly parallel to the P-axi&. When at the 
l'eaction lee + S ~ L the volume incl'eases; then it goes starting 
from q to,~ard& higher tempel'atUl'es; when the volume decreases, 
it goes towards lowet' ternperatures. In tig. 4 we have assumed that 
it proceeds, jl1st -as the melting-line ts of the iee, stal,ting from q 
towards lowel' temperatures, - \ 

It follows f'rom fig. 3 that in fig. 4 CUL've qa must be situa.ied 

r 
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below qt. For this we draw a horizontal line ,'I] !I Z zt in fig. ?; we 
assume that all the points of tbis lino l'epreSenL liquids. (Those liquids 
are tIJen partiJ' stabie, partly metastable). In the point dJ this liquid 
is water: while the percentage of salt mcreases starting from lIJ 

(owal'ds 1~. Consequently the vapOllrpressure decreases along this line 
starting from (lJ toward5 u. 

The horizontal line ,vyzu is represented in fig. 4 by the vertical 
line lVyzU', 'as the vapourpressure in the poin t u is practically zero, 
ihis point has not been drawn in fig. 4:; it is 5ituated in the imme­
'diate vicinity of the l'-::txis. The point (lJ is situated on the metastable 
part of curve tv, point y ou curve (qt) = (S) and point z on curve 
qa = (1). Hence it is apparent that curve qa must be situated, 
therefore, below qt. 

As the concentration-diagram of fig. 4 is tbe same as that of fig. 1, 
the P,l'-diagram of fig. 4 must belong also to the same type as 
that of fig'. 1. We see thM tbis is the ca5e; both P,l'-diagrams 
[fig. 1 and 4] consist viz. of a thl'eecul'vical l and a onecurvical 
bundie ; in both diagrams curve ~1I{) is also a middle-eul've of the 
(M )-bundle. 

J nst as the P,l'-diagram of fig. 1 the reader m::ty deduce ::tlso 
thaL of fig. '* iu different ways; just as in fig. 1 we are able to 
draw the bivariant regions also in fig. 4. As tblS tigure wonld be then 
overfilled \vith letters, 1 give in (1) a symbolieal repl'esent::ttioll. 
[Compare communication IV], The reader may indlCate them in ::t 
P,T-diagl'am, which is drawn Oll" a larger scale. 

Stab. (G) (S)(M) 

}!.Ietast. J 

Ice+L G+ L 

S+L--S+L 

(L)' 

(l) (L)(JJt{) (G) 
G+S lce+S 

(1) 

I I 
(G) (S) (1) 

When in the binal'J ~ystem: water + salt S occUJ'S a hydmte H, 
then the eqnilibrinm : 

Jee + G+ L + H 
may oecur in the cl'yohydratic point q, 'iVhen tllis point Hi" sitnated 
as iJl fig. 3, in whirh qb l'epl'esents the solutions, whieh ::tl'e saturated 
with Hunder theÏl' own vapourpl'esóure, then tlle P, T-diagram is 

) 

(he same as in fig. 4; in this we have onlJ: to l'eplace (S) lIy (H) 
and rr by b. Curve qb in fig. 4 obtains then in i1s flll'thel' pl'oceec1ing 
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fi'l'st à point of maximnmpressure nnd afterwal'ds n point of maxi­
mum. temperatul'E'. 

The hydrate H howevet· IlUty' be situated aIso as in fig. 5; Cl1l'\ e 
aqmb of ihis figl1l'e repl'esents the solutions; snLnrated with>H'under 
theit, own vaponrpt'essnl'e; tile Sohliions~ofthe dotted ipart bmq are then 
metastable. Now we have the following singllJar eqnilibria: 

(:Llf) = Jee + G [Ourve (jV) fig: tiJ 
, (L) = [ce + G + H [Ourve CL) tig. 6J 

(H) = [ce + G + L [Onrve eH) or qt in fig. 6 and qt in fig. 5J 

T 

na, ,.-. " I \. 

f " \ "U ( , J. ..J.~ -----X > .... -.- .J 

'y.r .' 1% " 
I I I \ a,. 

- IJ' 
'Ir P I 

I! 

~!- -
I 

~~.-t .. -. ~y 

j-
• jr 

Fig. 5. 

-- --

• • 
H L 

Fig. G. 
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anel flll'ther' {he eqnilil1l'ia 

(Jee) = G + L + H [ClIrve (J) Ol' qa fig. Band qa fig. 5J 
(G) = lee + L + H [Ollrve (G) fig. BJ 

Besides the CIll'\'es (J.l!), (L), (H), (1) alld G we find in fig. B 
also fhe fl'lplepoint t of the water, ts: the melting-cul'\'e of the iee 
anel tv the evaporatlOn(llll'\'e of the water. 

It appeal's fl'ol11 a eomparison of the fig&. ± and 6 Ihat eune 
(S) = qt fl'om fig. 4 ib l'eplaced in fig. B by cune (B) = qt. Ourve 
(I) = qll, whieh represents the €'quilibl'ium G + L + H, pl'oeeeds 
in fig 4 from q towards highel' Tand P, m fig. 6 this cnne 
pl'oceeds, bowe\'e1', starting ft'om q towal'ds 10wer Tand P. The 
metastable part qmb of this ClH've bas its point of maxtnll1m tempe­
l'atnl'e in the vicinity of the point 1n [figs. 5 and 6J. 

Wlten we draw 111 fig. 5 the borlzolltal lille ,1J,ljzu anel in fig. 6 
~ the yertical lme ,'I.'.lIZU correspondil1g wiul thi~ ihen we see that t!Je 

different curves must be sitnated with respect 10 one anolhei', as is 
cltmvn in fig. 6. ' 

As the concentrationdlagl'îl.ln of fig. B is the same as that of fig. 1, 
the P, T .. dlagram of fig. B must thel'efore, belong to the same IJ pe 
as t!Jat of tig. 1. We see that this is l'eally the ('ase. 

Now ,ve take the binary sJstem : water + salt S, of whieh S 
occnrs in two modifications 8" and S/3.,!n fig. ,,,7 q is the Soilltion, 
saturated with the two ll1odifieatiolls lIndel' ils own vapoUl'jJl'essl1l'e. 
Consequently we have the eqUIlIbrium: 

G+L+S,,+S,> 
Omve (qp) [fig. 7J l'epreseuts the solutions of the equilibrium 

G + L + S/3; it tel'minates in tbe meltingpoint rJ of' the modifi('ation 
S"~, Ourve dg repl'esenls lhe solutiol1'3 of tlle eqllIlibrlUm G+L+S", 
the melastable prolongalion qa of Ihis CUI'V€' terminales in the mela­
stabie meltingpoil1t (I of' the modification S~. 

Ourve qo l'epl'eseJlts Ihe soltllions of' the eqllIlibl'illll1 S«+Sr-+L; 
wllh Ihis we ha\'e assumed th at thit, el1l've pl'oceed& startll1g from 
q lowal'ds higher telllperatllres. 

We have Ihe singnlal' equilibria: 

(ivf) = S" + Sp [Ol1rve (M) fig. 8J 
[OUl've (L) fig. 8J (L) =S,,+ St> + G 

(G) = Sr, + Sp + L 

and furlhel' thc eqllilibrla: 

[UIll've (Gl or qo fig. 8 and qo fig. 7J 

46 
Pl'oceedings Royal Acad Amsterdam. Vol. XIX. 
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(S,,) = G + t + I~g [Curve (S,,) Ol' q,i fig. 8 and qfJ fig. -7J 

(1"'3) = G + L + S" L Cmve (Sf') Ol' qd tig. 8 and gd fig. 7J ~ 

When S" and Sig ar'e nOL volatile, then G eonsists of watel'vaponr 
only. lf they al'e volatile, then (j contains also S. 'fhe more -
S is contaiJled iJl 0, tbe more the poïÎÎt G shifts towards the right 
in the concentl'ation-diagram of fig. 8. As long as the foUt' pha5es 
with respect to one anotbel' al:e situated, howe\'el', as in fig. R, the 
P,T-diag'ramtype remains the same. 

As it appeal's ft'om tbe change in \'olume at the l'eactioll 1:j",,;;!SI3 

which is genel'ally smalI, the (M)-clll've p.'oceeds genel'al fail'ly 
pal'allel to the P-axis; it termÏllates towards lower pressl1l'es in tbe 

(/"IJ) J", 
• • • 

W ol -t~ j- L Jj3 

1,'ig. 7. Fig. 8. 

tl'iplepoint. S", + SI3 + vapoUl' 8. It lI1ay pl'oceed from th is tJ-iple­
point as, well towards higher as towards 10we1' tempel'atnres; in 
figs. 7 alid 8 wc have assumed that it goes towards higher 1'. 

The position of Ihe curves q,J and qd with respect Lo one anothei· 
in fig. 8 follows ft'om fig. 7; for th is we have to draw a hOl'izontal 
line, w bieh intel'sects the stabIe part of the one and t he metastable 
part of the otller Clll've. 

As tbe concentration-diagrams of figs. 1 and 8 belong to the same 
type, this must also be the case with the P,T-diagl'ams of both 
figul'es, We see that th is is l'eally the case. 

Now we shall discuss a binat·y system, in whi('h OCCUl'S a P, T­
diagram of the type of fig. 2, Fpl' this we take the system: water 
+ saIt S, in which a hydmte H OCClll'S in the two modifieations 
HO' and B I3 [fig. 9 J. 

WheJl we repl'ebent the solulions of thc equihbl'illlll G + L + H" 
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in a concenfl'tl.tion-temperatnre-diagram, then we obtain a curve 
dqaqlc [fig'. 9J, wbich has its maximum of tempel'atul'e in the vicinity 
of the point Lt. The curve, which repl'esel1ts the solutions of the 
equilibrium G + L + B(3, is l'epresented by tcq[jq1z (fig. 9); it lias 
its point of maximum temperatlll'e in the vicinity of the point {J. 

Tbe curves intel'sert one another in q anel ql (tig. 9); in thit, we 
bave assnmed 1~ > X/l' The dotted par Is of the curves l'epresent 
mefastable conditions. 

Now we luwe two inval'Îant eqnihbria, viz. 

in the point q 
in the point q 1 

G + L q + H(/ + Rf' 
G + L(!I+ H(/ + H,3 

In tig. 9 the solutions of the eqnilibria G + L + H(/ and 
G + i + Ht, are reprf'sented by dqaqJc and ,vq[jqlz; in the P,T­
diagram' of fig. 10 those equilibria al'e I'epl'esented by the same 
Cl1l'ves. As we have assumed in fig. 9 XI::> Tgl , tbic; mnst also be 
the case in fig. 10. 

The posilion of those cUl'ves in tig. 10 with respert to one anothel' 
follows ti'om fig. 9. On the horizon tal !ine dxzc viz. the vapol/r­
tension of Lhe liquids eleCl'eLlSeS stal'ting fl'om cl towards c; in the , 
P, T-dlagram the points d,tt"z anel c must be sitnated, thel'efore, 
with respect to one a,notlJel', as in lig. 10. When we draw in tig. 9 
also other hOl'izontal 1ines, then we see th at the position of the 
cl1l'\'es -dac ~wd a',h in fig. 10 is in accordance wilh that in fig. 9. 

In the point q we have the singulal' equilibria: 

(J.l{) = H(/ + B,3 [Ourve (M) fig, 10J 
(L) = H(/ + Ha + G [Ourve lL) = qql tig. 10J 
(0) = Hf/. + ~,+ L [Cmve (G) = qo = qOl fig'. 10 

and OUI'\'e qo fig. 9J 
and fUl'thel' the equilibria, all'eady discl1ssed: 

(H,;.) :::=; G + L + Hl' [Oul'\'e qfJ tigs. ~ and 10 J 

,Hf') = G + L + H(/ [Ollrve qd figs. 9 alld 10]. 

lil disÜnctiOl\ of the eqnilibt'ia ocr~m'ing in g, we gh e to the 
equilibria OCCUl'l'iJlg' in ql the index 1. Then Wf' have in the point 
ql the singnlal' equilibria: 

(M)1 = H",.+ Hl' 
(L)l = Hf/. + B" + G 
(G)l = R(/ + HI3 + L 

[OUl've (M) fig. 10J 

[Oune (L)l = qlg lig'. 10J 
[OllJ'VC (G)l = qlOI = Qlo fig. 10 

and Ourve g101 fig. ~J 

Hm! flll,ther the eql1llibria, ali'cady discusscd: 
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(H")l = G + L + Hl' [Curve qJl figb. 9 and 10 J 
(~.)\ = G + L + HO' [UUI've q\G figs. !} anel 10 J. 

Lel us imaginr lhe singnlm' equilibrinm CM) = CM)\ = HO' + Hp 
in the point q. It appears from fig. 9 that a complex HO' + -Hp can 
not be cOlJvel'ted info the inva)'iant equilibl:inm of the ï)oinf q viz. 
info G + Lq + HO'. + Bil' [We assmue that the gas G consisfs of 
watel'vapoUl' only, so that point G coincides with TV J. Tüe sÏlJgu]ar 
eqnilibrium CM) = (111)1 is, therefore, not transformabie info the 
in ml'iant equilibri nIll q; Curve (111) is consequen tIy bicIJl'ectioll€l bIe 
anel does not fel'minate, thel'efol'e, in the pOlllt q, but it goes thl'ongh 
that poin t. 

Let us now imagine the singular equilibrium (111) = (M)l in Ihe 
point q\. It appears frOl11 fig. 9 that a comple1.. HO' + Hl. may be-

, 

-"V ( M) 

T o 0, 
1 

{IJ (~/) 

d \ ,,::: .'"( ~.~ ::x. 1/ -

I 

\ 

,. 
e. 

~~ S 
Fig. 9. Fig. ] O. 

convel'tecl into the invariant eqnilibl'inm of the point q1 VIZ. ilJto 
G + Lilt + HO' + H3' The singular equilibrium (J.lf) = (M)!> is, 
therefol'e, tmnsformable inlo the ilJvariant equilIbrium q\; con se­
Cjllently curve (M) is monodirectionable and tel'minates in the 
point q\. The (.M)-cun e is repl'esented, thel'efc)]'e, in fig. 10 by 
curve q\qo = q\qol' 

Further fhe singnlal' eq uilibl'ia 

rL)1 = HO' + H.3 + G allel (G)l = H" + Hp + L 
start ft'om the point q1; as the (J1f)-cUl've IS monodil'ectionable in 
qu the LhL'ee bingnlal' Clll'ves (111), (L)l and (G)1 coincide in the 
same diredion. The curves l L)l anel (G)1 go, theret'ol'e, also, stal'ting 
1')'om q\ ill the direclion low[1l'ds q. 

~ 

I 
I 
I 
I 

t 

/3 
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As the equilibrium (L)I -= H" + H,3 + G may be convel'ted in 
the point q into the in\'ariant equilibrium 9. viz. inlo G + L" + H" + Hp 
curve (L)I terminates II1 the point q. Com,equently rUl'\'e (L)] is 
l'epresented in fig. 10 by Cllrve 9.lq. 

The eqllilibl'illll1- (O)l = H" + Hl + L may not be converted in 
the point q into tbe invaI'iant equilibrium q = G + L" + H" + B,l; 

curve (G)I does not terminate, thel'efol'e, in the point 9., but it pro­
ceeds fllrther. Tt is I'epl'esenteel in tlg. 10 by Clll'\'e 9.1 q ° = {/J 9.°1' 
W"hen we repre&ent the solutions of the equilibrinm (G\ = H,,+ H,3+ L 
in fig. 9, then we get a C1ll've as 9.1°1' 

The singnlar equilibria . 
rL; = H" + H3 + G anel (G) = H" + H,3 + L 

&tart from the point q. As the (M)-cnl've is bidirectionable in q, 
the singulat' Clll'VeS (L) anel (G) go in opposüe dil'ection. Conse­
quentl)' Cllrve (L) goes starting from q lowal'c1s Jowel' presslll'es anel 
it te1'l11inates in fJ.I' Cmve (G) goes starting from q towards higher 
pressnl'es, it is l'epl'esented in fig. 10 by Q ° =- q 0l' The Rollltions of 
the eqnilibrillLU (fi-) = H" + Hl + L are )'epl'esented in fig. 9 by 
Cllrve q 0. 

Let us now consider tiJe P, T-diagram in the 'irinity of the point 
q. In this point the eqllilibl'ium: G + L'J + H(/. + B3 OCCI1l'S, it 
appeat's from the posiÜon of those phases with respect fo olle ano­
ther in fig. 9 that the P, T .. diagl'am mnst belong to the type of fig. 1, 
We see that this is really the case. 

In the point 9.1 the equilibrium G + L'Ij + H(/. + Hl occurs. In 
accol'claric.e with {he position of those phases wil h respect to Ol1e 
anothel' in fig. 9, it is apparellt that the P, T-diagram belongs to 
the type of fig. 2 in the vicinity of lhe point 9.1 in fig. 10. 

The CUl'ves qo=(G)= H,,+ Hf3 + Land CJ.IOl = (G)l=H"+R;'3+L 
aL'e no sepm'ale CUl'ves in fig. 9, but pat'ts of one single CUl'\ e 
9.°1'°19.1; Ihis Clll'Ve !tas a point of ma'{imum- Ol' of mÎlliml1m-tem­
pel'ature in its point of interseetion l' with tbe \ine al=! (viz.= with 
the pl'olougation of this line). In fig. 9 we ha\'e assumed that· 'T 
is a maximum. In tbis point l' the equilibrium: H" + Hf' +':L"f 
ÖeClll'S, in whicb L(/..,s represents a lillnicl of the composition H,,- '- Hp:: 

In fig. 10 the point l' ha,s not been dl'awn, of COt1l'se it is sittiated" 
sómew here 011 that part of the (.JV)-cUl've, w hiel! ascends stal'ti~'g 
fl'om the point q, fol' we bave assumed in fig'. 9 1~ > 1:" This 
point l' is the stable tel'minatillg-point of the curves' 9.0 'and qlOI 

and, as we shall see furthel', the common poillt of intel'section of 
tlu'ee CUl'ves viz. of the (ilf)-cUl've, ot' the ll1elting~'line ot· R; and 
of the rnelting-line of Hp' '- ') 

,I 
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In the point l' viz. the equilibrium: H" + B ,9 + L", s OCCUl"S; as 
the melting-line of H" represents the equilibrium H~ + L",.(3, l' is, 
therefore, also a point of this melting-line. In tbe same way it 
appeàrs that l' is also a point of the melting-line of 8(3' 

The melting-line of H~ is represented in fig. 10 by aa, that of 
H.3 by {1b. The three curves aa, /3b ani (11/), tllerefore must go in 
tig. 10 through a same point 1'. 

In the ded~lction of fig. 10 we have assnmed that tbe gas-pháse 
G consists of watel'vapour only; now we shalI bl'iepy c1iscnss the 
ease Ihat the compollnds Hg and H" are also ,'olatile. 

Then G contains, besides tbe watervapOlll', still the sllbstance S. 
When we l'epresent in tig. 9 the compositions of the gas-phases 

which ·may be in equilibrium with the liquids of curve d[ic, then 
a curve d'a'c' arises, whieh is not dmwn in fig. 9. This curve is~ 
tbe VapOlll'CUrVe belonging to dac. Also a vapoul'rlll've m' p' z' wbich 
is not dl'awn beloJlgs to CUl've <1'pz. Now we assume fil'stly th at the 
vapours, which are in eqnHibl'ium with the liquids, contain less of 
the substance S than the liquids. Branch d' (/ is then sit uated i~ 
fig. 9 mOI'e towarcls ~the left than da, branch c' a.' Inore than ca, 
branch tV'{~' more than .v{1 and branch z'll' more than z{1. 

The two \'apol1l'cul'ves d'a' c' and .1"/)' z' lntersect one another in 
fig. 9 in 9 alld 91; the Yaponr 9 is in equilibrium with the liquid q; 
the vapoUl" 9 j with. the liquid q I' The poillt ,q is al w~ys situated at 
tbe left of the line (/[:1, the point 91 may be situatep also, 
however, just as e, g. 92 at the rigbt of the line all, We, first 
consider the case tbat the vapour. wbich is in equilibrium with the 
liquid qll is represented by fit. 

Ln the same way as we have deduced above fig. 10, we NOW 

find that the P, 1~diagram keeps the form of fig. 10. ' 
The vapolll's of the equilibrium (L) = H" + H3 + G and of(L\ 

= H", + H. + Gare repl'esented in fig. 9 by curve _991' The equi­
librium [{" + H,. + G bas a point of maximum- Ol' of minimum­
temperature, wh en the vapoUl' G has the composition H2 = !H(3. 
When we produce in fig. 9 CUl'\'e 9,Qj nntil it meets in 1'1 Ihe liIle 
a{11 (hen the tangent in 1\ is bOl'izontaJ. Oonsequentl)' in 1'1 tbe 
equilibrium H", + Hrx. + Gd occurs, iu whicb G".[3 repl'esents a VapOlll' 
of the composition Hv = H(3. 

In fig. jO Ihis point 1\ is sitnated somewhere on tbe metastable 
part of the (11fJ-cul've, viz. on the pal'!, descending stal'ting ,from 
the point ql' This point 1\ is the metastable tel'minating-point of 
the cm'ves CL) and (L)I ; at the same time it is, as we easily see, 
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a common point of intel'section of thl'ee curves viz. of the (2JtJ)-cUl've, 
of the sublimatiolFCl1l"Ve of H" and of that of 9;3. It appears from 
the position of the vapoUl'cUl'ves d' ((I Cl and Xl fl-I Zl with l'espect to 
tbe !ine l/{1 in fig'. 9, that the points in which the sl1blimation-curves 
come in contact with the curves dac and ,'C:~z in fig. 10, al'e 
situated at the left of CJl' 

As long as the vaponr, which is in equilibrium with the liquid 
CJt is represented in fig, 9 by a point f;/I at the left of the Jine a{/, 
the P, T-diagram keeps a form as in fig, 10, The P, 7~diagram 
changes, howevel', when the vapou!' is l'epresented bJ' a point g. at 
the l'ight of tbe line a,~, The singulal' equilibriuIll (M) = &. + H;3 
is then viz. no more tl'ansfOI'rnable into tbe inval'iant equilibrium 

CJl = H" + Hj3 + Gy! + LIJ!' Cur\'e (M) is then bidirectionable not 
only in poÏllt q but al&o in CJl (fig. 10); conseque11tly it proceecls 
now also in stabie conditioll below the point (jl' Curve (G\ = H,,+ 
+ ~3 + L continues to he represented in fig. 10 by q10l; CUl've 
(L\ no more goes now, howevel', starting from CJl upwards, but 
down wards. 

The vapoUl's of the equilibria (L) = H" + H/3 + G and (L)I = 
= 1L + H,3 + Gare represented in fig. 9 by curve g1'2g., whirh 
has in r. a rninimum-temperature. In fig. 10 this point ]'2 is sitllated 
sornewhel'e on the (M)-clll've below the point CJl' This point 1'2 is tbe 
stabie terminatingpoint of the curves (L) and (L)l' [Now curve (L\ 
viz. as has all'eady been said above ascends 110 11lol'e stal'ting from CJl but 
it del:icends 1- Point 1'2 is also now again the cornmon point of inter­
section of th ree cm'ves,- viz. of the (Jf)-clIl've, the su blimationcul've 
of Het. 'and that of Ho. The point in which the sublirnationcurve of 
B" comes in contact with curve él a c, is sltuated at the left of q!; 

the point in which the subhmation-cul've of Hp touches curve ,1) {J z, 
is sitnated, howevel', at the right of (jt' 

Now the reader may easily draw tlle challges in the figlll'es 9 
and 10, wben the vapolll's, which are in equilibrinm with tbe 
liquids, contain more of the substance S than the liquids. 

(To be rontinued.) 

Leiden, Inol'ganic Chem. I.Jab. 
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