Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

F.A.H. Schreinemakers, In- mono- and divariant equilibria. XI, in:

KNAW, Proceedings, 19 I, 1917, Amsterdam, 1917, pp. 713-727

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
"Chemistry. -- "In-, mono-and divariant equilibria." XI. By Prof. F.

A. H. Schreinemakers.

(Communicated in the meeting of October 28, 1916).
18. Binary systems with two indifferent phases.

After the general considerations [Communication X] about systems with two indifferent phases, we shall apply them now to binary systems.

When in the invariant point of a binary system occurs the equilibrium: $F_{1}+F_{2}+F_{3}+F_{4}$, then only one type of P, T-diagram exists; we find it in fig. 2 (I).

When in a binary system, however two indifferent phases occur and, therefore, also two singular phases, then two types of P, T diagram exist [figs. 1 and 2].:We may deduce them in different ways.

When in the concentration-diagram of fig. 2 (1) F_{3} and F_{4} are the indifferent phases, then F_{1} and F_{3} are the singular ones; ' F_{1} and F_{2} have then the same composition, so that the points F_{1} and F_{2} coincide [fig. 1]. Then we have the singular equilibria:

$$
\begin{aligned}
(M)=F_{2}+F_{y} & {[\text { Curve }(M) \text { in fig. 1] }} \\
\left(F_{3}\right)=F_{1}+F_{2}+F_{4} & {[\text { Curve (3) in fig. 1] }} \\
\left(F_{4}\right)=F_{1}+F_{3}+F_{3} & {[\text { Curve (4) in fig. 1] }}
\end{aligned}
$$

and further the equilibria:

$$
\begin{array}{ll}
\left(F_{1}^{\prime}\right)=F_{2}+F_{3}+F_{4} & {[\text { Curve (1) in fig. 1] }} \\
\left(F_{2}\right)=F_{1}+F_{3}+F_{4} & {[\text { Curve (2) in tig. ©1 }] .}
\end{array}
$$

We may deduce the type of P, T-diagram from fig. 2 (1). As (3) and (4) are the singular curves, they must, therefore, coincide. It follows from our previous considerations that this coincidence may take place in fig. 2 (I) only in such a way that curve (3) coincides with the prolongation of (4) and therefore also curve (4) with the prolongation of (3). Then we obtain a type of P, T-diagram, as in fig. 1, in which curve (M) is bidirectionable. This diagram contains two bundles of curves; the one bundle consists of the.curves (1), (4) and (2), the other only of curve (3). Curve (M) is a middlecurve of the (M)-bundle.

We are able to find the bivariant regions in this P,I-diagram in the same way as in other diagrams Between the curres (1) and (4) is situated the region $(14)=23$, between the curves (1) and (2) we find the region (12) $=34$, etc. In fig. 1 those regions are indicated; they are the same as in fig. 2 (I), with this difference, how-
ever, that the region 12 from fig. $2(\mathrm{I})$ is missing in fig. 1 and is replaced by the singular curve $(M)=F_{1}+F_{2}$.

We have seen in the previons communication that each region which extends over the stable or metastable part of a singular curve, contains the two indifferent phases. In fig. 1 the regon 34 extends over the singular curves; and therefore it contains the two indifferent phases F_{3} and F_{4}.

Fig. 1.

Flg. 2.

When in the concentrationdiagram of fig. 2 (I) F_{1} and F_{1} are the indifferent phases, then F_{2} and F_{3} are the singular phases, F_{2} and F_{3} have then the same composition, so that the points F_{3} and F_{a} coincide [fig. 2]. Then we have the singular equilibria:

$$
\begin{aligned}
(M)=F_{3}+F_{3} & \text { [Curve (M) in fig. 2] } \\
\left(F_{1}\right)=F_{3}+F_{3}+F_{4} & \text { [Curve (1) in fig. 2] } \\
\left(F_{4}\right)=F_{1}+\mathscr{F}_{2}+F_{3} & \text { [Curve (t) in fig. 2] }
\end{aligned}
$$

and further the equilibria:

$$
\begin{array}{ll}
\left(F_{2}\right)=H_{1}+F_{3}+F_{4} & \quad \text { Curve (2) in fig. 2] } \\
\left(F_{3}\right)=F_{1}+F_{2}+F_{4} & \text { [Curve (3) in fig. 2]. }
\end{array}
$$

When we wish to deduce the type of P, T-diagram from fig. 2 (I) then, as (1) and (4) are the singular curves, we have to let them coincide. Then we obtain fig. 2. The three singular curves (M), (1) and (4) coincide now in the same direction; the (M)-curve is, therefore, monodirectionable. Consequently the P, T-diagram consists of three onecurvical bundles.

In order to find the bivariant regions, we have to bear in mind that between the curves (1) and (3) the region (13) $=24$ is situated,
between the curves (1) and (2) the region (12) $=3 \pm$; etc.; then we find the regions indicated in fig. 2. Those regions are the same as in fig. 2 (I); only the region 23 from fig. 2 (I) is missing in fig. 2 , it is replaced by the singular eurve $(N / J)=F_{2}+F_{3}$.

In fig. 2 the region 14 extends itself over the metastable parts of the singular curves (M), (\mathbf{l}) and (4); indeed this region contans the two indifferent phases F_{1} and F_{4}.

Now we have let the phases F_{1} and F_{2} coincide and also F_{2} and F_{3} in the concentration-diagram of fig. $2(\mathrm{I})$, we might as well have made F_{3} and F_{4}^{\prime} coincide. Then we obtain however a same type of P, T-diagram as in fig. 1. Consequently onls two different types of P, T-diagram may occur; they are represented in figs. 1 and 2.

We are able to deduce the rypes of P, T-dagram also in the following way. In communication X we have viz. seen that we may distinguish three man types, viz. $\mathrm{I}, \mathrm{II} A$ and $I 1 B$.

In main type I curve (M) is monodirectionable; the P, T-diagram of a binary system has then the same appearance as that of a unary system. Therefore, it-consists, as in fig. 2, of three onecurvical bundles; one of these curves represents then the three singular curves. [In fig. 2 they are the curves (M), (1) and (4).]

In main type II A curve (M) is bidirectionable and a middle curve of the (M)-bundle [fig. $3(\mathrm{X})$], we obtain then for a ternary system a type of P, T-diagram as in fig. 1.

In main type Il B curve (M) is bidirectionable and a side-curve of the (M)-bundle [fig. $4(\mathrm{X})$]. As in this type, besides the (M)-curve, still five curves at least have to occur, in binary systems a P, T diagram of this type cannot exist.

We can also find the types of P, T-diagram with the aid of the reactions, which may occur between the phases of the invariant point.

In order to find the type of P, T-diagram, which belongs to the concentration-diagram of fig. 1 , we consider the reactions, which may occur between the phases and the partition of the curves, resulting from those.

$$
\begin{aligned}
& F_{1} \rightleftarrows F_{2} \\
& \left(F_{1}\right)|(M)|\left(F_{2}\right) \\
& F_{1}+F_{4} \underset{\sim}{\rightleftarrows} F_{3} \quad F_{2}+F_{4} \rightleftarrows H_{3} \\
& \left(F_{1}\right)\left(F_{1}\right)\left|\left(F_{2}\right)\right|\left(F_{1}\right) \quad,\left(F_{2}\right)\left(F_{4}\right)\left|\left(F_{1}\right)\right|\left(F_{3}^{\prime}\right) .
\end{aligned}
$$

We see that this partition of the curves is in accordance with
fig. 1. It is evident that we can also find easily the type of P, T diagram with the aid of this partition of the curves.

We find from the concentration-diagram of fig. 2

$$
\begin{gathered}
F_{2} \rightleftarrows F_{3} \\
\left(F_{2}^{\prime}\right)|(M)|\left(F_{3}^{\prime}\right) \\
F_{1}^{\prime}+F_{4} \rightleftarrows F_{3} \quad-F_{1}+F_{4} \rightleftarrows F_{2}^{\prime} \\
\left(F_{1}\right)\left(F_{4}\right)\left|\left(F_{2}\right)\right|\left(F_{3}\right)
\end{gathered}\left(F_{1}^{\prime}\right)\left(F_{4}\right)\left|\left(F_{3}\right)\right|\left(F_{2}\right) . . ~ \$
$$

Hence we find a type of P, T-diagram as in fig. 2.
We are also able to deduce the types of P, T-diagram with the aid of the series of signs. In order to find the series of signs, we have to know two reactions, each between the four phases- of the invariant point. We can easily deduce those' reactions from the concentration-diagrams of figs. 1 and 2 ; for the concentration-diagram of fig. 1 we find then series of signs 1 , for that of fig. 2 the serres of signs 2 .

In series of signs $1 F_{3}$ and F_{4}, in series of signs $2 F_{1}$ and F_{4} are the indifferent phases; they have opposite signs in series of signs 1 and they have the same sign in series of signs 2. The positions of the curves with respect to one another as in the figs. 1 and 2 follow immediately from those series of signs.

It is apparent from the previous considerations that two types of P, T-diagram [tigs. 1 and 2] may occur in binary systems with two indifferent phases. Those types are in accordance with the rules which we 'have deduced in the general considerations [Communication X . We found amongst others:

1. The two indifferent phases lave the same sign or in other words: the singular equilibrium (M) is transformable into the invariant equilibrium (M) and reversally. Curve (M) is monodirectionable; the three singular curves coincide in the same drrection. [fig. $1(\mathrm{X})$].
2. The two indifferent phases have opposite sign or in other words: the singular equilibrium ($\mathcal{I X}$) is not transformable. Curve (M) is bidirectionable, the two other singular curves coincide in opposite direction [fig. $2(\mathrm{X})$].

In order to examine whether the two indifferent phases F_{3} and f_{4} in fig. 1 have the same sign or not, we take e.g. the reaction :

$$
F_{1}+F_{4} \rightleftarrows F_{3} \text { or } H_{1}^{\prime}-F_{3}+F_{4}=0 .
$$

Hence it appears that F_{3} and F_{4} have opposite signs so that the singular equilibrium (M) $=F_{7}+F_{g}$ is not transformable. Moreover the latter appears also at once from fig. 1; it appears viz. from the position of the points F_{1}, F_{2}, F_{3}, and F_{4} with respect to one another, that a complex of the phases F_{1} and F_{2} can never be converted into the invariant equlibrium $F_{1}+F_{2}+F_{3}+F_{4}$.
\cdot In accordance with rule 2 curve (M) must be therefore bidirectronable and the two other singular curves [(3) and (4)] have to coincide in opposite direction. We see that this is in accordance with fig. 1 .

In the same was it appears that the indifferent phases F_{1} and F_{4} from fig. 2 have the same sign and that the singular equilibrium $(M)=F_{2}+F_{3}$ is transformable. In accordance with rule 1 curve (M) must then be monodirectionable and the three singular curves have to coincide in the same direction. This is in accordance with fig. 2.

Now we shall contemplate more in detail some P, T-dhagrams. We take a binary system: water + a salt S, of which we may assume that S is not volatile; consequently the gasphase G consists of water-vapour only. When no hydrates of the salt S occur, then we find in the cryohydratic point the invariant equilibrium :

$$
I c e+G+L+S
$$

in which L is the solution saturated with ice $+S$. As the watervapour G and the ice I [fig. 4] have the sume composition, G and lec are the singular phases, L and S the indifferent ones. Consequently we have the singular equilibria:
$(M)=l c e+G \quad[$ curve (M) in fig. 4].
$(L)=l c e+G+S \quad[$ curve (L) in fig. 4).
$(S)=I c e+G+L \quad[$ curve (S) or $q t$ fig. 4 and $q t$ fig. 3$]$ and further the equilibria:
$(I c e)=G+L+S$ [curve (l) or $q a$ fig. 4 and $q a$ fig. $3 \mid$
$(G)=I c e+L+S$ [curve (G) fig. 4].
In fig. 3 a concentration-temperaturediagram of this binary system is drawn; W and S represent the two components, η is the cryohydratic solution L. The curves $q t$ and $q a$ go towards higher temperatures starting from q; $q t$ is the ice-curve, it represents the solutions of the equilibrium $(S)=I c e+G+L ; q a$ represents the solutions, saturated, with the salt S, viz. the solutions- of the equilibrium
$(I c e)=G+L+S$. Curve gt terminates in the point t : the meltingpoint of ice under its own vaponr-pressure, consequently the triplepaint: water + rapour + ice. Curve qa terminates in the meltingpoint a of the salt S.

Fig. 3.

Fig. 4.

We find in fig. 4 , besides the P, T-diagram, also the concentrationdiagram; as ice and watervapour have the same composition; in this the points I and G coincide.

We find in fig. 4 besides the curves $(M),(L),(S),(I)$ and (G) also the triplepoint t of the water. Three curves start from this triplepoint; $t v$ is the evaporationcurve (equilibrinm: water + vapour;; $t s$ is the meltingcurve of the ice (equilibrium : ice + water); $t q$ is the sublimationcurve of the ice (equilhbrium: ice + vapour). This sublimationcurve $t q$ of the ice is, therefore, at the same time the singular curve $(M)=I c e+G$ of the binary system.

This (M)-curve is bidirectionable, for the invariant point q of. course cannot be a terminating-point of this curve; at the one side of the point q it coincides with the singular curve $(S)=F c e+G+L$, at the other side of the point q with the singular curve $(L)=$ Ice + $+G+S$.

The reaction $I c e+S \rightleftarrows L$ may occur between the phases of curve $(G)=I c e+S+L$; consequently curve (G) is the common melting-curve of ice and salt S. In general it proceeds upwards starting from the point q fairly parallel to the P-axis. When at the reaction $1 c e+S \rightarrow L$ the volume increases; then it goes starting from q towards higher temperatures; when the volume decreases, it goes towards lower temperatures. In fig. 4 we have assumed that it proceeds, just as the melting-line $t s$ of the ice, starting from q towards lower temperatures.

It follows from fig. 3 that in fig. 4 curve $q a$ must be situated
below qt. For this we draw a horizontal line $x y z u$ in fig. 3; we assume that all the points of this line represent liquids. 'Those liquids are then partly stable, partly metastable). In the point x this liquid is water, while the percentage of salt increases starting from x towards u. Consequently the vapourpressure decreases along this line starting from x towards u.
The horizontal line $x y z u$ is represented in fig. 4 by the vertical line xyzu; as the vapourpressure in the point u is practically zero, this point has not been drawn in fig. 4 ; it is situated in the imme'diate vicinity of the T-axis. The point x is situated on the metastable part of curve $t v$, point y on curve $(q t)=(S)$ and point z on curve $q a=(I)$. Hence it is apparent that curve $q a$ must be situated, therefore, below $q t$.

As the concentration-diagran of fig. 4 is the same as that of fig. 1 , the P, T-diagram of fig. 4 must belong also to the same type as that of fig. 1. We see that this is the case; both P, T-diagrams [fig. 1 and 4] consist viz. of a threecurvical and a onecurvical bundle; in both diagrams curve (M) is also a middle-curve of the (M)-bundle.

Just as the P, T-diagram of fig. 1 the reader may deduce also that of fig. \pm in different ways; just as in fig. 1 we are able to draw the bivariant regions also in fig. 4. As this tigure would be then overfilled with letters, 1 give in (1) a symbolical representation. [Compare communication IV], The reader may inducate them in a P, T-diagram, which is drawn on a larger scale.

Stab.

Metast.
(L)
(G) (S) (I)

When in the binary system : water + salt S occurs a hydrate H, then the equilibrium :

$$
l c e+G+L+H
$$

may occur in the cryohydratic point q. When this point H is situated as in fig. 3, in which $q b$ represents the solutions, which are saturated with H under their own vapourpressure, then the P, T-diagram is the same as in fig. 4 ; in this we have only to replace (S) by (H) and a by b. Curve $q b$ in fig. 4 obtains then in its further proceeding
first a point of maximumpressure and afterwards a point of maximum, temperature.
The bydrate H however may be situated also as in fig. 5; curve aqmb of this figure represents the solutions; saturated with H under their own vapourpressure ; the solutions of the dotted part $b m q$ are then metastable. Now we have the following singular equilibria:

$$
\begin{array}{ll}
(M)=I c e+G & {[\text { Curve }(M) \text { fig: } 6]} \\
(L)=I c e+G+H & {[\text { Curve }(L) \text { fig. 6] }} \\
(H)=I c e+G+L & {[\text { Curve }(H) \text { or } q t \text { in fig. } 6 \text { and } q t \text { in fig. } 5]}
\end{array}
$$

Fig. 5.

Fig. 6.
and further the equilibria

$$
\begin{aligned}
& (/ c e)=G+L+H \quad[\text { Curve }(I) \text { or } q u \text { fig. } 6 \text { and } q a \text { fig. } 5] \\
& (G)=1 c e+L+H \quad[\text { Curve }(G) \text { fig. } 6]
\end{aligned}
$$

Besides the curves $(M /),(L),(H),(I)$ and G we find in fig. 6 also the triplepoint t of the water, $t s$: the melting-curve of the ice and $t v$ the evaporationcurve of the water.

It appears from a comparison of the figs. t and 6 that curve $(S)=q t$ from fig. 4 is replaced in fig. 6 by curve $(H)=q t$. Curve $(I)=q u$, which represents the equilibrium $G+L+H$, proceeds in fig 4 from q towards higher T and P, in fig. 6 this curve proceeds, however, starting from q towards lower T and P. The metastable part $q m b$ of this curve has its point of maximum temperature in the vicinity of the point m [figs. 5 and 6].

When we draw in fig. 5 the horizontal line ayzu and in fig. 6 - the vertical line ryyzu corresponding with this then we see that the different curves must be situated with respect to one anothei, as is drawn in fig. 6.

As the concentrationdagram of fig. 6 is the same as that of fig. 1 , the P, T-dagram of fig. 6 must therefore, belong to the same type as that of tig. 1 . We see that this is really the case.

Now we take the binary system: water + salt S, of which S occurs in two modifications S_{r} and $S_{\beta \cdot r}$ In fig. $7 q$ is the solution, saturated with the two modifications under its own vapourpressure. Consequently we have the equabrimm:

$$
G+L+S_{\nu}+S_{\beta}
$$

Curve ($q, 3$) [fig. 7] represents the solutions of the equilibrium $G+L+S_{\beta}$; it terminates in the meltingpoint β of the modification S_{β}. Curve $d q$ represents the solutions of the equibrium $G+L+S_{g}$, the metastable prolongation $q u$ of this curve terminates in the metastable meltingpoint " of the modification S_{o}.

Curve qo represents the solutions of the equalibrium $S_{\alpha}+S_{\beta}+L$; wuth this we have assumed that this curve proceeds starting from q lowards higher temperatures.

We have the singular equilibria:

$$
\begin{array}{ll}
(M)=S_{\mu}+S_{\beta} & {[\text { Curve }(M) \text { fig. } 8]} \\
(L)=S_{z}+S_{\beta}+G & \text { [Curve }(L) \text { fig. } 8] \\
(G)=S_{\mu}+S_{\beta}+L & {[\text { Curve }(G) \text { or qo fig. } 8 \text { and qo fig. } 7]}
\end{array}
$$

and further the equilibria:
Proceedings Royal Acad Amsterdam. Vol. XIX.

$$
\begin{array}{ll}
\left(S_{p}\right)=G+\dot{L}+S_{\beta} & {\left[\text { Curve }\left(S_{q}\right) \text { or } q \dot{\beta} \text { fig. } 8 \text { and } q \beta \text { fig. } 7\right]} \\
\left(S_{\beta}\right)=G+L+S_{p} & {\left[\text { Curve }\left(S_{\beta}\right) \text { or } q d \text { fig. } 8 \text { and } q d \text { fig. } 7\right]^{-}}
\end{array}
$$

When S_{μ} and S_{β} are not volatile, then G consists of watervapour only. If they are volatile, then G contains also S. The more S is contained in G, the more the point G shifts towards the right in the concentration-diagram of fig. 8. As long as the four phases with respect to one another are situated, however, as in fig. 8, the P, T-diagramtype remains the same.

As it appears from the change in volume at the reaction $S_{y} \rightleftarrows S_{\beta}$ which is generally small, the (M)-curve proceeds general fairly parallel to the P-axis; it terminates towards lower pressures in the

Fig. 7.

Fig. 8.
triplepoint. $S_{s}+S_{\beta}+$ vapour S. It may proceed from this triplepoint as, well towards higher as towards lower temperatures; in figs. 7 and 8 we have assumed that it goes towards higher T.

The position of the curves $q_{1} 3$ and $q d$ with respect to one another in fig. 8 follows from fig. 7; for this we have to draw a horizontal line, which intersects the stable part of the one and the metastable part of the other curve.

As the concentration-diagrams of figs. 1 and 8 belong to the same type, this must also be the case with the P, T-diagrams of both figures. We see that this is really the case.

Now we shall discuss a binary system, in which occurs a P, T diagram of the type of fig. 2. For this we take the system : water + salt S, in which a hydrate H occurs in the two modifications H_{ρ} and H_{β} [fig. 9].

When we represent the solutions of the equilibrium $G+L+H_{0}$
in a conceniration-temperature-diagram, then we obtain a curve clqaq ${ }_{1} c$ [fig. 9], which has its maximum of temperature in the vicinity of the point u. The curve, which represents the solutions of the equilibrium $G+L+H_{\beta}$, is represented by $x q \beta q_{2} z$ (fig. 9); it has its point of maximum temperature in the vicinity of the point β. The curves intersect one another in q and q_{1} (fig. 9); in this we have assumed $T_{q}>T_{q_{1}}$. The dotted parts of the curves represent metastable conditions.

Now we have two invariant equilibria, viz.

> in the point $q: G+L_{q}+H_{s}+H_{\beta}$
> in the point $q_{1}: G+L_{q_{1}}+H_{\nu}+H_{\beta}$

In fig. 9 the solutions of the equilibria $G+L+H_{0}$ and $G+L+H_{\beta}$ are represented by $d q \alpha q_{1} c$ and $x q \beta q_{1} z$; in the P, T diagram of fig. 10 those equilibria are represented by the same curves. As we have assumed in fig. $9 T_{q} ン=T_{q_{1}}$, this must also be the case in fig. 10.

The position of those curves in fig. 10 with respect to one another follows from fig. 9. On the horizontal line $d x z c$ viz. the vapourtension of the liquids decreases starting from d towards c; in the P, T-dagram the points d, r, z and c must be situated, therefore, with respect to one another, as in fig. 10. When we draw in fig. 9 also other horizontal lines, then we see that the position of the curves "dac and $a ; z$ in fig. 10 is in accordance with that in fig. 9.

In the point q we have the singular equilibria:

$$
\begin{array}{ll}
(M)=H_{\sigma}+H_{\beta} & {[\text { Curve }(M) \text { fig. 10] }} \\
(L)=H_{g}+H_{3}+G & {\left[\text { Curve }(L)=q q_{1} \text { fig. } 10\right]} \\
(G)=H_{\alpha}+H_{\beta}+L & {\left[\text { Curve }(G)=q o=q o_{2} \text { fig. } 10\right.}
\end{array}
$$

and Curve go fig. 9]
and further the equilibria, already discussed:

$$
\begin{array}{ll}
\left(H_{x}\right)=G+L+H_{\beta} & \quad[\text { Curve } q \beta \text { figs. } 9 \text { and } 10] \\
\left.H_{\beta}\right)=G+L+H_{\gamma} & {[\text { Curve } q d \text { figs. } 9 \text { and } 10] .}
\end{array}
$$

In distinction of the equilibria occurring in q, we give to the equilibria occurring in q_{1} the index 1 . Then we have in the point q_{1} the singular equilibria:

$$
\begin{array}{ll}
(M)_{1}=H_{\sigma}+H_{\beta} & {[\text { Curve }(M) \text { fig. 10] }} \\
(L)_{1}=H_{z}+H_{\beta}+G & {\left[\text { Curve }(L)_{1}=q_{1} q\right. \text { fig. 10] }} \\
(G)_{1}=H_{\sigma}+H_{\beta}+L & {\left[\text { Curve }(G)_{1}=q_{1} 0_{1}=q_{2} 0 \text { fig. } 10\right.}
\end{array}
$$

and Curve $q_{1} o_{1}$ fig. 9]
and further the equibria, already discussed:

$$
\begin{aligned}
& \left(H_{o}\right)_{2}=G+L+H_{\beta} \quad\left[\text { Curve } q_{2} \beta \text { figs. } 9 \text { and } 10\right] \\
& \left(H_{\beta}\right)_{1}=G+L+H_{\sigma} \quad\left[\text { Curve } q_{1} c \text { figs. } 9 \text { and } 10\right] .
\end{aligned}
$$

Let us imagine the singular equilibrimm $(M)=(M)_{1}=H_{0}+H_{\beta}$ in the point q. It appears from fig. $\dot{9}$ that a complex $H_{\%}+H_{\beta}$ can not be converted into the invariant equilibrium of the point q viz. into $G+L_{q}+H_{\alpha}+H_{\beta}$. [We assume that the gas G consisis of watervapour only, so that point G coincides with $W\rfloor$. The singular equilibrium $(M)=(M)_{1}$ is, therefore, not transformable into the invariant equilibrium q; curve (M) is consequently bidrrectionable and does not terminate, therefore, in the point q, but it goes throngh that point.

Let us now imagine the singular equilibrium $(M)=(M)_{2}$ in the point q_{1}. It appears from fig. 9 that a complex $H_{z}+H_{\beta}$ may be-

Fig. 9.

Fig. 10.
converted into the invariant equilibrium of the point q_{1} viz. into $G+L_{q_{1}}+H_{o}+H_{3}$. The singular equilibrium $(M)=(M)_{1}$, is, therefore, transformable into the invariant equilbrium q_{1}; consequently curre (M) is monodirectionable and terminates in the point q_{1}. The (M)-curve is represented, therefore, in fig. 10 by curve $q_{2} q 0=q_{1} q o_{1}$.

Further the singular equilibria

$$
(L)_{1}=H_{\theta}+H_{i}+G \text { and }(G)_{1}=H_{\sigma}+H_{\beta}+L
$$

start from the point q_{1}; as the (M)-curve is monodirectionable in q_{1}, the three singular curves $(M),(L)_{1}$ and $(G)_{1}$ coincide in the same direction. The curves $(L)_{1}$ and $(G)_{1}$ go, therefore, also, starting from q_{1} in the direction towards q.

As the equilibrium $(L)_{1}=H_{0}+H_{\beta}+G$ may be converted in the point q into the invariant equilibrium q viz. into $G+L_{i}+H_{\gamma}+H_{\beta}$, curve $(L)_{1}$ terminates in the point q. Consequently rurve (L), is represented in fig. 10 by curve $q_{1} g$.

The equilibrium- $\left({ }_{(x)}\right)_{1}=H_{s}+H_{3}+L$ may not be converted in the point q into the invariant equilibrium $q=G+L_{q}+H_{y}+H_{3}$; curve $(G)_{1}$ does not terminate, therefore, in the point q, but it proceeds further. It is represented in fig. 10 by curve $q_{1} q 0=q_{1} q o_{1}$. When we represent the solutions of the equilibrium $(G)_{1}=H_{g}+H_{F}+L$ in fig. 9, then we get a curve as $q_{1} o_{1}$.

The singular equilibria

$$
(L)=H_{2}+H_{3}+G \text { and }(G)=H_{y}+H_{3}+\dot{L}
$$

start from the point q. As the (M)-curve is bidirectionable in q, the singular curves (L) and (G) go in opposite direction. Consequently curve (L) goes starting from q towards lower presstures and it terminates in q_{1}. Curve (G) goes starting from q towards higher pressures, it is represented in fig. 10 by $q 0=q o_{1}$. The solutions of the equilibriun $\left(G_{x}\right)=H_{s}+B_{;}+L$ are represented in fig. 9 by curve $q 0$.

Let us now consider the P, T-diagram in the ricinity of the point q. In this point the equilibrium: $G+L_{q}+B_{\alpha}+H_{3}$ occurs, it appears from the position of those phases with respect to one another in tig. 9 that the P, T diagram must belong to the type of fig. 1 . We see that this is really the case.

In the point q_{2} the equilibrium $G+L^{q_{1}}+H_{r}+H_{3}$ occurs. In accordance with the position of those phases with respect to one another in fig. 9 , it is apparent that the P, T-diagram belongs to the type of fig. 2 in the vicinity of the point q_{1} in fig. 10.

The curves $q 0=(G)=H_{y}+H_{\beta}+L$ and $q_{1} O_{1}=(G)_{1}=H_{3}+H_{\beta}^{*}+L$ are no separate curves in fig. 9 , but parts of one single curve qoro $Q_{1} q_{1}$; this curve has a point of maximum- or of minimum-temperature in its point of intersection r with the line $\alpha \beta$ (viz.: with the prolongation of this line). In fig. 9 we have assumed that T is a maximum. In this point r the equilibrium: $H_{\rho}+H_{\beta}+L_{\theta_{\beta}}$ occurs, in which $L_{\alpha, \beta}$ represents a liquid of the composition $H_{\rho}{ }^{-}=H_{6}$..

In fig. 10 the point r has not been drawn, of course it is situated somewhere on that part of the ($M \rho$)-curve, which ascends starting from the point q, for we have assumed in fig. $9 T_{1}>T_{q}$. This point r is the stable terminating-point of the curves $q 0$ and $q_{1} o_{1}$ and, as we shall see further, the common point of intersection of three curves viz. of the (M)-curve, of the melting 'line of $H_{p}^{i r}$ and of the melting-line of H_{β}.

In the point r^{r} viz. the equilibrium: $H_{\mu}+H_{\beta}+L_{\mu s}$ occurs; as the melting-line of H_{γ} represents the equilibrium $H_{\alpha}+L_{r, \beta}, r$ is, therefore, also a point of this melting-line. In the same way it appears that r is also a point of the melting-line of H_{β}.

The melting-line of H_{μ} is represented in fig. 10 by αa, that of H_{3} by βb. The three curves $\alpha a, \beta b$ and (M), therefore must go in fig. 10 through a same point r.
ln the deduction of fig. 10 we have assumed that the gas-phase G consists of watervapour only; now we sball briefly discuss the case that the compounds H_{3} and H_{3} are also volatile.

Then G contains, besides the watervapour, still the substance S.
When we represent in fig. 9 the compositions of the gas-phases which may be in equilibrium with the liquids of curve dec, then a curve $d^{\prime} a^{\prime} c^{\prime}$ arises, which is not drawn in fig. 9. This curve is the vapourcurve belonging to $d \alpha c$. Also a vapourcurve $x^{\prime} \beta^{\prime} z^{\prime}$ which is not drawn belongs to curve $x \beta z$. Now we assume firstly that the vapours, which are in equilibrium with the liquids, contain less of the substance S than the liquids. Branch $d^{\prime} a^{\prime}$ is then situated in fig. 9 more towards the left than $d \alpha$, branch $c^{\prime} \alpha^{\prime}$ more than $c \alpha$, branch $x^{\prime} \beta^{\prime}$ more than $x \beta$ and branch $z^{\prime} \beta^{\prime}$ more than $z \beta$.

The two raponrcurves $d^{\prime} a^{\prime} c^{\prime}$ and $x^{\prime}, 3^{\prime} z^{\prime}$ intersect one another in fig. 9 in g and g_{1}; the vapour g is in equilibrium with the liquid q; the vapour $\cdot g_{1}$ with the liquid q_{1}. The point g is always situated at the left of the line μ, the point g_{1} may be situated also, however, just as e. g. g_{2} at the right of the line $\alpha \beta$. We first consider the case that the vapour. which is in equilibrium with the liquid q_{1}, is represented by g_{1}.

In the same way as we have deduced above fig. 10, we now find that the P, T diagram keeps the form of fig. 10.

The vapours of the equilibrium $(L)=H_{0}+H_{3}+G$ and of $(L)_{1}$ $=H_{y}+H_{3}+G$ are represented in fig. 9 by curve $g g_{1}$. The equilibrium $H_{\prime}+H_{p^{3}}+G$ has a point of maximum- or of minimumtemperature, when the vapour G has the composition $H_{z}=H_{\beta}$. When we produce in fig. 9 curve $g g_{1}$ until it meets in r_{1} the line $\alpha \beta_{1}$ then the tangent in r_{1} is borizontal. Consequently in r_{1} the equilibrium $H_{y}+H_{\alpha}+G_{\mu, \beta}$ occurs, in which $G_{\nu, \beta}$ represents a vapour of the composition $H_{\varphi}=H_{\beta}$.

In fig. 10 this point r_{1} is situated somewhere on the metastable part of the ($M \Gamma$)-curve, viz. on the part, descending starting from the point q_{1}. This point r_{1} is the metastable terminating-point of the curves (L) and ($L)_{1}$; at the same time it is, as we easily see,
a common point of intersection of three curves viz. of the (M)-curve, of the sublination:curve of $H_{\%}$ and of that of $H_{\mathcal{F}}$. It appears from the position of the vapourcurves $d^{\prime} r^{\prime} c^{\prime}$ and $x^{\prime} \beta^{\prime} z^{\prime}$ with respect to the line $a \beta$ in fig. 9 , that the points in which the sublimation-curves come in contact with the curves dac and $x, 3 z$ in fig. 10, are situated at the left of q_{1}.

As long as the vapour, which is in equilibrium with the liquid q_{1} is represented in fig. 9 by a point y_{1} at the left of the line $u_{1}{ }^{3}$, the P, T-diagram keeps a form as in fig. 10 . The P, T-diagram changes, however, when the vapour is represented by a point g_{2} at the right of the line $\alpha \beta$. The singular equilibrium $(M)=H_{\alpha}+H_{\vec{\beta}}$ is then viz. no more transformable into the invariant equilibrium $q_{1}=H_{\rho}+H_{\beta}+G_{g_{2}}+L_{q_{1}}$. Curve (M) is then bidirectionable not only in point q but also in q_{1} (fig. 10); consequently it proceeds now also in stable condition below the point q_{1}. Curve $(G)_{1}=H_{0}+$ $+H_{\beta}+L$ continues to be represented in tig. 10 by $q_{1} o_{1}$; curve $(L)_{\mathrm{r}}$ no more goes now, however, starting from q_{1} upwards, but downwards.

The vapours of the equilibria $(L)=H_{\sigma}+H_{\beta}+G$ and $(L)_{\mathrm{I}}=$ $=H_{3}+H_{3}+G$ are represented in fig. 9 by curve $g r_{2} g_{2}$, which has in r_{2} a minimum-temperature. In fig. 10 this point r_{2} is situated somewhere on the (M)-curve below the point q_{1}. This point r_{9} is the stable terminatingpoint of the curves (L) and $(L)_{1}$. [Now curve $(L)_{1}$ viz. as has already been said above ascends no nore starting from q, but it descends]. Point r_{2} is also now again the common point of intersection of three curves, viz. of the (M)-curve, the sublimationcurve of H_{z} and that of H_{3}. The point in which the sublimationcurve of $H_{\%}$ comes in contact with curve d $d c c$, is situated at the left of q_{1}; the point in which the sublumation-curve of H_{β} touches curve $x_{\beta} \beta z$, is situated, however, at the right of q_{1}.
Now the reader may easily draw the changes in the figures 9 and 10 , when the vapours, which are in equilibrinm with the liquids, contain more of the substance S than the liquids.
(To be continuecl.)
Leiden, Inorganic Chem. Lab.

