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Physics. "Some ?·ema7'lc.~ on the theOl',1! of monatomic gases". 
By H. A. LORENTZ. 

(Communieated in the meeting of Septembel' 26, 1914.) 

§ 1. Several pbysicists bave 1'ecently apphed the theol'y of quanta 
tI) gaseoue bodies, especially to rnonatomic gases. Tbe common object 
of tbeir considel'ations, mucb though the)" diifer from each otber, 
may be said to have been the detel'mmation of the entl'opy S of a 
gas "as a functioI! of tbe volume v and tbe energy E. 

I f thi& function is known, the tempel'atllre Tand the pl'eSSUl'e p 
may likewise be expressed in terms of E and ~, bJ means of the 
thel'lTIodynamic relatlOns 

as 1 as 7J 
aE 1" av -1" 

Fllrther the l'elation between p, v, and T, i.e. tbe equation of state 
('an be found and al'5o thaf betwee'n v, T, anel R, ft'om which we 
can del'ive the specific' heats. 

In the case of an ideal monatomic gas classical thel'lTIodynamics 
lead fo the fOl'lTIula 

3 
S = kN (log v + 9," log E) + a, , 

'" 
(1) 

in which N denotes the number of molecules, I Pr,ANCK'S weIl knowIl 
coefficient allel a au undeterminate constant. In the way just men­
tioneel we infe1' fl'om this 

3 
pv = kNT , E = - kNT 

2 
(2) 

Now, the new theol'ies differ ft'om classical thel'modynamics in so 
far as the)' assign io tbe entl'Opy a completely definite value without 
an nndetel'mmate constant. As to the way in WhlCh v and E OCCUl' 

In the fOI'mula, this may eithel' l'emain as it i'5 in (1) or the form 
of the connexion may be a more complicated one. In the th'si case 
the only change is, that a, which has been called by NERNS'l' "the 
chemlcal constant" of the gas, take& a cletinite yalue, the equations 
(2) remaining unmodified. In the second case these Jatter eqnations 
have to be rhangeLÏ. 

In fhe theol'ies in questIOll the entl'Opy is always detel'lllined by 
mean'5 of BOI,TZMANN'S formula 

S= k log W, 

where TiJ! is tbe' "pl'obabdIty" of the state considered. Genel'ally 
speaking' thel'e can he no donht about the validity of this l'elation 

47 
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anel it cel'tainly is one of tbe mos! impol'tanl eqllalions of modern 
jJhysics. Nevertheless, difficnlties mny aI'ise when vve come (0 considel' 
fhe l'nles acrol'ding 10 which the value of 117 mns! be detel'mined, 

§ 2. Tbe state of a gas lllay be defined by the cool'dinateb of the 
.N roolecllles and Lhe component" of their mOID/:'1lta. These pammeters 
may be l'egttl'ded as the coordinates of a point in a 61V-dirnensional 
space lt6.v, the "ex!ension-iJl-phase". The part of this space COI'l'e­
sronding to a given valne of Ihe volnme and to values of the energy 
bel ween E anel E + dÈ~ °a part which we lIlay eall a thin "laytll"', 
wil! have a elefinite magnitnde pl'opol'tional to dE. Let this valne 
expt'essed in some pl'operly c1108en unit be S2dE. By putting W 
Pl'OpOl'tional to ~ one l'eally find'3 fOl'mu1a: (1) bj' llleal1S of B9Vl'Zl\[AI'<N'S 
eqnation. 

Indeed, if we take as llnit of space iJl ltG.v a cube, the edges of 
. which are parallel to tbe axes of rool'dinates and are of the length 
1, we have 

(2;rrErJI)Y~N-l . 2JT1nv~V 0- ______ _ 

--- r(~ N) , (3) 

whel'e Ihe mass of a molecule is denoled by 172. 1) 
Let us now put W = CQ, nndershtnding by C a factol' th at has 

the same valne fol' aIl states of the gas. Omitting in the expl'esslOn 
for k loy S2 all terms which do not contain the factor N, as we may 
do if .. V is vel'y large 2), we find 

S =lcl\ \~log (2.n-Em) + log v- ~log (~LV) + ~J + lclog C, 
/2 2 2 2 I 

whieh is in agreenlent with (1), if we put 

a = ~ Ic N ) log (2.ïm) --log (: N ) -I- 11 + Hor; C. 

1) The domain n.dE in the extenslOn·in-phase muy be decomposed inLo a domain 
III the extension in-configuration and one in the extensiou.jn·velocity. The nume· 
rical values of tbese two must be lllllltiplied byeach other. The first domain is 

. elK 
vN aud for the second we may wrJte dE dE, if K is the part of the.extension-in-

\ , 
veloeity, in whieh the energy has a value below E. K is a 3N dimensional sphere 
witb radius (2Em1J/l, so that we }lave 

(211Em)3/2 N 
1(= . 

r(! N + 1) 
2) We may then write ( 3N )Jf2N 

for r (~ N) 
. 2e 2 
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§ 3, To get aÎ1 idea of the probability or different states of tlle 
gas wc can imaginc tIJat the state is detel'minerl by a lottery in 
which slips of paper with different nmnbel's are drawn fl'om an urn, 
This can be aJ'l'anged in such a \vay th at a slip is dl'awn for each 
molecnle snccessively, the 1ll1l11bel' on tIJe ,slip indicating the place 
aud the state of motion of tbe molecule, If foJ' each molecule we 
take the coorrlinates of the centre and the components of the momentum 
::ts the roordinates in a six-dimensional space Ro, the slip will indicate 
the point in this extension which l'epresents the position and the state 
of motioJl of the molecule Ol', as we may say, the place of the 
molecllie in Ro' 

Now PJANCK t) has introdl'lced the fllndamental conception of the 
theolT of quanta by ima.gining that the space Ro is divided inro 
equal finite element::. of a definite magnitude G and tbat olll)" I be 
question in whicb of these elemeIlts the molecule has to be plctced is 
dccided by the lottelT Wh ether the molecnle will lie at one point 
of the element or at anotber is not detel'winecl in his lheol'y by a 
considel'ation of _pl'obabiJities, lnstead of this PLANCK supposes that 
the molecules lying in rhe same element of space Gare unifol'mly 
distl'ibuted oveL' its extension. On these suppositions he tinds an 
expl'Cssion which he considers, not only as p1'oportional to the pro­
bability but as eq~tal to it and whieh leads to a fOl'lIlUla fol' the 
entl'opy containing 110 iudellnite additive constant. 

W" e need not repea.t here these calculations of PIJANCK. ft suffiees 
10 J'emark thaI, the extension-in-phase RON, which we mentioned 
in § 2, may be regal'ded as eomposed of lv extensions-in-phase 
Rr. eacll of whieh belongs to one molecule and that a division of 
each Rt. jnto elements of magnitude G mvolves a c1ivision of ReN 
mlo elements of magnitnde GN. PT,ANCK'S fimü resnlt is fOlmd 
if the layel' eorresponding to (lR (§ 2) is expressed 111 tIJe donlain 
US as UlUt.y, anel if Ib.e value of S!. tlJns fOlWd is consiclel'ed as 
tbo nnmel'ical "alne of 1V. 

Instead of (3) we now get 

(23tErn)JM'"-1 . 2.mvN 
S!. = --

r(}N} GN 

(4) 

If we &ubsiitute this expression fol' riJT in BOLTZ}IANN'S formula 
and again omit all tel'ms not containing 1V as 11 factor wc find 

l) PLANOK, Vorlesungen übel' die Theorie del' Wärmestmhlung, 2, Aufl. (19] 3), 
p. 125; Vorträge liber, die linetische Theorie der Materie und der ElektrizItät 
(Wolf~kehl·Kol1gl·ess, 1913), p. 1. 

47* 
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, 
We must remal'k here thttt fol' a definite state of the gas tlle 

quantity in brackets is independent of the choke of the fundamental 
units of lengtb, ma&s and time and th at, t11el'efo1'e, the numerical value 
of S depends on tbis choice only in so fal' as thls is the case with !C, 
This becomes evident when we I'emembel' that the dimensions of G I 
are ];J3 L6 ']'-3. 

'PJ.ANCK points ont that' in all probabihty G will be conne~ted 
with the constant 7t wbiclt he hfls intl'odlleed into the theory of 
radiation and which, wh en multiplied by the freqllency, determines 
tbe quantum of energy characteriRtic of a vib! atOl'. As the dimen­
sions of hare ML2T-l the elemental'y domain G mnst be propor­
tional to ha. 

We have finally to make a special supposition about the magni­
tude 'of the \ element G. If we combine' n equal quantities of gas 
&imply by putting them side by side, we certainl)' must assume 
that the entropy of the whole sy&tem wiJl be eqnal to the Sllm of 
thé entt'opies of each of the qnantitietl ta/ken separately. Thus S 
must be multiplied' by n wh en lV, v and E are made n times gl'eater. 
Now' it \ follows fl'om (5) that t1us is possible onl)' when G also 
bec~més ?i linies greater,' so that the elem~ntary domain mU3t be 
supposed to be pl'oportion.al to tile llumber· of molecules ot the qnan­
tiry 01" gas considered. 

§. '4 .. - lt -may be objected to PLANCK'S considerations th'at he has 
failed, to' attaeh a physical metll1ing to his elemental'y domain G. 
As -it would ha"e six dimensions its magnitude would have to be 
detel'mined by cel'tain intervals fol' the coordinates and tlle momenta. 
Now,. in so far as we are con('el'ned with tlle coordinates we ean 
hardly"seë,;why we ShOllld have to introdllce intervals of a fixed 
finite value into our considel'ations of probability. To th is objeetion 
PJu\NCK I'eplies tltat we must thillk of tlle l'elative coordinates of one 
molecule with respect to another and it III 11 st be owned indeed 
that a mutual action betweell the partieles might givc us a reason 
fol' intt-odueing tbe finite intervals in question. In this line of thought 
PIJANOK 1) even tries to account fol' the [Jl'0pol'Lionality betweeÎ1 G 
anä' the f1l1mbei' of molecules. Bis l'easoning mày be l'eproduced as 
follows. Let all the molecules except one be all'eady in theil' p!aces 
an~, .let 6.vp l:::.vz •• " 6.vN-l be small elements of voll1111e, each in 

1) Vorträge Wolfskehl-Kongl'ess, p. 7 anel S. 
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the neighbourhoorl of one of (he molecules J11 1,lJl2 •••• MA -1, in 
sucb a way that LVI has the same position with respect to MI as 
LV 2 vv;ith respect to J1[2 etc. Then it ll1ight be that the element G 
with which we are concel'ned in the casé of the Nth molecule 
consists of the 'Volumes LVI' LV2 •••• LV~V-l taken toge/hel' and 
combined with certain illtervals for the momenta; if H were sa, G 
would l'eally ue proportiol1al to ,N -1 Ol' to lY, as we lUay say as weIl. 

It must be l'emal'ked however that, when we inü'oduced the finite 
elements G, it was expl'essly stated th at the distribution of the 
pal'tic1es o\-er one of them will not be detel'mined by probability. 
Thus, if LvI' LV2 •••• LVN-l must be con~idel'ed as cOllstituting a , 
Single element of volume, the posilion of Ihe Ntlt molecule eIther in 
LVl> Ol' in Lv2 , Lva\ ere, will lIot be deLermined by OUl' lottery. This 
can harc11y be admitted; whelilCl' the lVtlt molecule W'iIl 1ie near the 
fir'lt or near any olher of Ihe lllolecuies tbat are all'eady present must 
certainly be considel'ed as something accidental. lVIol'eover the abo\'e 
reasoning applies only to places in tlle neighbourhood of one of l!Je 
lV-1 molecules, ~l,nd in gc1ses of smal! densit,) thes~ places form 
only a small minol'ity of all those tllat ma,)" be occupied by tile 
lYth pal'ticle. 

§ 5. Betol'e PLANOK, TErl'ROm~ 1) llad already çalculated the entl·opy of 
a gas in a slmilar way ~). He defines G in tet'ms of tlle constant 
7t uy the rclation 

G = (wIt)", 

where w 3) is a nnmerical coefficient tllat has to be determined 
later on. So his elelI).entary domain does not depend on ,N. But 
rrWl'RODE divides (he expression (4) by N!; bJ thiR he l'eaches the 
same result th at PMNCK obtams b'y pntting G proportional to ,N. 
Substlilltiug Ihe value found in tlns wnJ' tOl' TY in BOVrZl\IANN'S 
fOl'mllla TETRODE finds 

S kN t ~lO,lJ(23l'Em) + log v - ~lO,lJ(~.L\0 - log N + ~ -- 3 log (Wh)~ (6) 
, -, 

1'h1R expl'ession l'eally fnlfills the rondition I hat 8 shall become n 
times g'l'eater wlleu N, v and E do so. I cmlllot see 110wever a 
physical reason for the division of (4) by N! 

l) Ann. d. PllYS., 38 (1912), p. 434. 
2) Suuiltll' reasonings have been firsl published by SACKUR, Ann .. d. Phys.: 36 

(1911), p. 958; 40 (1913), p. 67; Nernsl-Festschl'ift (1912), p. 405. 

3) In the notation of TETRODE: Z, 
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§ 6. The hypothesis . of qnanta has been used in a wholly different 
way in an othel' paper by TETRoml 1

) and also by LENZ and af tel'­
wal·ds by KEESOl\'12), the method followed in these cases being the 
same that has been used with mueh sneeess in the theol'J of the 
speeific beat of solid bodies. We shall confine oQl'selves to the -
considel'atiolls of LENZ, whieh have been comllIunicaJed by SOMl\fERFELD3

). 

Let the gas be eont<tined in a vessel having the form of a cllbe 
with the edge 1. In this systern stationary waves of sound of man.)' 
different kinds can exist. lf v is the volume of the cube the number 
of modes of motioJl for whieh the wave-length lies between I. and 
). + c[). i& given by 

431'v - cv., 
~4 
/. 

tlle largest value of J. being 21. 
Now LENZ assumes that the ordinal'y theory of stati9nary wave5 

Óf sound may be applied down to very 5rnall values of À and that 
we may regard the state of 1110tion of the gas as eomposed of a 
great nnmbel' of sllch waves with wave-Iengths between 21 and a 

\ 

certain minimum vaille, whicb he- calls .i.o' The latter is chosen in 
sucb a manner that the whole number of modes of motion is eql1al 
to the number of degrees of fl'eedom of the system of molecules, 
i.e. fo 3N~ This is expressed by the equatiOll . 

or 

21 

J431'V 
-àl=3N, 

1.4 

)0 

1 9 1 

v 
if we put ó3 

- - which means that ó is the distance at whieh, -N' 

in the case of a cnbical arrangement, the partieles would lie fi'om 
each other in the prineipal directions. If now the "essel contains a 
very large)] ul11ber of pal'tic1es so that 1 is vel'J much greater than 

1 
cf, the term 81

3 
may be neglected and we find 

)'0 = 1,12 d'. 

It is fl1l'ther assumed t hat, fOl' evel'y mode of' vibl'ation, we have 

1) Phys. Zeitschr., 14 (1913), p. 212. 
2) Proc. Acad. Amsterdam, 16 Q.J:913), p. 227; 17 (1914), p. 20, 
3) -V ol'träge W olfskehl·Kongt·ess, p. 125. 

; I 
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the followiug' relation between the fr'eqllency l' and the wave-length À 

c 
V=-, 

}, 

whel'e c, the "velocity of sound", has tIle same value for all the modes 
of vibl'ation. LENZ puts 

c~ = aE, (a I 10) . 
Nm 9 

. . . (7) 

This relation oecul'S in the ordinal'j' kinetic theol'Y of a monatomic 
gas and is maintained by LENZ. altho!lgh U16 equations he wants 
to del'ive differ frOl11 those of tbe old theor)' of gases. 

In cutting oif the "sOUI19 spectr!lm" at the wave-length )'0 LENZ 

fo11ows the example givell U.) DJ~Bn~ in hiR beautiful theol'y of the 
s)Jecific heat of solid bodie& . .J !lst like DEBYE he assumes that the 
energy is distributed o\'er the different modes of motion in the way 
reqllired by the theol'y of quanta, the ql1antum pl'oper to each mode 

l~c 
having the value 111' = T' By pl'obability considerations upon, which 

we need not dweIl here the equations fol' the entroPJ' etc. of the gas 
al'e then obtaÏ11ed. 

~ 7, In my opinion all this is open to serious objection. In the 
case of a solid body we call ÏLllagine an "original" state in 'lil bich 
all molecules are at rest. The- cliffel'en t normal modes of vibJ'ation 
which cau exist in tbe body are, all deviations f!'om this state and 
when they all exist at the same time with sufticiently small ampli­
tudes, the total eneJ'gy - if tbe energy in the ol'Ïginal state is taken 
to be 0 - is eql1al to the slim of the energies beJonging to the 
separate modes of motion. TJIO beat motion too may be J'egal'decl 
as made up of all the possible nOl'mal vibrations. 

The case of a' gas is widel)' é1iffereJlt. 1t is true that here also a 
'yave mot ion may be l'egal'ded as an alteruating deviation ft'om an 
Ol'iginal state, but the latter is not now a state of rest. On the C011-

trary, it is endowed all'eady with tbe tota! energy of the moleenlar _ 
motion ; in fact il is this latter motion that causes the "elasticHy" 
which set'ves to mailltain the vibratiolls of SOUB(!. lt 8eem8 rather 
objeciionable - to aseribe the euel'gy of' tlte intel'ual l11otions to a 
system of vibl'atiolls whose lawEl are deduced on the assumption of 

> a moleculal' motion that existed al ready bet'are the vibrations themselves. 
It must fm'tbet' be l'emal'lwd th at the ol'clinary laws of sound 

motion <tre (!'ne only so long ab the wave-Iength). is large compareél 
with tbe mean free path s between I wo collisions. On1y in this case 
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a gas ean be divided into elements of volume (the dimensions of' 
which are small compaled with i and large compal'ed wilh 8) which 
have a certain individuality, each element diJating Ol' contracting 
and exerting a pressure on the neighbonring ones, as is admitted 
in oJ'dinarJ aerorlynamies. Things begin 10 change alt'eady when Î. 

is no longer very large compared with s. We m!1st then take acconnt 
of the phenomena th at are caused by the intel"ll;~ixing of adjacent 
elements of volume. Tuo \'iscosity and the conduction of heat, the 
effects of this intermixing, lead to a departure from the simple 
laws whieh hold for large wave-Iengths. Stationary waves of 
a Iength even smaller than 8, alld yet following more Ol' less the 
ordinarJ 1'ules, are entirely out of the question. Indeed under these 
ci,'curnstance& the greatel' part of the molecules that enter a layer 
of thickness .p or tl would travel'se it without a collision. We 
cannot say any longer thai one layel' exel'ts- a pressure on an ,othel' ; 
011 the contrary, the moleenJar motion will cause a "apid mixing 
up of the layers. 

Now. the smalleRl wave.lengtll )'0 Jlltrodu~ed by LENZ is not much 
g'l'eàter than the di stance ó of the molecules, while the mean free' 
path iJ can be a considerable lllllltipie of d. We therefore come 10 
the conclusion that, of lhe modes of vibration which he considers 
in his theory, those with a wave·length near the lowel' limit )'0 

caJmot l'eally exist. 
SOMMERFI~LD I) has tried 10 meet ~this oQjection by observing that 

neither at somewhat high tempel'atures, nor at ver.}' low ones we 
need fear considel'able el'l'ors in LENZ'S formulae. Fol' high tempel'a­
tm'es they agree with those which may be del'Îved from the ordinal'y 

- theory of gases and LENZ'S equations show that at low tempel'atures 
the enel'gy becomes more and more concen1rated in the modes of 
vibratlOn of large wave·length to which our objection does not 
apply. This is so iud eed , bu t a sim ple calculation shows that it is 
not until the temperature is extt'emely Iow, that the greater part 
of lhe energy will have shifted to waves considerably longer than lo' 

According to LENZ'S theory the energy belonging fa the modes of 
vibration with wave-lengtlls beL ween l alld i. + dl. is given by 

1 ei)., 
4.1rlwv . li -. 

2 IC À.. 

ek)'T-I 

We ::.hall use this expression to seek a certain mean wave-length 
).' which we define by the condition that the enel'gy corresponding 

1) L,c., p, 141, 142. 
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to t11e motions with wave-Jengths beneath ),,' has the same magnitude 
as that belonging to wave-Iengths beyonel ;,'. This is expressed by 
the erluation 

Ol' if we put 
21w 21w 21w 
--{U --=.U and--=m' 

_ ki,'l..' - , ki'oT 0 k).'T 
. . . . (8) 

by 

. • (9) 

Fl'om this equation we can elel'ive by suitable appl'oximations 
fol' eadl ,'1.'0 the rOl'l'esponeling tC'. If now we consider a gas of 
definite clensity. (l; allel therefore )0 aI'e given anel we can detel'mine 
the vaIue of iVo for earh tem pemture T It is trne that the second 
of the equalions (8) does nol, suffice fot' this, as c depends, in the 
way indicated by (7), on E, whirh is a complicated function of 1'. 
But LENZ gives tbe formula 

3.0 

€JJ{/J3d/u 
IU

Ó 

0 = -1
' 

--1" ea __ 

o 

which can be used to determine .?Jo, The quantity 
lSa/t2 

@'=--
rnkl,o ~ 

. , (10) 

, (11) 

is a cel'tain tempel'atul'e which can be indicated for each g'as as 
soon as its density is gil'en, Aftel' having chosen T, we find mo from 
(10), .v' from (9) and finally ;,' from the relation 

, ' (12) 

following from (8). 
Let us C'onsideL' as an example helium of the density cOI'l'esponding 

to 0° O. and 1 atm. Then @ = 7° and according to (10) .'Vo = 1, if 
T I 

- = 0,22; tor we have 
@ 

1 

f llJ 3d,V 
--=0,22,' 
e:t-l 

o 

I ; , --- ---



- 11 -

, 746 

\ 

I 

"\ 
\ 

Fl'om (9) we find approximately a;' = 0,75, so that (12) gives 

4 
'),' =3~0. 

80 we see that at tile temperatlll'e T = 0,22 @ = 1°,.), whieh is 
vel'y low indeed, still half of the energy beloJlgs to modes of motion 
with wave-lengths below j. 1.0 , i.e. be!ow 1,5-(J and therefol'e fal' 

below the mean free path s. 

§ 8, Accol'ding to the theor)' of LENZ tlle entl'opy of a gas does 
not depend on E and v in the way expl'essed by (1) i the equation 
of state and the fOl'mulae t'or tile specific heats become different 
from those in the ordinary theol'y of gases. Fot' tempel'atlll'es high 
compal'ed with @ howevel' we are led back to the fol'lI!. (1). Fo]' 
th en we find from LENZ'S formulae 

E=-lcNl' 1-- -3 ( 1 V3fJ) 
2 8 1" 

S=8kN ---log-(
4 1 €)) 
S 2 31" 

. (13) 

and aftel' 'some reductions 

13 ' 3 (3 ) S = kN l"2lo.1/ (2 jf Em) + log v .:....- "2 log "2 N - lO,IJ N 

-} log (12000:r) + 4: - Slog hl, 
This agl'ees with the fornlUla of TE'l'RODE [(6) ahoveJ if we 

put w = 3,5. 
It muet, however, be l'emal'ked that, eveu jf one leaves aside the 

fh'sl of the objections mentiolled in § 7, one <,annot ex peet a sorne­
whal exact detel'mination of the chemica! constant. Eqlmtion (13) 
shows that this constant is connected with log @ and theref'ore on 
account of (11) with lo.q ')'0' ')'0 being the minimum wave-length, and 
we have seen al ready that the part of the theory reJating to the 
smaller wave-leugths is the most contestable one. 

§' 9. 'l'EfRODE lIas determined the chemÎ('al constant fol' the mona­
" tomic _ vapollr of !llel'Clll'y, a suhstance whose properties are wel! 

known, Ol' ralhel' he has del'ived the coefficiem w of equation (6) 
from the l'eslllts of obsel'vation. He found 1) 

w= 1,05. 

Following the same eOlU'se of Illollght allel using the Stlrne data 

1) Ann. d. Phys., 39 (1912), p. 255. 

J 
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I have l'epeated this detel'mination in the following somewhat differ­
ent way. I shall considel' a gram molecule, so th at N becomes 
AVOGADUO'S constant and klV the gas constant R. 

Let, at the tempel'ature T, t> be tile vapoUl' pL'essul'e of fluid meL'­
cury, S tbe entropy of fhe vapo1ll', S' that of the fluid, v tlie 
volume of the vapoUl' and v' that o(the fluid. Then we have accol'ding 
to a well known thermodynamie relation 

fol' whieh we ma~T write 

S I"" ( ') dp 
-IV = v-v -

clT' 

Llp 
8-S = v d']" 

af, v is Inueb gl'eatel' than v'. 
lf the vapour pressure is velT Iow' we may tl'eat tlte \'apolll' as 

an ideal gas, so that 
Rl' 

v=- . . . . (14) 

and 
p 

8-8' = RT d log P 
dT 

. (15) 

jJf 
lf noW in (6) we substitute Ft fol' hV, (14) fol' v, N fol' m, .M 

being the molecular weight, and t R T fol' E, we get 

8 = R f}ZOg(RT)-ZOgp-4l0gN + ~ log(2.?rM) + ~- 310,q(Wh)( 

By substitnting this in (15) we find , 

sr cl 
3 log Cl) = -~R - dT ('1' lO,g p) -t- A,. '.' (16) 

where for shortness' sake ]i have put 
535 

11 = 2 log (RT) - 4 log N + '2 log (2 .?r .. M) +2 - 3 log Ib . (17) 

'rhis quantity is completely known. Thus we can ralculate tile 
coeffi ri en t w as soon as we know p as a function of Tand besides 
the entropy S' of the fluid. 

~ :1 O. For th.e presslll'e we lUay use HERTZ'S t'ormlllR. I} 
. Y 

lO,g p = a- (J laf! ']' -1' 

1) H. HERTZ, Ann. d. Phys .. 17 (1882), p. 193. 
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with 1) CC = 31,583; ["I = 0,847; y = 7697, from which we draw 

d 
d'l' (1' lo.cJ p) = (a - (:l) - [j log l' . (18) 

To be ablé to determine S' too, we shall take for T the melting 
point of mercury (234°). lf l' is the heM of fusion and S/I the 
entropy of solid rnercul"y we have 

? 

S' = S' +-- :1'" (19) 

We must remal'k here that stl"ictly speaking thlS foJ.ruula giyes 
tile value of 8' for a pressure of 1 atm. (if we consider the eqUl­
lIbrium between solid and flllid mereur.)" undel· that pressure), while 
in the preceding equatlOlls S' denotes the entropy of the flmd under 
the pressure of ita vapour. It IS easily seen th at we may neglect 
th is difference. 

lt l'emains to detel'mme the entl'opy 8/1 of soEd mercury. Tlns 
call be found by snpposing, as IS of ten done in connectioll ""ith 
NF.RNS'r's heat theorem, rhat tlllS elliropy lS ° at the absolnte zero. 
Then it ean be calculated for any ot11e1' temperature bS means of the 
specific heat cp of solid mercury. We have 

l' 

Jc 
8/1 = ...E d'l' T ,. 

o 

(20) 

if we assume the pressure to be 1 atm. during tlte heatmg from 
0° 10 1'0. 

NERNST J) has given a fOl·mtlla for the specific heat of a gram 
mOleeule, based on POLLITZER'S measurements and by means of whieh 
we find 3) 

1) According to HERTZ we 'have, usmg Briggian logarithms and expressing the 
vapour pressure in millimetres of mercury 

, _ 3342 
log p = 10,59271 - 0,847lorJ T --y. 

If we want to know the preSSllre in dynes per cm2• we must add log 1330, 
as a pressure of 1 mmo of mercury cOl'responds to 1330 dynes per cm2 To pass 
finally to Neperlan logarithms we must divide the first and the thlrd term by loglQ B. 

2) Ann d. Phys., 36 (1911), p. 431. 

S) According to NERNST we have in C.G.S. umts 
3 

o,) = 2" Rrrrta) +- rp( 10 )1, 

where the fuuctJOn rp is determined by 
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S"=6,95R. 

Now the heat of fusion pel' gram molecule is M4,5 cal.. 
\ 

1'= 279 R, 

alld, accol'ding io (19), 

Fl'om (18) follows 

anel fl'om (17) l) 

l' - = 1,Hl R 
T 

8'= 8,14R. 

d . 
dl' (7 lo.cJ p) = 26,12 

A -= 33,92. 

Su bstituting these diffE'rellt values in (16) we filld 

w = O,J. 

so that 

~ J 1. As Lo Uw clegl'ee of pl'ecision of this l'esult it must be 
l'emal keel in the fit'st p]<l.ce th at, according to (16) and (17), w is 
pt'opol'tional fo low powers of RT, n and lt. Therefore, all uncer­
tmnty in the val nes of these qnantüles "VIJl not cause an error of 
many percentages ll1 w. 

g;(x) 
( '1:)2 .:.. 
T eT 

For mercury rr must be put equal to 97. Further 

cp = C,) -I- f1'3/~. 

Fol' the coeffiClent f NERNST gives 21.10-5, but here a calory is taken as unit 
of heat Cl]oosl~]g the el'g illstead aDel substituting gR for f, 50 that 

Cp = C"~ + RgT% 
we have 

!/ = 10,6.10-; 
[.'rom (20) we now find 

3 2 
S" ="2 R lx(()) + X(~())] +"3 Rg1'3/2 • 

if wc put 

'f·eT (~) 
X (m) =-'/,---log eT -1 . 

e1'-1 

1) Calculated with: R=83,2.10G; N=67.1021 ; "111"=,200; h=û.42.10-27• 
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S' 
On the contl'alT the valu~ ~~lbstitl1ted fOl' R may be in error 10 

ê.l considel'able extent. A change of a fuJl unit however in tbis 
\'alue (one eighth of ihe alllount) prodllces a ('hange in w of about 
14% onl)'. So we may perhaps conclude thai the value of w will not 
cl i ffe I' much fl'om 1 ancl that the values found fol' the vapoul' pressure 

\ 

of mercmy agl'ee in a rathel' satisfactoJ'Y way with the theol'Y of 
TETRODE, if we give the elemental'y domain G the value ha 1). 

Nevel'the1ess, in m)' opinion, we ma)' not attach much vaille to 
I 

this l'esult. Besides the difficulties which we pointed ont already 
there is still anorher serious objection . 

Formula (15) connects the vapol1r pl'es&ure with the entl'opy­
diiference between gaseol1s anel fluid mercur)' 01', when- we take 
into account the l'elation (J 9), with the difl'el'ellce bet ween gaseous 
anel solid mel'cury. N ow we must clonbt seriously wh ether this 
d~fJè1'ence éan be rightly evalllated if the nncletel'minate conl:>(anls in 
S and Sf( are fixed in the above melltioned rathel' arbill'ary way. 
On Ihe ground of BOLTZJ\:lANN'S formula we may aceount fol' the 
entl'opy 5", viz. for the change which the entropy of solid mercnry 
l1ndergoes when heated fl'om 0° to TO; to this effect we have to 
compare the pl'obabilities of different states of the soJid mercury. 
This is clone e.g. by DEBYm iJl his theol'y of specific heats. In this 
comparison we are concel'ned ouIy with ql1antities referl'ing to the 
solid state, e.g. the modulus of elasticity. In the deduction of (6), 
on the otliel' hand, only the gaseous state has been conside_red. The 
ql1eetion arises whethel' it wiJl/be possible, by a combination of 
these results, to determine the difference S- S", w hielt according 

1) The objection might be raised that in the above calculation HERTZ'S formuJa 
rOl' the, vapollr pressure has been applied for a tempeJ'atul'e at which this pressure 
lIas never been measured. In realily however the value of "' given by (16), (17) 
and (18) is independ/mt of lhe choice of the temperatut'e. 

Indeed, the differentiaJ coefficient of the right hand side of (16) wilh respect to l' is 

IdS' d2 I) 
- ----(7'loqp) +-

Rdl' elP , 2'1' . 
(T~~: is the specific heat of the flllid under.:. its vaponr preSSUl'e). According to 

a. weIl known thermodynamic theorem this quantity must be zero. In vil'tue of 
(18) it becOlnes 

IdS',~ 5 
- R dl' + l' + 2 '1' 

anel this expression l'eally is zel'O because HERTZ has chosen thr coefficient fl in 
accordance with Ibe theorem in question. 
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ta BaI.TZl\IANN'S theol'em is connected with tlle pl'obability that, in 
a sj'steltl consisting of asolid anel 1.1. gaseous -phase, a gl'eatel' Ol' a 
smalle!' part belOllgs to Ihe lattel'. The circumstallce that, in con­
sidering this latter pl'Obabi lity, we must attend to lhe dilfel'ence 
in poteniial enel'gy of the two phaseR eannot bilt increase 0111' 

doubt, fOl' neitllel' in the determinalion of S" nor in the determi­
nation of S in the above mentioned way we have had to speak 
of this diffel'ence. lf, as we shotlld expect, the diifel'ence 8--8" 
depended to a COJIsidel'able exlent 011 Ille relative vailles of the 
pOiential energy, -we might still put Ihe entropy 8" = 0 fol' T = 0, 
but it would na longer be possible to detel'mine the constant a 
which OCC1lI'S in forffillia (1) fol' the gaseous state by consielerillg 
only the phenomena in tbe gas, as is done in the theories discussed 
here. We ought rather to derive it from an examinaiioll of tue 

equilibrinm between tbe two phases. 
I think we may conclude fl'om what precedes that, thougb the 

value found fol' ro, if it be not C[nite accidental, pleads in favonr 
of the application of the theol'y of q llanta to the problem of vapor­
isation, yet the way in which this application hag been made 
l'equires fnrther explanation and jnstification. 

Pbysics. - "On HAi\IILTON'S 7J?'inciple 'UI EJNSTF.I~'S the01',1/ of gm­
vitation". By H. A. LORENTZ. 

(Communicated jn the meeting of January 30, 1915). 

The discllssion of same parts of EINSTEIN'S theory of gravitation 1) 
may perhaps gail1 in simplicity and cleal'ness, if we base it on a 
principle similar to that of HAMJJ.TON: SO mllch so indeed that 
HAMII,TON'S name may properly be connected" with it. Now that 
we are in possession of EINSTEIN'S theoJ'J we can easily find how 
this variation principle must be formulated fol' systems of different 
nature anel also fol' the gravitation field Hselt'. 

jlfotion 0/ a mrztm'ial point. 

~ 1. Let a matel'ial point move lUlder the inflllence of a f()l'ce 
with the compollents 1('!(~d(3' Let us var.}' every position ,u,y,z 

1) EINSTEIN U. GROSSMANN, EntwUl'f einer vel'aIlgemeinerten Relativitätstheorie 
und einer Theorie del' Gravitation. Zeitschl'. f. Math. u. Phys. 62, (1914), p. 225. 

EINSTEIN, Die fOl'male Gl'undlage der allg'emeincn Relativitätstheori"l, Sitz, Bel'. 
Akad. BerIin, 1914, p. 1030. 


