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Physics. — “Some remarks on the theory of monatomic gases”.
By H. A. LorenTz.

(Communicated in the meeting of September 26, 1914.)

§ 1. Several physicists have recently applied the theory of quanta
tn gaseous bodics, especially to monatomic gases. The common object
of their considerations, much though they differ from each other,
may be said to have been the determination of the entropy S of a
gas as a function of the volume v and the energy .

If this function is known, the temperature 7" and the pressure p
may likewise be expressed in terms of E and v by means of the
thermodynamic relations

o8 1 08 p
0E- T ' o T

Further the relation between p, v, and 7} 1i.e. the equation of state
can be found and also that between v, 7' and %, from which we
can derive the specific hears. '

In the case of an ideal monatomic gas classical thermodynamics
lead to the formula

S::lcN(log'u—{-glogE)—}-a,, N )

in which NV denotes the number of molecules, . Pranck’s well known
coefficient and a an undeterminate constant. In the way just men-
tioned we infer from this

3
pr=ENT , E=kNT . . . . . . (9

Now, the new theories differ {rom classical thermodynamies in so
far as they assign to the entropy a completely definile value without
an undeterminate constant. As to the way in which v and Z occur
in the formula, this may either remain as it is in (1) or the form
of the connexion may be a more complicated one. In the first case
the only change is, that «, which has been called by Nernst “the
chemical constant” of the gas, takes a definite value, the equations
(2) remaining unmodified. In the second case these latter equations
have to be changed.

In the theories in question the entropy is always determined by
means of Bovrzmaxn’s formula

" S=lklog W,
where W is the  “probability” of the state considered. Generally
speaking there can be no doubt about the validity of this relation
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and it certainly is one of the most important equations of modern
physics. Nevertheless, diffienlties may arise when we come {0 consider
the roles according to which the value of W must be determined.

§ 2. The state of a gas may be defined by the coordinates of the
AV molecules and the components of their momenta. These parameters
may be rvegarded as the coordinates of a point in a 6 NV-dimensional
space Iy, the ‘‘extension-in-phase”. The part of this space corre-
sponding to a given value of the volume and to values of the energy
between X and K 4 dL, ‘a part which we may call a thin “layer”,
will have a definite magnitude proportional to dZ. Let this value
expressed in some properly chosen unit be 2dZE. By patting W
proportional to £ one really finds formula (1) by means of Borrzyann’s
equation.

Indeed, if we take as wunit of space in Ry a cube, the edges of
.which are parallel to tlie axes of coordinates and are of the length
1, we have

o (2 Em)eN-1 . amoN

p(i,zv) _
2

where the mass of a molecule is denoted by m.?)

Let us now put W = (L, understanding by C a factor that has
the same value for all states of the gas. Omitting in the expression
for L oy & all terms which do not contain the factor &V, as we may
do if .V is very large?), we find

3 3 3 3
—z—log CaEm) + log v— é«log (é— N) + 2—: + klog C,
which is in agreement with (1), if we put

a 3
a= ;—]clV log (8am) -— log (5 N) -+ 1£ +- klog C.

. ()

S=kN

1y The domain ndF in lhe extension-in-phase may be decomposed into a domain
mn the extension in-configuration and one in the extension-in-velocily. The nume-
rical values of these two must be multiplied by each other. The first domain is
dK
. dE .
velocity, in which the energy has a value below E. X is a 3N dimensional sphere
with radius (2Em)Y;, so that we have

K= (2rnEm)kN

"
r (2— N+ 1)

. 3N \:NV 3 .
%) We may then wrile 5 for r E—N {
B :

vN and for the second we may write dk%, il K is the parl of the extension-in-
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§ 3. To get an idea of the probability of different states of the
gas we can imagine that the stale is determined by a lottery in
which slips of paper with different numbers are drawn from an arn.
This can be arranged in such a way that a slip is drawn for each
molecule snceessively, the number on the slip indicating the place
and the state of motion of the molecule. If for each malecule we
take the coordinates of the centre and the components of the momentum
as the coordinates in a six-dimensional space F,, the slip will indicate
the point in this extension which vepresents the position and the state
of motion of the molecule or, as we may say, the place of the
molecule in £,

Now Pranck') has introduced the fundamental conception of the
theory of quanta by imagining that the space Z, is divided into
equal finite elements of a definite magnitude G' and that only the
question in which of these elements the molecule has to be placed is
decided by the lottery. Whether the molecule will lie at one point
of the element or at another is not determined in his theory by a
consideration of _probabilities. lnstead of this Pravck supposes that
the molecules lying in the same element of space G are uniformly
distributed over its extension. On these suppositions he tinds an
expression which Le considers, not only as proportional to the pro-
bability but as equal/ to it and which leads to a formula for the
entropy containing no indefinite additive constant.

We need not repeat here these calculations of Pranck. [t suffices
to remark that the extension-in-phase Iy, which we mentioned
in § 2, way be regarded as composed of NV extensions-in-phase
R; each of which belongs to one molecule and that a division of
each R, inlo elements of magnitude G' mnvolves a division of Rex
mto elements of magnitnde G¥. Pranck’s final resnlt is found
if the layer corresponding to /7 (§ 2) is expressed i the domain
GV as wmty, and if the value of £ thus found is considered as
the numerical value of TF.

Instead of (3) we now get

CaEm)lsd—1 | 2 ;mvN

r (?- ’]V) le
2

If we subsiitute this expression for W in BoLrzmany’s formula
and again omit all terms not containing NV as a factor we find

2 =

O

1) Praxog, Vorlesungen tiber dic Theorie der Wirmestrahlung, 2. Aufl. (1913},
p- 125; Vortrige tiber, die hLinetischc Theorie der Materie und der Elekiviztiit
{Wolfskehl-Kongress, 1918), p. 1.
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3

3 - 3 s
S =iN 3 log 2 Em) -+ log v — 7 log (E N) -+ g log G} . (8)

We must remark here that for a definite state of the gas the
quantity in brackets is independent of the choice of the fundamental
units of length, mass and time and that, therefore, the numerical value
of S depends on this choice only in so far as this is the case with Z.
This becomes evident when we remember that the dimensions of G
are MsLST—3. d

'Pranck points out that' in all probabihty & will be connected
with the constant 4 which he has introduced into the theory of
radiation and which, when multiplied by the frequenecy, determines
the quantum of energy characteristic of a vibrator. As the dimen-
sions of A are ML2T—! the elementary domain (¢ must be propor-
tional to A°.

We have finally to make a special supposition about the magni-
lude 'of the'element G. If we combine 7 equal quantities of gas
simply by putting them side by side, we certainly must assume
that the entropy of the whole system will be equal to the sum of
thé entropies of each of the quantities taken separately. Thus S
must be multiplied by n when N, v and Farve made n times greater.
Now: it 'follows from (5) that this is possible only when G also
becomes 7 limes greater, so that the elementary domain must be
supposed to be proportional to the number. of molecules of the gnan-
tity of gas considered. '

§-4.. It -may Dbe objected to PrLanck’s considerations that he has
failed. to "attach a physical meaning to his elementary domain G.
As it would have six dimensions its magnitude would have to be
determined by certain intervals for the coordinates and the momenta.
Now,. in so far as we are concerned with the coordinates we can
hardly:-see-why we should have to introduce intervals of a fixed
finite value into our considerations of probability. To this objection
Pranck replies that we must think of the relative coordinates of one
molecule with respect to another and it must be owned indeed
that a mutual action between the particles might give us a reason
for introducing the finite intervals in question. In this line of thought
PLANCK ') even tries to account for the proportionality between G
and' the number of molecuies. His reasoning may be reproduced as
follows. Let all the molecules except one be already in their places
a.nfl‘ let Av, Av,.... Avy—; be small elements of volume, each in

!

1) Yortrige Wolfskehl-Kongress, p. 7 and 8.
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the neighbourhood of one of the wmolecules 4/, M,.... M _4, in
such a way that Aw, has the same position with respect to A/, as
Lv, with respect to M, etc. Then it might be that the element ¢
with which we are concerned in the case¢ of the Nt molecule
consists of the wvolumes Av, Av,.... Apy.; taken together and
combined with certain intervals for the momenta; if it were so,
would really be proportional to V—1 or to IV, as we may say as well.

It must be remarked however that, when we introduced the finite
elements G, it was expressly stated that the distribution of the
particles over one of them will not be determined by probability.
Thus, if Awv,Av,....Avy_1 must be considered as constituting a
simgle element of volume, the position of the N#h molecule either in
Ly, orin Av,, Avy ete. will not be delermined by our lottery. This
can hardly be admitted; whether the Nzh wmolecule will lie near the
first or near any other of the nolecules that are already present must
certainly be considered as something accidental. Moreover the above
" reasoning applies only to places in the neighbourhood of one of the
N—1 molecules, and in gases of small density these places form
only a small minority of all those thal may be occupied by the
Nih particle.

§ 5. Before PrLanck, Terropbr ') had already calculated the entropy of
a gas in a similar way ®). He defines (G in terms of the constant
L Ly the relation
‘ G = (wh)",
where w?®) is a numerical coefficient that has to be determined
later on. So his elementary domain does not depend on N. But
Trrrove divides the expression (4) by NV/; by this he reaches the
same result thai Praxck obtams by pntting G proportional o V.
Substituting the value found in tlis way for W in Borrzmans’s
formula Terrope finds
S=—kN 35 5 ( gy °
=N |~ 09(2x Em) + log v ——glog\z—l\> —log N —}-é— -— 3 log (wh)} (6)
This expression really fulfills the condition that S shall become »
times greater when N, v and £ do so. [ cannot see however a
physical reason for the division of (4) by V!

1) Ann. d. Phys., 38 (1912), p. 434.

%) Similar reasonings have been first published by SACKUR, Ann..d. Phys., 36
(1911), p. 958; 40 (1913), p. 67 ; Nernst-Festschrift (1912), p. 405,
%) In the notation of TETRODE: 2. :
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§ 6. The hypothesis. of quanta has been used in a wholly different
way in an other paper by Terropbr') and also by Lenz and after-
wards by Krrson®), the method followed in these cases being the
same that has been used with much success in the theory of the
specific beat of solid bodies. We shall confine ourselves to the
considerations of 1.eNz, which have been communicated by SoMMERFELD®).
Let the gas be contained in a vessel having the form of a cube
with the edge /. In this system stationary waves of sound of many
different kinds can exist. 1f v is the volume of the cube the number
of modes of motion for which the wave-length lies between 2 and
2 4 dx is given by

4
———m} dh,
3l

the largest value of 2 being 21.

Now ILixnz assumes that the ordinary theory of stationary waves
of sound may be applied down to very small values of A and that
we may regard the state of motion of the gas as composed of a
great number of such waves with wave-lengths between 2/ and a
certain minimum value, whicl: he calls 2,. The latter is chosen in
such a manner that the whole number of modes of motion is equal
to the number of degrees of {reedom of the system of molecules,
i.e. to 3.V. This is eXpIeSSed by the equation ’

ffi'idz_?,zv

1 L 91 - '
2,7 8P 4mdd’

or

v .
if we put d“:ﬁ, which means that ¢ is the distance at which,

in the case of a cubical arrangement, the particles would lie from
each other in the principal directions. If now the vessel contains a
very large number of particles so that / is very much greater than

1
d, the term 57 may be neglected and we find
)"ﬂ —_ 1’12 d:
It is further assumed that, for every mode of vibration, we have

1) Phys. Zeitschr., 14 (1913), p. 212.
2) Proc. Acad. Amsterdam, 16 (1913), p. 227; 17 (1914), p. 20.
%) Vortrige Wolfskehl-Kongress, p. 126.

g
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the following relation between the frequency r and the wave-length A
4

'}T’

where ¢, the “velocity of sound”, has the same value for all the modes
of vibration. Lusz puts - :

_z_aE 110 7
A _'KTE’ fl-—w@’* . .. . . ... (

This relation occurs in the ordinary kinetic theory of a monatomic
gas and is mainlained by Lenz. although the equations he wants
to derive differ from those of the old theory of gases.

In cutting off the “sound spectrum’ at the wave-length 2, Linz
follows the example given by DgByr in his beautiful theory of the
specific heat of solid bodies. Just like DEsyr he assumes that the
energy is distributed over the different modes of motion in the way
required by the theory of quanta, the quantum proper to each mode

Y=

. he . . . :
having the value /m:T By probability considerations upon which

we need not dwell here the equations for the entropy ete. of the gas
are then obtained.

§ 7. In my opinion all this is open to serious objection. In the
case of a solid body we can imagine an “‘original” state in which
all molecules are at rest. The-different normal modes of vibration
which can exist in the body are all deviations from this state and
when they all exist at the same time with sufficiently small ampli-
tudes, the total energy — if the energy in the original state is taken
to be 0 — is equal o the sum of the energies belonging to the
separate modes of motion. The heat motion too may be regarded
as made up of all the possible normal vibrations.

The case of a’'gas is widely different. It is true that here also a
wave molion may be regarded as an alternating deviation from an
oviginal state, but the latter is not now a state of rest. On the con-
trary, it is endowed already with the total energy of the molecular .
motion; in fact it is this latter motion that causes the ‘“‘elasticity”
which serves to maintain the vibrations of sound. It seems rather
objectionable” to ascribe the energy of the internal motions to a
system of vibrations whose laws are deduced on the assumption of
a molecular motion that existed already before the vibrations themselves.

It must further be remarked that the ordinary laws of sound
motion ave {rue only so long as the wave-length 2 is large compared
with the mean free path s between two collisions. Only in this case

~
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a gas can be divided into elements of volume (the dimensions of
which are small compared with 7 and large compared with s) which
have a certain individuality, each element dilating or countracting
and exerting a pressure on the neighbouring ones, as is admitted
in ordinary aerodynamics. Things begin to change already when 2
is no longer very large compared with s. We must then take account
of the phenomena that are caused by the intern‘}ixing of adjacent
elements of volume. The viscosity and the conduction of heat, the
effects of this intermixing, lead to a departure from the simple
laws which hold for large wave-lengths. Stationary waves of
a length even smaller than s, and yet following more or less the
ordinary rules, are entirely out of the question. Indeed under these
circumstances the greater part of the molecules that enter a layer
of thickness 42 or £2 would traverse it without a collision. We
cannot say any longer thal one layer exerts a pressure on an other;
on the conirary, the molecular motion will cause a rapid r}]ixing
up of the layers. )

Now, the smallest wave-length 2, introduced by LeNz is not much
greater than the distance d of the molecules, while the mean free’
path s can be a considerable wultiple of d. We therefore come lo
the conclusion that, of the modes of vibration which he considers
in his theory, those with a wave-length near the lower limit 2,
cannot really exist.

SomMMERFELD') has tried {o meet-this objection by observing that
neither at somewhat high temperatures, nor al very low ones we
need fear considerable errors in Lrnz’s formulae. For high tempera-
tures they agree with those which may be derived from the ordinary

~ theory of gases and LmNz’'s equations show that at low temperatures
the energy becomes more and more concenirated in the modes of
vibration of large wave-length 1o which our objection does not
apply. This is so indeed, but a simple calculation shows that it is
not until the temperature is extremely low, that the greater part
of the energy will have shifted to waves considerably longer than 2,.

According to Lenz's theory the energy belonging to the modes of

vibration with wave-lengths beiween 2 and 7 4 d2 is given by

di
2he ' 2_5'
iT—1

dmhev
We shall use this expression to seek a certain mean wave-length
4 which we define by the condition that the energy corresponding

) Lic., p. 141, 142, .

)
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to the motions with wave-lengths beneath A' has the same magnitude
as that belonging to wave-lengths beyond 4. This is expressed by
the eruation

~

» o
i dr 1 1 dJ ‘
“2he F___?,— 2’!6——'35—’

) e];/—,.l:’_._]_ )o e’bT—T_. 1
or if we put
2he 2he 2he
— — and—————:w’. . . R . 8
T T T T (®)

by

2ida 3do
f = f)'v . .. . . . (9,

From this equation we can derive by suitable approximations
for each x, the corresponding =z’. If now we consider a gas of
definite density. ¢ and therefore 7, are given and we can determine
the value of z, for each temperature 7. It is true that the second
of the equations (8) does noi suffice for this, as ¢ depends, in the
way indicated by (7), on FE, which is a complicated function of 7.
But Lienz gives the formula

1)
6 (" atde
&t — — . ¢ 4
, Tfez--l (10)

0
which can be used to determine #,. The quantity
18ah®
T omka?

(1)

is a certain temperature which can be indicated for each gas as
soon as its density is given. After having chosen 7, we find @, from
(10), &’ from (9) and finally 2’ from the relation

=0 oL (19)

following from (8).
Let us consider as an example helium of the density corvesponding
to 0° C. and 1 atm. Then ® = 7° and according to (10) a, =1, if

o

—=10,22; for we have
(0]

1

t'adc’ }
.f%®:Q%u
a1

0 4

-10 -



. 746 '

From (9) we find approximately «'=0,75, so that (12) gives
4
}.' =‘3~ 20 .
So we see that al the temperature 7'= 0,22 6 = 1°5, which is
very low indeed, still half of the energy belongs to modes of motion
with wave-lengths below 44, ie. below 1,5¢ and therefore far

below the mean free path s.

§ 8. According to the theory of Lmnz tlie eniropy of a gas does
not depend on £ and » in the way expressed by (1); the equation
of state and the formulae for the specific heats become different
from those in the ordinary theory of gases. For temperatures high
compared with @ however we are led back to the form (1). For
then we find from Lrnz’s formulae

1 3
E="Snr 1—“[/3(’),
2 8 T

4 1 G
S:3kN(———Elog——,), B 0 5]

3 31
and after some reductions

3 ' -3 3
S=kN Y log (2 aBm) 4 log v — > log (2— N) —log N

?

1
—3 log (12000 2) + 4 — 3log 2

This agrees with the formula of Tergopg [(6) above] if we
put w = 3,5.

It must, however, be remarked that, even if one leaves aside the
first of the objections mentioned in § 7, one cannot expect a some-
what exact determination of the chemical constant. Equation (13)
shows that this constant is connected with log @ and therefore on
account of (11) with log 2,, 2, being the minimum wave-length, and
we have seen already that the part of the theory relating io the
smaller wave-lengths is the most contestable one.

§ 9. Terrop bas determined the chemical constant for the mona-
tomic _vapour of mercury, a substance whose properties are well
known, or rather he has derived the coefficient w of equation (6)
from the results of observation. He found ?)

w=1,05, .

Following the same course of thought and using the same dala

1) Amn. d. Phys., 39 (1912), p. 255.

-11 -
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I have repeated ihis determination in the following somewhat differ-
ent way. I shall consider a gram molecule, so that N becomes
AvoeaDro’s constant and £V the gas constant E.

Let, at the temperature 7', p be the vapour pressure of fluid mer-
cury, S the entropy of the vapour, S' that of the fluid, v the
volume of the vapour and o' that of the fluid. Then we have according
to a well known thermodynamic 1elat10n .

§—8 = (v— )
()
for which we may write
dp
S§—8 = ,
. *aT

~

as v is much greater than v\
If the vapour pressure is very low’ we may treat the vapour as
an ideal gas, so that

. RT
Y ¢ 2
- p
and
d log p
S—S§ = RT R €
T (1)

A
If now in (6) we substitute B for i4&, (14) tor v, N for m, A
being the molecula,l weight, and § RT for E, we get -
S=R 5 log(RT)~—log p—4logN +- 5109(2”.”/[ ) + —2—-—— 8log (wh) ;.

By substituting this in (15) we find
Sl
Slogw:—:}—e———; Tlogp)—J[—A,. . . . . (16)
where for shortness’ sake I have put

5 3 5
A:glog(RT)——4logN—}—§—log(2.ﬂM) —}—.é——3log/o . (17

This quantity is completely known. Thus we can calculate the
coefficient @ as soon as we know p as a function of 7 and besides
the entropy S’ of the fluid.

§ 10. For the pressure we may use Hurrz's formula ')
l(;gp = - {J’log.’l’-—--;—’:.

1) H. Herrz, Ann, d. Phys. 17 (1882), p. 198.

-12 -
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with ') « =31,583; § = 0,847 ; v ="7697, from which we draw

- d

dT(Tlogp):(a-—{)’)—ﬂlogT. e . (18)
To be able to determine S’ too, we shall take for 7' the melting

point of mercury (234°). If » is the heat of fusion and S" the

entropy of solid mercury we have -

S =8+ 1- (19)

We must remark here that strictly speaking this formula gives
the value of .S for a pressure of 1 atm. (if we consider the equi-
Iibrium between solid and fluid mercary under that pressure), while
in the preceding equations S' denotes the entropy of the flurd under
the pressure of its vapour. It 1s easily seen that we may neglect
this difference.

It remains to determine the entropy S" of solid mercury. Tlis
can be found by supposing, as is often done in conuection with
NernsT’s heat theorem, that this eniropy 1s O at the absolute zero.
Then it can be calculated for any other temperature by means of the
specific heat ¢, of solid mercury. We have

’
8”=f¥d1’,- N )
0

it we assume the pressure to be 1 atm. during the heating from
0° to 77 :

Nernst ?) has given a formula for the specific heat of a gram
molecule, based on PorLIiTZER’s measurements and by means of which
we find ?)

1) According to HerTz we have, using Briggian logarithms and expressing the
vapour pressure in millimetres of mercury

3342
T
If we want to know the pressure in dynes per em2 we must add Jog 1320,

as a pressure of 1 mm. of mercury corresponds to 1330 dynes per cm® To pass
finally to Neperian logarithms we must divide the first and the third term by logy, ¢.

9 Ann d. Phys., 86 (1911), p. 481.
$) According to NErnsT we have in C.G.S. umts

3 .
w=73 Bly0) + ¢lio))

log p = 10,59271 — 0,847 log T —

where the function ¢ is determined by

Lcd

-13 -
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. 8'=6,95 R, , .
Now the heat of fusion per gram molecule is 554,5 cal.. so that
. \
. r=279 R, ‘
1 NI » _, 10 R ¢
T
and, according to (19),
S' = 8,14 R.
From (18) follows
d
— (T — 26,12
dT(T log p) = 26,
and from (I7)") :
A = 33,92,
Substituting these different values in (16) we find
w=10,7.

§ I11. As o the degree of precision of this result it must be
rematked in the first place that, according to (16) and (17), o is
proportional to low powers of RZ, n and /L. Therefore, an uncer-
taanty in the values of these gnantities will not cause an error of
many percentages 1n w. ,

&)

- T ) et

¢(@) = ,
Gy

For mercury « must be put equal to 97. Further
6p = ¢y - 1"
For the coefficient £ NERNST gives 21.10—5, but here a calory is taken as unit
of heat Choosing the erg instead and substituting gR for £, so that
¢y = ¢» + RgT":
we have
g=—10,6.10—7
f'rom (20) we now find

3 2
§'=5 El1(0) + x(10)] +5 BT
if we put -

& ey
I

T x
7 (@)= ——— log (L’T——l> .
el—1
1 Caleulated with: R = 88,2.106; N = 67.10%*; M =200; h = 0.42.10—21,

-14 -
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4

. o8 ,
On the contrary the value substituted for 7 may be in error to
I 1

a considerable extent. A change of a full unit however in this
value (one eighth of the amount) produces a change in w of about
14°/; only. So we may perhaps conclude thai the value of w will not
differ much from 1 and that the values found for the vapour pressure
of mercury agree in a rather satisfactory way with the theory of
TerropE, if we give the elementary domain G the value 4*1).

Nevertheless, in my oplmon we may not altach much value to
this result. Besides the difficulties which we pointed out already
there is still another serious objection.

Formula (15) connects the vapour pressure with the entropy-
difference between gaseous and fluid mercury or, when-we take
into account the relation (19), with the difference between gaseous
and solid mercury. Now we must doubt seriously whether this
difference can be rightly evaluated if the undeterminate constanisin
S and S" are fixed in the above mentioned rather arbilrary way.
On the ground of BorL1zManN’s formula we may account for the
entropy S", viz. for the change which the entropy of solid mercury
undergoes when heated from 0° to 7'°; to this effect we have to
compare the probabilities of different states of the solid mercury.
This is done e.g. by DeBYE in his theory of specific heats. In this
comparison we are concerned only with quantities referring to the
solid state, e.g. the modulus of elasticity. In the deduction of (6),
on the other hand, only the gaseous state has been considered. The
question arises whether it will -be possible, by a combination of
these results, to determine the difference S—S", which according

1) The objection might be raised that in the above calculation Herrz’s formula
for the.vapour pressure has been applied for a temperature al which this pressure
Las mnever heen measured. In reality however the value of « given by (16), (17)
and (18) is independent of the choice of the temperature.

Indeed, the differential coefficient of the right hand <ide of (16) with respect to T'is

148 (r
RAT  d1* 27

H

17
a.well known thermodynamic theorem this quantity must be zero. In virtue of
(18) it hecomes

ds . . . .
(T— is the specific heat of the fluid under its vapour pressure). According to

1 a8 {3 + }

 RAT 27

and this expression really is zero because HERTZ has chosen the coefficient 8 in
accordance with the theorem in question.
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to Bormrzmany’s theorem is connected with the probability that, in
a system consisting of a solid and a gaseous phase, a greater or a
smaller part belongs to the latter. The circumstance that, in con-
sidering this latter probability, we must attend to the difference
in potential energy of the two phases cannot bui increase onr
doubt, for neither in the determination of S" nor in the determi-
nation of S in the above mentioned way we have bad to speak
of this difference. 1f, as we should expect, the difference S—S"
depended to a considerable exient on the relative values of the
polential energy,-we might still put the entropy S" =0 for T'=0,
but it would no longer be possible to determine the constant «
which ocewrs in formula (1) for the gaseous state by considering
only the phenomena in the gas, as is done in the theories discussed
here. We ought rather to derive it from an examination of the
equilibrinm between the two phases.

[ think we may conclude from what precedes that, though the
value found for o, if it be not quite accidental, pleads in favour
of the application of the theory of quanta to the problem of vapor-
isation, yet the way in which this application has been made
requires further explanation and justification.

Physies. — “On Hamuwron’s principle in EINSTRIN'S theory of gra-
vitation”. By H. A. LorenTz.

{Communicated in the meeting of January 30, 1915).

The discussion of some parts of EmstEN’s theory of gravitation )
may perhaps gain in simplicity and clearness, if we base it on a
principle similar to that of HamirroN, so much so indeed that
HaminroN’s name may properly Dbe connected® with it. Now that
we are in possession of EiNsTuIN’s theory we can easily find how
this variation principle must be formulated for systems of different
nature and also for the gravitation field itself.

Motion of o material point.
§ 1. Let a material point move under the influence of a force
with the components K, K,:K,. Let us vary every position 2,4,z
1) EINSTEIN u. GROSSMANN, Entwurf einer verallgemeinerten Relativitiitstheorie
und einer Theorie der Gravitation. Zeitschr. f. Math. u. Phys. 62, (1914), p. 225.

EmvsteiN, Die formale Grundlage der allgemeinen Relativititstheorie, Sitz. Ber.
Akad. Berlin, 1914, p. 1030.
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