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to Bormrzmany’s theorem is connected with the probability that, in
a system consisting of a solid and a gaseous phase, a greater or a
smaller part belongs to the latter. The circumstance that, in con-
sidering this latter probability, we must attend to the difference
in potential energy of the two phases cannot bui increase onr
doubt, for neither in the determination of S" nor in the determi-
nation of S in the above mentioned way we have bad to speak
of this difference. 1f, as we should expect, the difference S—S"
depended to a considerable exient on the relative values of the
polential energy,-we might still put the entropy S" =0 for T'=0,
but it would no longer be possible to determine the constant «
which ocewrs in formula (1) for the gaseous state by considering
only the phenomena in the gas, as is done in the theories discussed
here. We ought rather to derive it from an examination of the
equilibrinm between the two phases.

[ think we may conclude from what precedes that, though the
value found for o, if it be not quite accidental, pleads in favour
of the application of the theory of quanta to the problem of vapor-
isation, yet the way in which this application has been made
requires further explanation and justification.

Physies. — “On Hamuwron’s principle in EINSTRIN'S theory of gra-
vitation”. By H. A. LorenTz.

{Communicated in the meeting of January 30, 1915).

The discussion of some parts of EmstEN’s theory of gravitation )
may perhaps gain in simplicity and clearness, if we base it on a
principle similar to that of HamirroN, so much so indeed that
HaminroN’s name may properly Dbe connected® with it. Now that
we are in possession of EiNsTuIN’s theory we can easily find how
this variation principle must be formulated for systems of different
nature and also for the gravitation field itself.

Motion of o material point.
§ 1. Let a material point move under the influence of a force
with the components K, K,:K,. Let us vary every position 2,4,z
1) EINSTEIN u. GROSSMANN, Entwurf einer verallgemeinerten Relativitiitstheorie
und einer Theorie der Gravitation. Zeitschr. f. Math. u. Phys. 62, (1914), p. 225.

EmvsteiN, Die formale Grundlage der allgemeinen Relativititstheorie, Sitz. Ber.
Akad. Berlin, 1914, p. 1030.
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.

occurring in the real motion mn the way defined by.the infinitely
small quantities dx,dy,dz. If, in the varied motion, the position
# -+ dz, y + dy, z | dz is reached at the same time ¢ as the position
@3,z in the real motion, we shall have the equation

dedt —}—j (K 02 + K dy + K dz)dte =0, . . . (1)

L being the lLagrangian function and (he integrals being taken dver
an arbitrary interval of time, at the ‘beginning and the end of
which the variations of the coordinates are zero. K is supposed to
be a force acting on the material point beside the forces that ave
mcluded in the Lagrangian function.

§ 2. We may also suppose the time ¢ to be varied, so thatin the
varied motion the position & -} dz, y 4 dy, z -} dz is reached at the ™
time ¢+ d. In the first term of (1) this does not make any difference,
if we suppose that for the extreme positions also dt ='0. As to the
second term we remark that the coordinates in the varied motion at
the time £ may now be taken to be « - dov— v, df, y + dy — 0,4,
z -+ 0z —wv,0t, it v,v,w, are the velocities in the real motion. In
the second term we must therefore replace dz,dy,Jz by dz—v, dt,
dy—v,0t, dz—v,dt. In the equation thus found we shall write
#y,0,,0,,%, for a,y,6,t. For the sake of uniformity we shall add to the
three ve]ooit( components a fourth, which, however. necessarily must

dz
have the value 1 as we take for it *l‘-. We shall also add to the
1,04

three componenis of the force K a fourth component, which we
define as
By=—0, K 40, K+v,K), . - . . . (2
and which {herefore represents the work of the force per umt of
time with the negative sign.
Then ,we have instead of (1)

dedt+f2(a)Kad@a.dt_—_o, N )

and for (2) we may write ')

'

1 In these formulae we have put between parentheses behind the sign of
summation the index with respect to which the summation must be effected, which
means that the values 1, 2, 8, 4 have to be givén to it successively. In the same way
two or more indices behind tbe sign of summation will mndicate that in the
expression under this sign these values have lo be given to each of the indices.
s(ab) f. i. means that each of the four values of ¢ has to be combined with
each of the four values of b.
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S @veke=0 . . . . . . .. &

§ 3. In -Emstemn’s theory the-gravitation field is determined by
certain characteristic quantities g5, -functions of =, @,, #,, ,, among
which there are 110 different ones, as

—

Joa =9gab + - . + o« o+ « - « (5)

A pomnt of fundamental importance is the connection between
these quantities and the corresponding coefficients ¢'s;, with which
we .are concerned, when by an arbitrary substitution.z,, ..., ave
changed for other coordinates 2',,...«',. This connection is defined
by the condition that

ds" =g, do,® + ...+ g do’ + 29, de dey 4oL
or shorter
ds® = Z(ab) gap dae dap
ue an invariant.
Patting .
deg—=2(b) pupda’y . . . . . . . . ()
we find
9'ab = Z(cd)pea Pasged + + « - « - < (7)
Instead of (6) we shall also:write
de's =.2(b) mpq day,
so that the set of quantities &5, smay be called the inverse of the
set pas. Similarly, we introduce a set of quantities ys,, the inverse
of the set gam.?)

We remark here that in virtue of (5) and (7) ¢'s,—=g'ews and that
likewise Y5a=7ab.

Our formulae will also contain the.determinant-of -the guantities
gab, which we shall denote by ¢, .and.the determinant p of the
coefficients pos (absolute value: |p|). The determinant g:is always
negative.

‘We.may now, ras has been-shown by “ErnsruiN, deduce the motion
of a material point in a gravitation field from.the, principle expressed
by (3) if we take for the Lagrangian function

d
L_—:—mi:—-m‘/E(ab)gabvavb N ¢-))

1)*Suppose
wg = E(b)ve&s
to follow .from.theseqnations
§ = = (b)'nabt'”b H

then the set ”c;b! is the inverse of the set 7g6.

48
Proceedings Royal Acad. Amsterdam. Vol XIX.
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Motion of a system of incoherent material points.

§ 4. Let us now, following HEINSTEIN, consider a very large number
of material points wholly free from each other, which are moving
in a gravitation field in such a way that at a definite moment the
velocity components of these points are continuous functions of the
coordinates. By taking the number very large we may pass to the
limiting case of a continuously distributed matter without internal
forces.

Bvidently the laws of motion for a system of this kind follow
immediately from those for a single material point. If ¢ is the
density and de dy dz an element of volume, we may write instead
of (8)

— o V Z(ab)gapvovy.dadydz. . . . . . (9
If now we wish to extend equation (3) to the whole system we
must multiply (9) by d¢ and integrate with respect to @, y, z and &
In the last term of (3) we shall do so likewise after having
replaced the components K, by K, de dydz, so that in what follows
K will represent the external force per unit of volume.
If farther we replace dz dy dz dt by dS, an element of the four-
dimensional extension x,,...x,, and put

OVa=Wg . . - - . . . . . (10)

L=—V3@)gawawr - - . . . . (11)
we find the following form of the fundamental theorem.

Let a variation of the motion of the system of material points be
defined by the infinitely small quantities dz,, which are arbitrary
continuous functions of the coordinates within an arbitrarily chosen
finite space S, at the limits of which they vanish. Then we have,
if the integrals are taken over the space .S, and the quantities
Jas are left unchanged, :

dfde—l—fZ‘(a)Kadwa.dS:O ... 9

For the first term we may write

‘JdL . ds,

if 6L denotes the change of L at a fixed point of théa space S.
The quantity LdS and therefore also the integral deSisinvariant
when we pass to another system of coordinates.?) '
1) This follows from the invariancy of ds?, combined with the relations

Q!
- = |p| —, dS =--4dS.
a, |p| = S
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§ 5. The equations of motion may be derived from (12) in the
following way. When the variations dz, have been chosen, the
varied motion of the matter is perfectly defined, so that the changes
of the density and of the velocity components are also known. For
the variations at a fixed point of the space S we find

0
g = 3 (b) aﬁf;” . (19)
where
: Kab = Wo8q — Wabzp . . . . . . . (14)
+ (Therefore: %60 = — %abs Yaa = 0).
If for shortness we put
P=V3I@bgawarr, . - - . - . . (19)
so that L =— P, and
2(O)gasor =ug » . . . . . . . (16)
we have :
i} Uy Ug 0ab
L — — — g = — = — =
d 2(a) iz dw (ab) P 3as
0 (uq 0 (g -
= — 3(ab) —( =3 (ab) yas —— [ =),
(CL )a{(}b (anb> + (a ) Aab a;’b'b (_P)
so that, with regard to (14), " )
' 0
ol + S(@)Kobw, = — Z(ab) —(@ M) 4+
0ap \ P 1

0 (ta
+ =(ab)(wsdwq— wadas) Fy (%) + Z(a) Kodzg

If after multiplication by dS this expression is integrated over
the space S the first term on the right hand side vanishes, y45 being
0 at the limits. In the last two terms only the variations dz, cccur,
but not their differential coefficients, so that according to our fun-
damental theorem, when these terms are taken together, the coeffi-
cient ot each dz, must vanish. This gives the equations of motion?)

' 0 up 0 [ug ! |
; I(a = E(b)wb [});',; (?) —_— r’vb(})] Y e e . e (1 8)'

which evidently agree with (4), or what comes to the same, with
4 S@wke=0. . . . . . . . (19
In virtue of (18) the general equation (17), which holds for

1) In the term-

— S(abjwgds a—ZZ (’%‘-)

the indices & and b must first be interchanged. |

48%
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arbitrary "variations that.need not vanish at-the limits of S, becomes

IL + S(a)Kydvg = - E(ab)aa (“ M) ... (0)

§ 6. We can derive from this the equations for the momenta
and the energy. -

‘Let us suppose that' only one of the four variations dz, differs
from O and let this one, say dw, have a constant value. Then (14)
shows that for each value of « that is not equal to ¢

Aae = — Wadde, Aea = Walley. . - . .7 . (21)
while all y’s without an index ¢ vanish.

Putting first 6 —=c and then @=c¢c, and replacing at the same
time in the latter case » by @, we find for the right hand side

of (20) ,
S(a) %(@’“} doe — = (@) 5— ("°“’“)dwc Y

But, according to (15) and (16),

uawa

=P=—1L,

=@

v

so that (20) becomes
L
IL + K due = — g_afm, 205 (“”“"’) do. . . (22)
* l’vc -

It remains to find the value of JL.

The material system together with its state of ‘motion has been
shifted in the direction of the coordinate @, over a distance dz,. If
the gravitation field had participated in this shift, JL would have

oL I
beenequal to _5—“6%' As, however, the gravitation field has been

we

left unchanged in ‘this Jast ‘expression must be diminished by

oL
’ a‘"-"(,
L . . :

a—-) , the index w imeaning ‘that we .must keep constant the
% /w
quantities w, and consider only the variability of the coefficients g.s.

"Hence
oL oL n ol :d
vl — - e o
Oz, 0z, )w |
Substituting this in (22) and putting
1) The circumstance that (21): does not hold for ¢=c¢ might lead us to exclude

" this value from the two sums. We.need not, however, introduce this restriction,
as the two terms that are now written.down too-much, annul each other,

-
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1elg

_P —_— .’['acs . . . . . . . . (23)
we tind
oL Tae
K, — = =2 S 271
+ (a) @5t (24)

The first three of these equalions (¢=1, 2, 3) refer to the momenta;
the fourth (¢c=4;) is the equation of energy. As we know already
the meaning of X ,....K, we can easily see that of the other
quantities. The stresses X, X;, Xo, Voo .. ave T, 1%, Ty, T}, . .
the components of the momenium per unit of volume —77,,, —7,,,

—T,;; the components of the flow of energy 7,, T,,, T,,. Further

T,, is the energy per unit of volume. The quantities

(OL oL oL
atTl)w , (5"2’:)10 ’ <E i

are the momenta which the gravitation field imparts to the material
system per unit of time and unit of volume, while the energy

: oL
which the system draws from that field is:given: by -— (——) .

60;4 w

An electromaynetic system in the gravitation field.

§ 7. We shall now consider charges moving under. the influence
of external forces in a gravitation field; we shall determine the
motion of these' charges and-the electromagnetic field belonging to
them. The density ¢ of the charge will be supposed to be a con-
tinuous function of the coordinates; the force per unit of volume
will be denoted by X and the velocity of the point of a charge by
v. Further we shall again,introduce the notation (10).

In EiwnsteiN’s theory the electromagnetic field is determined by
two sets, each of four equations, corresponding to well known
equations in the theory of electrans. We shall’ consider one of these
sets as the mathematical description of the system to which we:have
to apply Haminton’s principle; the second set will be found. by
means of this application. )

The first set, the fundamental equations, may be written in

the form

alpa[)

' =0
(05,

=Wa .+ - - « o+ . . . (29)
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the quantities s ') on the left hand side being subject to the con-
ditions A
Yoo =0, WPoo=— Pty - . R (26)
so that they represent 6 mutually independent numerical values.

These are the components of the electric force E and the magnetic
force H. We have indeed -

Y, =E , v,=E , P,=E,;
Wy, = H: , Py, = Hv/ s Wy, =H., )
and it 15 thus seen that the first three of the formulae (25) express
the connection between the magnetic field and the electric current.
The fourth shows how the electric field is connected with the charge.
On passing to another system of coordinates we have for w, the
transformation formula -

(27)

we=|p| = (0) Xoa wh,
which can easily be deduced, while for ¥, we shall assume the
formula \ .
. Wao = |p| 2 (cd) Tea Map Wea .« - . . . (28)
In virtne of this assumption the equations (25) are covariant for
any change of coordinates. .

§ 8. Beside w, we shall mtroduce certain other quantities W
which we define by
Eabz —}_:2 (Od) Jea b W4 - « - - . (29)
v —g
or with regard to (26)

VYas =—_1—_92 (ed) (gea gab—Gda 9u8) Wear - - . - (30)
in which last equation the bar over cd means that in the sum each
combination of two numbers occurs only once.

As a consequence of this definition we have
Yoo =0, Yoa=—Waty . . . . . . (8])
and we find by inversion *)
Yab = l/-———qE (cd) yac‘ybdl_pcd B 1))
}) The quantities w,, are connected with the components ., of the tensor
introduced by Emstemv by the equations i, = V-—_g. Pape
2) By the definition of the quantities ¥ (§ 3) we have
2@ gapyar=1. . . . . . . . (e
and for b ==«
C 2@ ta=0 0 T@Para=0 . . . . (§
Substituting for Jcd an expression similar to (29) with other leiters as indices,
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To these equations we add the transformation formula for Wb
which may be derived fiom (28)) "

Voo = 2 (¢d) pea pas Wedo -+ - - - - ; (33)

§ 9. We shall now consider the 6 quantities (27) which we shall
espema]]y call “the quantities ¢’ and the corresponding quantities

Y, Viz. W, ... W, d
According to (30) these latter are homogeneous and linear functions
of the former and as (because of {5)) the coefficient of W, in Wap is
equal to the coefficient of ,, in r!’cd, there exists a homézg'eneous
quadratic function L of w,,,...wy,,, which, when differentiated with
respect o these quantities, gives w,, ,. .. le.VTherefore yi

T 34
awab_.lpab.........()

and
L=14} 3(ab) $abWat - - - - - . - (8%
If, as in (34), we have to consider derivatives of L, this qnantity
will be regarded as a quadratic function of the quantities wp.
The quantity L can now play the same part as the quantity that
is represented by the same letter in §§ 4—6. Again L.dS is invariant
when the coordinates are changed. ?*) )

we have
V' —g = (ed) Yac v5aWd = = (cdef) Ya. Yodge 9 a Yoy = = () Yba g fatlaf—=was.

The last two steps of this transformation, which rest on («) and (8), will need
no further explanation. In a similar way we may proceed (comp. the following
notes) in many other cases, using also the relations < (@) psa=sic=1 and
< (0) Pba mea = 0 (the latter for b =|=¢), which are similar to () and. (8).

1) If we start from the equation foi /gy that corresponds to (29) and if we use
(7) and (28), attending to vV_—g —lpjl/—-g, we find G

L
b

1
lPal)——‘—E(Gd)gm(]dbll od =
V—g

1
l/ ) (c d ef]l. 'Lj /c) Pec Pfa Phd Pub T je Aed Jef QhLlP;Jc
—g

This may be transformed m two sleps (comp. the pleccedmg note) to

1
—2 (ef hA) Pra PiubGef ki Yol
V=g

In this way we may proceed further, after first expressing: Jen as a function
of im by means of (32).

%) Instead of (35) we may write L = 4% (@) Jab $as and now we have accord-
ing to (28) and (33)

-10 -
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§ 10. We shall-define a varied motion of the electric charges-by
the quantities dz, and we shall also vary the quantities i, so far
as can be done without violating the connections (25) and [26). The
possible variations dwp,; may be expressed in dz, and four other
infinitesimal quantities g, which we shall presently introduce. Our
condition will be that equation.(12) shall be true if, leaving the
gravitation field unchanged, we take for dez, and ¢, any continuous
functions of the coordinates which vanish at the limits of the domain
of integration. We shall understand by dw,, d,;, JdL the variations
al a fixed point of this space. The variations dw, are again deter-
mined by (13) and (14), and we have, in virtue of (26) and (25);

od G
e = 0, dise == — SWats B(B) o™ — gy = = (B) X
0w 0xp
If therefore we put
oPep = Yab +Faby - - . . . . . (36)
we must have
09
9ua=0,. Ig=— Doty S(b) e = 0.
s

It can be shown that quantities 9, satisfying these conditions
may be expressed in terms of four quantities ¢, by means of the
formulae
Ogy  Ogy
0z Oy

Here a’ and b’ are the numbers that remain when of 1,2; 3,4
we omit a and b, the choice of the value of a” and' that of 0’
being’ such that the order-a, b, a’; &’ can be derived'from the order
1, 2, 3, 4 by an even number of permutations each: of.two numbers.

b= (@==b). . . . . . . (8D

§ 11. By (34); (36) and (37) we have

— — [dap  dqw
oL + = (a) K, dwg = Z' (ad) Wab b | 1
Ozy  Oxp

+ = (@b) Was s + = (@ Eubze . . . . . (38)
Here, in the transformation of the first term' on the.right hand
side 1t is found convenient to introduce a new notation for the
quantities- ;. W shall put’
Wap = W,

L/ =1 ' (ab) Wt Was = |p| Z-(abedef) Fea 7db Peapfp Wed Wer =

=1 |p| = (ed) Wed Wea = |p| L, .
while
Ip| 48' = ds..

-11 -



761

a consequence of which is

Wio==— Wa
and we shall complete: our definition. by?)
Wa=0¢. . . . ... . . . (389

The term we are considering: then: becomes

— a . a' a* \* o - .a a i3 \>
= (ab) i (aﬂ — )=z (ab) Wi (—"b——q—)z

2y Oxp, 0z, Oy

a 0gq
3 2 (ad) Yap (M}‘— a‘q") — = (ab) Wap =— ey

Oz, Oaxp
= — 3 Wy 5 gy B,
so that, using (14), we: obtain for (38)
JL (IPaan) alpab
-I—E((L)K dwa_——E(b) +2(b) 9'(5"{"

+ Z(ab) Wap wb d:va—}—E*(a) Kodwg, . . . . (40)
where we have taken into consideration that
= (ab) Wap (wp dwg — wo ) = = (ih) Pap ws g,

If we multiply (40) by dS and integrate over the space S the
first term on the right hand side: vanishes. Therefore (12) requires
that in the subsequent terms the coefficient of each ¢, and of each
Ozs be 0: Therefore

oush

SOF-=0- - - - ... @D
and
K,—=—S®)Wap 0ty - - . - .. (42)
by which (40) becomes
Il + 2(0).K, dwg—=—3.(ad) a('gf;q") ... (48)

In (41) we have the second set of four electromagnetic equations,
while (42) determines tlie forces: exerted- by thie field! om: the charges.
We see that (42) agrees with (19) (namely in virtue off"(3i9):

§ 12. To deduce also the equations for the momenta and the
energy we proceed. as.in. § 6. Leavingthe gravitationfieldunchanged
we shift the electromagnetic field, i.e. the values of w, and W
in. the. direction ofione of the coordinates, say, of x; overa distance
defined by the constant variation Jw. so that we have

1) The quantities- yp7; are connected’ with the quantities ¢}, introduced by

Emvstey by the equation Wap =W g. gl

-12 -
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a!,l’ab
0z,

From (36), (14) and (37) we can infer what values must then bé
given to the quantities g, We must put ¢ =0 and for a==c?)

WPep = — dz,

g” — l’?a I d‘{b’c-
For 0L, we must substitute the expression (cf. §76)

oL (GL) b
_E’I_}_c—‘— a:’ll'c 'b‘ ch’

where the index 1 attached to the second derivative indicates that only
the variability of the coefficients (depending on g¢.) in the quadratic
function L must be taken into consideration. The equation for the
component K, which we finally find from (43) may he written in
the forin

oL 07y,
. Kc_l_(ﬁ; 4]::——2\(6) s ICEEE (44)
where
) T?cz——L—[—a:?ia)lpzclp,yo'. R (1))
and for 0 ==c¢ o \
Tbcch_'lioz) Wop Parorr + - - . . . (46)

Equations (44) correspond exactly to (24). The quantities 7" have
the same meaning as in these latter formulae and the influence of

oL .
gravitation is determined by (—) in the same way as it was
,"IJ

O,
oL
formerly by (——~) .
a«771: w
We may remark here that the sum in (45) consists of three and
that in (46) (on account of (39)) of two terms.
Referring to (35), we find fi. from (45)
T,=1% (lpnis +- IP“E, - 1!’41;"’_41 + 1”23@;3 — w311E1 - wlzaz)v
while (46) gives
T,= %szs - "’416’—4—2'

The differential equations of the gravitation field.
' \

§ 13. The equations which, for a given material or electromagnetic
system, determine the gravitation field caused by it can also be
derived from a variation principle. EiNsTEIN has prepared the way

1) To understand this we must attend to equations (25).

-13 -
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for this in his last paper by introducing a quantity which he calls
H and which is a function of the quantities g,; and their derivatives,
without further containing anything that is connected with the
material or the electromagnetic system. All we have to do now is
to.add to the left hand side of equation (12) a term depending ¢n
that quantity H. We shall write for it the variation of

1
_‘de‘S "
®

where » is a universal constant, while Q is what EinsteiN calls

H V:?, with the same or the opposite sign'). We shall now require
that

dedS—{-%dedS—i— (@) K. dS=0, . . . (47)

not only for the variations considered above but also for variations
of the gravitation tield defined by dge, if these too vanish at the
limits of the field of integration.

To obtain now

1
oL + — 6Q + Z(@)Kudva

we have 10 add to the right hand side of (17) or (40), fivst the ch'ange
of L caused by the variation of the quantities ¢, viz.

oL )

E(a_b_) dlgaln

a,(/ab

1
and secondly the change of ( multiplied by —. This latter change is
%

— 9 — 90 ,
E(Qb) < d9ap + Z(abe) < A9 ub,es
a,(]ab agab,e
\ . . . agab
where gq. has been written for the derivative
t’vc
As
’ 0dga
. dgab,e-——a;c—

we may replace the last term by

\
'S(abe) —

0 0Q 90 0Q
52, (agab,e "9“”) — B o (agae,e) et

§ 14. As we have to proceed now in the same way in the case

1) T have not yet made out which sign must be taken to get a perfect conform-
ity to EinstEIN’s formulae. )

-14 -
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of a material and in that of an electromagnetic system we need
eonsider only the latter. The:conclusions drawn in § 11 evidently
remain valid, so that we may start from the equation‘which we
obtain bv adding the new terms to (43). We therefore have

oL+ = dQ-}— M) Kob2, = — = (ab) ("’“bq")+ z( be )5_( - d‘gab>—}7
1 0 a
+E(ab)( xagab>dgab-—— E(abp)———(aqf ) gas - . . (48)

When we integrate over S, the first two terms on the right hand
side vanish. In the terms following: them the-coefficient of each dgas
must be 0, so that we find

0 0 oL
N sl < “ )_ %
agaJ a"'e agabe agab

These are the differential equations we sought for. At the same
time (48) becomes

— . (49)

gL 4+ = dQ—l—Z(a)Kadoa:—E( b)

a abda 1 - aQ
(lP bq_) 4 2( Zhe )_(a dqab) (50)
Jab,e

§ 15. Finally we can derive from this the equations for the
momenta and the energy of the gravitation field. For this purpose
we impart a virtual displacement dz, to this field’ only (comp. §§ 6
and 12). Thus we put dz, =0, ¢,~=0 and

d‘,(/ab =" Jab,c dae.
Evidently
0
dQ = — 5—;9 dlb'c
&

and (comp. § 12)
oL
oL = —{ — | du.
(‘?w'c b ve
After having substituted these values in equation (50) we: can

)
deduce from it the value of ( L)

O,
If we put
o 1 1 — 0Q
Te :——;Q-—; E(ab)aab’c Jabe - - - (B
and for e=l=¢
¥
ch———~2(ab) o4 Jave - -+ - - - (32
h a Jab,e :

the result takes the following form
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oL oTE
—(&;,z_z@amc .. (59

Remembering what has been said in § 12 about the meaning of

oL
(a~>, we may now conclude that the quantities 777 have the same
Do

meaning for the gravitation field as the quantities T for the electro-

b

magnetic field (stresses. momenta etc.). The index ¢ denotes that 7705
belongs to the gravitation field.
If we add to (53, the equations (44), after having replaced in them
b by e, we obtain
07e,

[b'c

Y (-7

Ke=— = (o)
where
Tgc:ch‘|‘TZc- B

The quantities 7%, represent the fofal stresses etc. existing in the
system, and equations (54) show that in the absence of external
forces the resulting momentum and the total energy will remain
constant.

We could have found directly equations (54) by applying formula
(50) to the case of a common virtual displacement dz, imparted
both to the electromagnetic system and to the gravitation field.

Finally the differential equations of the gravitation field and the
formulae derived from them will be quite conform to those given
by EinsteIN, if in  we substitute for H the funciion he has chosen.

§ 16. The equations that have been deduced here, though mostly
of a different form, correspond to those of HinstEIN. As to the cova-
riancy, it exists in the case of equations (18), (24), (41), (42) and (44)
for any change of coordinates. We can be sure of it because LdS
is an invariant.

On the contrary the formulae (49), (63) and (54) have this pro-
perty only when we confine ourselves to the systems of coordinates
adapted to the gravitation field, which Emsteix has recently com-
sidered. For these the covariancy of the formnlae in question is a

.consequence of the invariancy of o f HdS which EiNstaix has proved
by an ingenious mode of reasoning.
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