Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J.G. van der Corput, On a arithmetical function connected with the decomposition of the positive integers into prime factors I., in:
KNAW, Proceedings, 19 II, 1917, Amsterdam, 1917, pp. 826-842

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "On an arithmetical function connected with the decomposition of the positive integers into prime factors." I. By J. G. van der Corpet. (Communicated by Prof. J. C. Kluyver).
(Communicated in the meeting of May 27, 1916).
Let u be any arbitrary integer >1 and resolve u into prime factors; let ℓ_{u} represent the smallest exponent of these factors and let a_{u} indicate how many times e_{u} occurs in the series of this exponents. Moreover we take $e_{1}=0$ and v_{u} represents the greatest divisor of u, for which $e_{r_{u}}>m, m$ being any arbitrary positive integer. The object of this paper is to deduce a formula obtaining two general arithmetical functions F and f, satisfying four relations, n representing any positive integer, viz.
$1^{\text {st }}$. for $e_{n}<m$ and also for $e_{u}=m, a_{u}>n$

$$
F(u)=0 ;
$$

$2^{\text {nd. }}$. if $e_{u} \leq m$,

$$
f(u)=0 ;
$$

$3^{\text {rd }}$. for $e_{u}=m, a_{u}=n$,

$$
F(u)=f\left(v_{u}\right) ;
$$

$4^{\text {th }} . \quad F(u)=O\left(v_{u}{ }^{u}\right)$,
μ having a constant value $<\frac{1}{m(m+1)}$.
The integers m and n are called the parameters of the function F and f the function corresponding to F.

This article, now, is intended to demonstrate the formula

$$
\begin{align*}
\sum_{\substack{u=2 \\
u \\
u \equiv l}}^{x} F(u) & =\frac{a x^{x^{\prime \prime}}}{\log x}+O\left(\frac{\cdot \frac{1}{x^{m}}}{(\log x)^{x}}\right) \quad \text { for } n=1, \tag{1}\\
& =\frac{\frac{1}{x^{m}}(\log \log x)^{n-1}}{\log x}+O\left(\frac{x^{\frac{1}{m}}(\log \log x)^{n-2}}{\log x}\right)
\end{align*}
$$

for any arbitrary integral positive value of n and this proof will be given in $\oint 2$ for $n=1$, in $\$ 3$ for the other case. The modulus of the congruences, for which this modulus has not been mentioned, is in this paper the arbiltary positive integer k, x represents a number $>1, l$ an integer, prime to k, a has a constant value, viz.

$$
a=\frac{b m}{h \cdot(n-1)!} \sum_{u=1}^{\infty} \frac{f(u)}{\frac{1}{\frac{1}{m}}} ;
$$

h is the number of positive integers $\leqq k$, prime to k, b is the number of incongruent roots z of the congruence

$$
z^{m} \equiv 1
$$

and the sum

$$
\sum_{\substack{u=1 \\ u z^{m} \equiv l}}^{\infty} \frac{f(u)}{u^{\frac{1}{m}}}
$$

is extended over all the positive integers u, for which the colgruence

$$
u z^{m} \equiv l
$$

has roots in z.

§ 2. Lemma.

and

$$
\begin{aligned}
& \sum_{n=1}^{V x} \frac{f(v) \log v}{v^{\frac{1}{m}}}=O(1), \\
& \sum_{v=1}^{x} f(v)=o\left(\frac{x^{\frac{1}{m}}}{(\log x)^{2}}\right)
\end{aligned}
$$

$$
\sum_{v=1}^{V x} \frac{f(v)}{\frac{1}{v^{m}}}=\sum_{v=1}^{\infty} \frac{f(v)}{\frac{1}{v^{n}}}+o\left(\frac{1}{\log x}\right) .
$$

Proof. From the relations satisfied by the functions F and f, it follows, u being an integer, for which v_{u} has the value v, that

$$
f(v)=f\left(v_{u}\right)=F(u)=O\left(v_{u^{u}}\right)=O\left(v^{u}\right)
$$

and for $\frac{1}{m}>s>\frac{1}{m+1}+\mu$ the left member of the identity

$$
\underset{p}{\Pi}\left\{1+\frac{1}{p^{(m+1)(s-\mu)}}+\frac{1}{p^{(m+2)(s-\mu)}}+\cdots\right\}=1+\sum_{e_{v}>2}^{\infty} \frac{1}{e^{(s-\mu}}
$$

is a convergent product and consequently the right member a convergent sum, therefore

$$
\begin{aligned}
g(x) & =\sum_{v=1}^{x} \frac{f(v)}{v^{s}}=f(1)+\sum_{v=2}^{x} \frac{O\left(v^{v}\right)}{v^{s}} \\
& =O(1)+O \cdot \sum_{v=2}^{\infty} \frac{e_{v}>m}{e_{v}>m}=O(1) .
\end{aligned}
$$

Hence

828

$$
\begin{aligned}
\sum_{v=1}^{V_{x}^{x}} \frac{f(v) \log v}{r^{\frac{1}{m}}} & =\sum_{e_{v}>m}^{v a} O\left(\frac{1}{v^{s-n}}\right) \\
& =O(1) \\
\sum_{i=1}^{x} f(v) & =\sum_{v=1}^{x} v^{s}\{g(v)-g(v-1)\} \\
& =[x]^{s} g[x]-\sum_{v=1}^{x-1} g(v)\left\{(v+1)_{z}^{s}-v^{s}\right\} \\
& =O\left(x^{s}\right) \cdot O(1)-\sum_{v=1}^{x-1} O(1)\left\{(v+1)^{s}-v^{s}\right\} \\
& =O\left(x^{s}\right)+O \cdot \sum_{v=1}^{x-1}\left\{(v+1)^{s}-v^{s}\right\} \\
& =O\left(x^{s}\right)+O\left\{[x]^{s}-1\right\} \\
& =O\left(x^{s}\right) \\
& =O\left(\frac{x^{m}}{(\log x)^{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{r=x+1}^{\infty} \frac{f(v)}{v^{\frac{1}{m}}}=\sum_{x=x+1}^{\infty} \frac{g(v)-g(v-1)}{v^{\frac{1}{m}-s}} \\
& =-\frac{g[x]}{[x+1]^{\frac{1}{m}}-s}+\sum_{x=x+1}^{x} g(v)\left\{\frac{1}{v^{\frac{1}{m}}-s}-\frac{1}{(v+1)^{\frac{1}{2 n}}-s}\right\} \\
& =0\left(\frac{1}{\frac{1}{x^{m}}-s}\right)+\underset{r=x+1}{\sum_{i=x}^{\infty}} O(1) \cdot\left\{\frac{1}{\frac{1}{v^{m}}-s}-\frac{1}{(v+1)^{\frac{1}{m}}-s}\right\} \\
& =O\left(\frac{1}{x^{\frac{1}{n}-s}}\right)+O \sum_{n=x+1}^{\infty}\left\{\frac{1}{v^{\frac{1}{m}}-s}-\frac{1}{(v+1)^{\frac{1}{n-s}}}\right\} \\
& =O\left(\frac{1}{\frac{1}{\frac{1}{m}-5}}\right)+O\left(\frac{1}{[x+1]^{\frac{1}{m}}-s}\right) \\
& =o\left(\frac{1}{\frac{1}{x^{m}}-s}\right) \\
& =o\left(\frac{1}{\log x^{2}}\right) \text {, }
\end{aligned}
$$

consequently

$$
\begin{aligned}
\sum_{v=1}^{V x} \frac{f(v)}{\frac{1}{v^{m}}} & =\sum_{v=1}^{\infty} \frac{f(v)}{\frac{1}{v^{n}}}-\sum_{v=V x+1}^{\infty} \frac{f(v)}{\frac{1}{v^{\prime n}}} \\
& =\sum_{v=1}^{\infty} \frac{f(v)}{\frac{1}{v^{n}}}+o\left(\frac{1}{\log x}\right) .
\end{aligned}
$$

Identity. If ψ_{1} and ψ_{3} represent two arbitrary arithmetical functions, the sum

$$
\underset{d_{1} d_{2} \leqq x}{\mathbf{\Sigma}} \boldsymbol{\psi}_{1}\left(d_{1}\right) \psi_{2}\left(d_{2}\right),
$$

extended over all the positive integers d_{1} and d_{2}, of which the product is not greater than x, is equal to

$$
T_{1}+T_{2}-T_{2} T_{4}
$$

where
and

$$
\begin{aligned}
& T_{1}=\sum_{d_{1}=1}^{V x} \psi_{1}\left(d_{1}\right) \sum_{d_{2}=1}^{\frac{x}{d_{1}}} \psi_{3}\left(d_{2}\right), \\
& T_{2}=\sum_{d_{3}=1}^{V x} \psi_{2}\left(d_{3}\right) \sum_{d_{1}=1}^{\frac{x}{d_{2}}} \psi_{1}\left(d_{1}\right), \\
& T_{3}=\sum_{d_{1}=1}^{V x} \psi_{1}\left(d_{1}\right) \\
& T_{1}=\sum_{d_{2}=1}^{V x x} \psi_{3}\left(d_{3}\right) .
\end{aligned}
$$

Proof. A term $\boldsymbol{\psi}_{1}\left(d_{1}\right) \boldsymbol{\psi}_{2}\left(d_{3}\right)$, occurring in the sum in question, appears in the formula $T_{1}+T_{9}-T_{8} T_{4}$
for $d_{1} \leqq V x \quad d_{2} \leqq V x \quad$ exactly $1+1-1=1$ times,
for $d_{1} \leqq V x \quad d_{3}>V x \quad$ exactly $1+0-0=1$ times,
for $d_{1}>V x \quad d_{3} \leqq V x \quad$ exactly $0+1-0=1$ times.
Lemma. If we take $n=1$, the sum

$$
\begin{aligned}
& \sum \\
& p^{m} v \leqq x \\
& p^{m} v \equiv l
\end{aligned} \quad f(v),
$$

extended over all the positive integers v and all the prime numbers p, for which the relations

$$
p^{m} v \leqq x \quad \text { and } \quad p^{m} v \equiv l
$$

exist, is equal to

$$
\frac{a x^{\frac{1}{m}}}{\log x}+o\left(\frac{x^{\frac{1}{m}}}{(\log x)^{s}}\right)
$$

where

$$
a=\frac{b m}{h} \sum_{\substack{v=1 \\ v z^{m} \equiv l}}^{\infty} \frac{f(v)}{v^{m}} .
$$

Proof. Let l_{1} and l_{3} be two integers, prime to k; if the congruence

$$
\boldsymbol{z}^{m} \equiv l_{1}
$$

has no roots in z, we have

$$
\begin{aligned}
& \underset{v}{\Sigma} \quad f(v)=0, \\
& p^{m} \\
& p^{m} \equiv l_{1} \\
& v \equiv l_{s}
\end{aligned}
$$

since it is then impossible to tind a prime number p, satisfying the congruence

$$
p^{m} \equiv l_{1} .
$$

Let us now, however, consider the case, that the congrence does possess roots and consequently has b incongruent roots $z_{1}, z_{2}, \ldots, z_{b}$. The preceding identity gives

$$
\underset{\substack{\mathrm{s} \\ p^{m} v \leq x \\ p^{m} \equiv l_{2} \\ v \equiv l_{2}}}{ } \quad f(v)=T_{1}+T_{2}-T_{1} T_{4},
$$

where

$$
\begin{aligned}
& T_{1}=\underset{\substack{v=1 \\
v \equiv \zeta_{2}}}{V x} f(v) . \underset{p^{m} \leqq \frac{x}{v}}{\Sigma} 1, \\
& p^{m} \equiv l_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& T_{1}=\Sigma 1 . \\
& \begin{array}{l}
p^{m} \leqq V^{m} \\
p^{m} \equiv l_{1}
\end{array}
\end{aligned}
$$

From the preceding lemma ensues

$$
T_{1}=o\left\{\frac{(V x)^{\frac{1}{m}}}{(\log V x)^{2}}\right\}=o\left(\frac{x^{\frac{1}{2 m}}}{(\log x)^{2}}\right)
$$

and for $p^{m} \leqq \vee x$

$$
\begin{aligned}
\frac{x^{*}}{p^{m}} \boldsymbol{\substack { \Sigma f (v) \\
v \equiv 1 \\
v = 1 }} & =O\left\{\frac{\left(\frac{x}{p^{m}}\right)^{\frac{1}{m}}}{\left(\log \frac{x}{p^{m}}\right)^{3}}\right\} \\
& =O\left\{\frac{x^{\frac{1}{m}}}{p\left(\log \frac{x}{V x}\right)^{3}}\right\} \\
& =O\left(\frac{x^{\frac{1}{m}}}{p(\log x)^{8}}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
& T_{3}=\underset{p^{m} \leqq V x}{\Sigma} O\left(\frac{x^{\frac{1}{m}}}{p(\log x)^{2}}\right) \\
& p^{m} \equiv l_{1} \\
& \begin{aligned}
=O\left(\frac{\frac{1}{x^{m}}}{(\log x)^{2}}\right) &)_{p^{m}} \underset{p^{m}}{ } \equiv V_{x} \frac{1}{x^{p}}
\end{aligned} \\
& \frac{1}{\frac{1}{2 m}} \\
& =O\left(\frac{x^{m}}{(\log x)^{4}}\right) \cdot O \quad \sum_{n=1}^{x} \frac{1}{n} \\
& =O\left(\frac{x^{\frac{1}{n}}}{(\log x)^{2}}\right) \cdot O\left(\log x^{\frac{1}{2 n n}}\right) \\
& =O\left(\frac{x^{\frac{1}{m}}}{(\log x)^{2}}\right) \text {. }
\end{aligned}
$$

From the inequalities

$$
0 \leqq T_{4} \leqq \begin{gathered}
p^{m} \leqq V^{2} \\
p \equiv l_{1}
\end{gathered}
$$

ensues

$$
T_{4}=0\left(x^{\frac{m}{1}}\right)
$$

and now only the term T_{1} is to be considered.

From the well-known proposition ${ }^{1}$) that the number of prime numbers $\leq x$ and congruent to l with regard to the modulus k, is equal to

$$
\begin{equation*}
\underset{\substack{\sum \leqq x \\ p \equiv l}}{ } 1=\frac{1}{h} \cdot \frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right) \tag{2}
\end{equation*}
$$

ensues

$$
\begin{aligned}
& p \equiv z_{1}, z_{3}, \ldots, z_{b} \\
& \begin{array}{cc}
= & \Sigma \\
\Sigma & 1 \\
b \geqq \varrho \geqq 1 & p \leqq\left(\frac{x}{v}\right)^{\frac{1}{m}}
\end{array} \\
& p \equiv z_{p} \\
& =\sum_{p=1}^{b}\left\{\frac{1}{h} \cdot \frac{\left(\frac{x}{v}\right)^{\frac{1}{n}}}{\log \left(\frac{x}{v}\right)^{\frac{1}{m}}}+0 \cdot \frac{\left(\frac{x}{v}\right)^{\frac{1}{m}}}{\left\{\log \left(\frac{x}{v}\right)^{\frac{1}{m}}\right\}^{2}}\right\} \\
& =\frac{b m x^{\frac{1}{m}}}{h v^{\frac{1}{m}} \log \frac{x}{v}}+o\left\{\frac{x^{\frac{1}{n}}}{\left(v^{\frac{1}{m}}\left(\log \frac{x}{v}\right)^{3}\right.}\right\} .
\end{aligned}
$$

For $v \leqq V x$ we have

$$
\begin{aligned}
& \frac{1}{\log \frac{x}{v}}=O\left(-\frac{1}{\log \frac{x}{V x}}\right)=O\left(\frac{1}{\log x}\right), \\
& \frac{1}{\log \frac{x}{v}}=\frac{1}{\log x}+\frac{\log v}{\log x \cdot \log \frac{x}{v}} \\
& =\frac{1}{\log x}+O\left\{\frac{\log v}{(\log x)^{2}}\right\},
\end{aligned}
$$

therefore

1) E. Landav, Handbuch der Lehre von der Verteilung der Primzahlen, I. p. 468.

$$
\begin{aligned}
& T_{1}=\sum_{v=1}^{v x=1} f_{2}(v)\left\{\frac{b m x^{\frac{1}{m}}}{h v^{\frac{1}{m}} \log \frac{x}{v}}+o \cdot \frac{x^{\frac{1}{m}}}{v^{\frac{1}{m}}\left(\log \frac{x}{v}\right)^{2}}\right\} \\
& ={\underset{\substack{v=1 \\
v=1 \\
v=1}}{V_{2} x} f(v)\left\{\frac{b m x^{\frac{1}{m}}}{\frac{1}{\frac{1}{m}} \log x}+o \cdot \frac{x^{\frac{1}{m}} \log v}{v^{\frac{1}{m}}(\log x)^{2}}\right\}}_{\}}^{\}} \\
& =\frac{b m x^{\frac{1}{m}}}{h \log x} \underset{\substack{v=1 \\
v \equiv l_{2}}}{v_{2}} \frac{f(v)}{\frac{1}{m}}+O \cdot \frac{x^{\frac{1}{m}}}{(\log x)^{2}} \underset{\substack{v=1 \\
v=l_{2}}}{V x} \frac{f(v) \log v}{v^{\frac{1}{m}}}
\end{aligned}
$$

and according to the preceding lemma this is equal to

$$
\begin{aligned}
& \frac{b m x^{\frac{1}{m}}}{h \log x}\left\{\sum_{v=1}^{\infty} \frac{f(v)}{x=l_{2}}+o\left(\frac{1}{v^{\frac{1}{m}}}\right)\right\}+O\left\{\frac{x^{\frac{1}{m}}}{(\log x)^{2}}\right\} \\
& \quad=\frac{b m x^{\frac{1}{m}}}{h \log x} \sum_{\substack{v=1 \\
v=l_{2}}}^{\infty} \frac{f(v)}{v^{\frac{1}{m}}}+O\left\{\frac{x^{\frac{1}{m}}}{(\log x)^{2}}\right\} .
\end{aligned}
$$

By substituting the values found for T_{1}, T_{3}, T_{3} and T_{4}, we find the relation

$$
=\frac{b m x^{\frac{1}{m}}}{h \log x} \sum_{\substack{\infty=1 \\ v=l_{2}}}^{\infty} \frac{f(v)}{v^{\frac{1}{m}}}+O\left\{\frac{x^{\frac{1}{m}}}{(\log x)^{2}}\right\}
$$

if the condition that the congruence

$$
z^{m} \equiv l_{1}
$$

has roots, is satisfied.
Write down a series, composed of h integers prime to k and not containing two numbers, which are congruent to each other, with regard to the modulus k; give to l_{1} successively each value of this series, satisfying the condition, that the congruence

$$
z \equiv l_{1}
$$

has roots and determine for every value of l_{1} a number l_{2} by the congruence

$$
l_{1} l_{2} \equiv l
$$

834

the relations thus obtained, added give in the left member
and in the right member

$$
\frac{b m x^{\frac{1}{m}}}{h \log x} \sum_{v=1}^{\infty} \frac{f(v)}{v^{\frac{1}{m}}}+O\left\{\frac{x^{\frac{1}{m}}}{(\log x)^{i}}\right\},
$$

v assuming all the positive integral values for which the congruences

$$
v \equiv l_{2} \quad z^{m} \equiv l_{1} \quad l_{1} l_{2} \equiv l
$$

are possible, i.e. for which the congruence

$$
z^{m} l \equiv v
$$

has roots and we conclude

$$
\underset{\substack{p^{m} v \leqq x \\ p^{m} \\ v}}{\mathbf{v} \leq l} f(v)-\frac{a x^{\frac{1}{m}}}{\log x}+o\left\{\frac{x^{\frac{1}{m}}}{(\log x)^{2}}\right\}
$$

where

$$
\begin{gathered}
a=\frac{b m}{h} \sum_{v=1}^{\infty} \frac{f(v)}{\frac{1}{v^{m}}} . \\
z^{m} l \equiv v .
\end{gathered}
$$

We have got on far enough now to proceed to proving formula (2) for $n=1$; we observe that for $n=1$

$$
F(u)-\underset{p^{m} \mid u}{\Sigma} f\left(\frac{u}{p^{m}}\right)
$$

is a finite function of u, which equals nothing for $e_{u} \leq m$ and which is equal to $O\left(u^{\alpha_{1}}\right)$ for $e_{u}>m, \mu_{1}$ representing a constant number $<\frac{1}{m(m+1)}$.

In order to prove this, we distinguish four cases:

1. $e_{u}<m$;
if $\frac{u}{p^{m}}$ is resolved into prime factors, the smallest exponent of these factors is in this case smaller than m, hence

$$
F(u)=0 \quad \text { and } \quad f\left(\frac{u}{p^{m}}\right)=0
$$

so that the formula considered is equal to nothing.
2. $e_{u}=m, \quad a_{u}>1$;
if $\frac{u}{p^{m}}=w$ is resolved into prime factors, the series of the exponents of these prime factors obtains at least one exponent $=m$, consequently

$$
e_{w} \leqq m
$$

hence

$$
f\left(\frac{u}{p_{n}}\right)=0
$$

and n having the value 1 ,

$$
e_{u}=m, \quad a_{u}>n
$$

bence

$$
F(u)=0,
$$

consequently

$$
F(u)-\underset{p^{m} / u}{\boldsymbol{\Sigma}} f\left(\frac{u}{p^{m}}\right)=0
$$

3. $e_{u}=m, \quad a_{u}=1$;
consequently

$$
u=p_{1}{ }^{{ }^{n} v}
$$

$$
e_{v}>m,
$$

v being not divisible by the prime number p_{1}. In this case we have $F(u)=f(v)$.
As $\frac{u}{p^{m}}$ contains at least one prime factor, of whom the exponent is equal to m (viz. the prime factor p_{1}) except for $p=p_{1}$, we have

$$
f\left(\frac{u}{p^{m}}\right)=0, \text { for } p==p_{1}
$$

$$
=f(v), \text { for } p=p_{1}
$$

consequently

$$
F(u)-\underset{p^{m} / u}{\underset{p^{m}}{ }} f\left(\frac{u}{p^{m}}\right)=f(v)-f(v)=0
$$

4. $e_{\mu}>m$;

Suppose $\mu<\mu_{1}<\frac{1}{m(m+1)}$ and let

$$
u=p_{1}^{\alpha_{1}} p_{3}^{\alpha_{2}} \ldots p_{\sigma^{\alpha}}^{\alpha_{s}}
$$

be resolved into prime factors; hence

$$
\begin{gathered}
u \geqq 2.2 \ldots 2=2^{\sigma} \\
\sigma \leqq \frac{\log u}{\log 2}=O(\log u) \\
\sum_{p^{m / u}} 1=\sigma=O(\log u)
\end{gathered}
$$

The conditions

$$
F^{F}(u)=O\left(v_{u^{\mu}}\right), \quad \text { and } \quad f(v)=O\left(v^{\mu}\right)
$$

mentioned in $\S 1$ and at the beginning of $\$ 2$ give the relations

$$
F(u)=O\left(u^{u}\right)=O\left(u^{u_{1}}\right)
$$

and

$$
\begin{aligned}
\mathbf{v}_{p^{m / u}} f\left(\frac{u}{p^{m}}\right) & =\underset{p^{m / u}}{\sum} 0\left\{\left(\frac{u}{p^{m}}\right)^{\mu}\right\} \\
& =O\left(u^{\mu}\right) \underset{p^{m}}{\mathbf{\Sigma}} 1 \\
& =O\left(u^{\prime \mu}\right) \cdot O(\log u) \\
& =O\left(u^{u^{\prime}}\right)
\end{aligned}
$$

hence it follows that the function considered is in this case equal to

$$
O\left(u^{u_{1}}\right)-O\left(u^{u_{1}}\right)=O\left(u^{u_{1}}\right)
$$

According to the first lemma we have

$$
\sum_{\substack{u=2 \\ u=1}}^{x=1}\left\{F(u)-\underset{p^{m / u}}{\mathbf{x}} f\left(\frac{u}{p^{m}}\right)\right\}=O\left(\frac{x^{\frac{1}{m}}}{(\log x)^{2}}\right)
$$

and consequently

$$
\begin{aligned}
\sum_{\substack{u=2 \\
u=l}}^{x} F(u) & =\underset{\substack{u=2 \\
u=l}}{x} \underset{p^{m / u}}{v} f\left(\frac{u}{p^{m}}\right)+o\left(\frac{x^{\frac{1}{m}}}{(\log x)^{2}}\right) \\
& =\underset{\substack{p^{m} \\
p^{m} v \leq l \\
v \equiv l}}{\Sigma} f(v)+o\left(\frac{\boldsymbol{x}^{\frac{1}{m}}}{(\log x)^{2}}\right)
\end{aligned}
$$

and according to the last lemma this may be modified to the formula sought
§ 3. By starting from formula (1) by which the mean value of the function $F(u)$ has been given in the interval from 1 to x (the limits included), it is possible, as is known, to determine in an elementary way the mean value in the same interval of a number of other functions, connected with the function F; this we shall however only elaborate for some cases.

Lemma. From (1) ensues

$$
\begin{equation*}
\sum_{\substack{u=2 \\ u \equiv i}}^{x} \frac{F(u)}{u^{\frac{1}{m}}}=\frac{a}{m n}(\log \log x)^{n}+O(\log \log x)^{n-1} . \tag{3}
\end{equation*}
$$

and

$$
\sum_{\substack{u \\ u \equiv 2}}^{x} \frac{F(u) \log u}{\frac{1}{u^{m}}}=O\left(\log x .(\log \log x)^{n-1}\right) .
$$

Proof. Substituting

$$
\begin{aligned}
\log \log x & =x_{2}, \\
\log \log u & =u_{2}
\end{aligned}
$$

and

$$
g(x)=\sum_{\substack{u \equiv 0 \\ u \equiv l}}^{x} F(u)=\frac{a x^{\frac{1}{m}} x_{n}{ }^{n-1}}{\log x}+O\left(\frac{x^{\frac{1}{n}} x_{2}{ }^{n-2}}{\log x}\right)
$$

we have

$$
\begin{aligned}
& g_{1}(x)=\sum_{\substack{u \\
u \equiv 2 \\
\sum \equiv \\
\sum_{u^{m}}}}^{x} \frac{F(u)}{\frac{1}{m}} \\
& =\sum_{u=2}^{x} \frac{g(u)-g(u-1)}{u^{\frac{1}{m i}}} \\
& =\frac{g[x]}{[x]^{\frac{1}{m}}}+\sum_{u=2}^{x-1} g(u)\left\{\frac{1}{\left.\left.\frac{1}{u^{\frac{1}{m}}}-\frac{1}{(u+1)^{\frac{1}{m}}}\right\}, ~\right\} ~}\right. \\
& =o\left(\frac{x_{2} n^{n-1}}{\log x}\right)+\sum_{u=2}^{x-1}\left\{\frac{a u^{\frac{1}{m}} u_{2}^{n-1}}{\log u}+o\left(\frac{u^{\frac{1}{m}} u_{2}^{n-2}}{\log u}\right)\right\}\left\{\frac{1}{m \boldsymbol{u}^{m}+1}+o\left(\frac{1}{\frac{1}{u^{m}}+2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =O\left(x_{2}^{n-1}\right)+\frac{a}{m}\left\{\frac{x_{2}^{n}}{n}+O\left(x_{2}^{n-1}\right)\right\}+O\left(x_{2}^{n-1}\right) \\
& =\frac{a_{2} x_{2}}{m n}+O\left(x_{2}{ }^{n-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\substack{u=2 \\
u=1}}^{x} \frac{F(v) \log u}{u^{\frac{1}{m}}} & =\sum_{u=2}^{x}\left\{g_{1}(u)-g_{1}(u-1)\right\} \log u \\
& =g_{1}[x] \log [x]-\sum_{u=2}^{x-1} g_{2}(u) \log \left(1+\frac{1}{u}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{a x_{2}{ }^{n} \log x}{m n}+O\left(x_{2}{ }^{n}-1 \log x\right) \\
& -\frac{\sum_{u=2}^{x}}{m}\left\{\frac{a u_{3}{ }^{n}}{m n}+O\left(u_{3}{ }^{n-1}\right)\right\}\left\{\frac{1}{u}+O\left(\frac{1}{u^{2}}\right)\right\} \\
= & \frac{a x_{2}{ }^{n} \log x}{m n}+O\left(x_{3}{ }^{n-1} \log x\right)-\frac{a}{m n} \sum_{u=2}^{x-1} \frac{u_{2}{ }^{n}}{u}+O \sum_{u=2}^{x-1} \frac{u_{2}^{n-1}}{u} \\
= & \frac{a x_{2}{ }^{n} \log x}{m n}+O\left(x_{2}{ }^{n-1} \log x\right) \\
& -\frac{a}{m n}\left\{x_{2}{ }^{n} \log x+O\left(x_{2}{ }^{n-1} \log x\right)\right\}+O\left(x_{2}^{n-1} \log x\right) \\
= & O\left(x_{2}^{n-1} \log x\right) .
\end{aligned}
$$

Lemma. Suppose that the function F_{1} bas m and n_{1} as parameters and f_{1} as corresponding function and that F_{2} has m and n_{2} as parameters and f_{2} as corresponding function. If the formula (1) holds good for $n=n_{1}$ and for $n=n_{2}$, we have

l being prime to k; in this relation $f(v)$ has been substituted for the formula

$$
\sum_{d y} f_{1}(d) f_{2}\left(\frac{v}{d}\right)
$$

Proof. Let l_{1} and l_{2} be two integers, prime to k; it follows from the identity deduced in the preceding paragraph that

$$
\begin{equation*}
\underset{\substack{d_{1} d_{2} \leq x \\ d_{1} \equiv l_{1} \\ d_{2} \equiv l_{2}}}{ } F_{1}\left(d_{1}\right) F_{2}\left(d_{2}\right)=T_{1}+T_{2}-T_{3} T_{3}, . \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& T_{1}=\sum_{\substack{d_{1}=1 \\
d_{1}=l_{1}}}^{V x} F_{1}\left(d_{1}\right) \sum_{\substack{d_{2}=1 \\
d_{2}=l_{2}}}^{\frac{x}{d_{1}}} F_{z}\left(d_{2}\right), \\
& T_{3}=\sum_{\substack{d_{2}=1 \\
d_{2}=l_{2}}}^{V x} F_{2}\left(d_{2}\right) \sum_{\substack{d_{1}=1 \\
d_{1}=l_{1}}}^{\sum_{3}} F_{1}\left(d_{1}\right), \\
& T_{2}=\sum_{\substack{d_{1}=1 \\
d_{1}=l_{1}}}^{V x} F_{1}\left(d_{1}\right)
\end{aligned}
$$

and

$$
T_{4}=\sum_{\substack{d_{2}=1 \\ d_{2}=l_{2}}}^{V x} F_{2}\left(d_{3}\right)
$$

For $d_{1} \leqq V x$ we have

$$
\begin{aligned}
\log \log \frac{x}{d_{\mathrm{t}}} & =\log \log x+\log \left(1-\frac{\log d_{1}}{\log x}\right) \\
& =x_{2}+O(1),
\end{aligned}
$$

if x, has been again substituted for $\log \log x$; consequently

$$
\begin{gathered}
\left(\log \log \frac{x}{d_{1}}\right)^{n_{2}-1}+O\left(\log \log \frac{x}{d_{1}}\right)^{n_{2}-2}=x_{2}^{n_{2}-1}+O\left(x_{2}^{n_{1}-2}\right) \\
\frac{1}{\log \frac{x}{d_{1}}}=\frac{1}{\log x}+\frac{\log d_{1}}{\log x \cdot \log \frac{x}{d_{1}}}=\frac{1}{\log x}+O\left(\frac{\log d_{1}}{(\log x)^{2}}\right)
\end{gathered}
$$

and

$$
\frac{\left(\log \log \frac{x}{d_{1}}\right)^{n_{2}-1}+O\left(\log \log \frac{x}{d_{1}}\right)^{n_{2}-2}}{\log \frac{x}{d_{1}}}=\frac{x_{2}^{n_{2}-1}}{\log x}+O\left(\frac{x_{2} n_{2}-2}{\log x}\right)+O\left(\frac{x_{2}{ }_{2}-1 \log d_{1}}{(\log x)^{3}}\right) .
$$

It has been assumed that formula (1) holds good for $n=n_{3}$, hence

$$
\begin{aligned}
\sum_{\substack{d_{2}=1 \\
d_{2}=l_{2}}}^{\frac{x}{d_{1}}} F_{z}\left(d_{3}\right) & =\frac{a_{2}\left(\frac{x}{d_{1}}\right)^{\frac{1}{m}}\left\{\left(\log \log \frac{x}{d_{1}}\right)^{n_{2}-1}+O\left(\log \log \frac{x}{d_{1}}\right)^{n_{2}-2}\right\}}{\log \frac{x}{d_{1}}} \\
& \left.=\frac{a_{2} x^{\frac{1}{m}}}{d_{1^{\frac{1}{2}}}^{\frac{1}{2}}} \frac{x_{2}^{n_{2}-1}+O\left(x_{2}\right.}{\log x}+O\left(\frac{\left.x_{2}-2\right)}{(\log x)^{3}}\right)\right\},
\end{aligned}
$$

where a_{2} has been substituted for

$$
\overline{h\left(n_{2}-1\right)!} \sum_{\substack{v_{i}=1 \\ v_{2} z^{m} \equiv l, \equiv \\ v_{2}}}^{\frac{f_{3}\left(v_{2}\right)}{\frac{1}{m}} .}
$$

If this result is substituted for the value found for T_{1}, we find

$$
\begin{aligned}
& T_{1}=\frac{a_{2} x^{\frac{1}{m}} x_{2} x_{2}-1}{\log x} \sum_{\substack{d_{1} \equiv 1 \\
d_{1} \equiv l_{1}}}^{V} \frac{F_{1}\left(d_{1}\right)}{d_{1}{ }^{\frac{1}{m}}}+O\left(\frac{x^{\frac{1}{m}} x_{2} n_{2}-2}{\log x}\right) \sum_{\substack{d_{1}=1 \\
d_{1} \equiv l_{1}}}^{\sum_{x}} \frac{\left|F_{1}\left(d_{1}\right)\right|}{d_{1}^{\frac{1}{m}}}+ \\
&+O\left(\frac{x^{\frac{1}{m}} x_{2}^{n_{2}-1}}{(\log x)^{2}}\right) \sum_{\substack{d_{1}=1 \\
d_{1} \equiv l_{1}}}^{V x} \frac{\left|F_{1}\left(d_{1}\right)\right| \log d_{1}}{d_{1}^{\frac{1}{m}}} .
\end{aligned}
$$

It bas been understood that formula (1) holds good for $n=n_{1}$, consequently for the functions F_{1} and $\left|F_{1}\right|$ and according to the first lemma of this paragraph we have

$$
\begin{aligned}
& \underset{\substack{d_{1}=1 \\
d_{1}=l_{1} \\
I_{1}}}{\boldsymbol{F}_{1}} \frac{\boldsymbol{F}_{1}\left(d_{1}\right)}{\frac{1}{m}}=O\left(x_{2}^{n_{1}}\right), \\
& \underset{\substack{d_{1}=1 \\
d_{1}=h_{1}}}{\mathcal{V} x} \frac{F_{1}\left(d_{1}\right) \mid \log d_{1}}{d_{1}{ }^{\frac{1}{m}}}=O\left(x s^{n_{1}-1} \log x\right)
\end{aligned}
$$

and

$$
\underset{\substack{d_{1}=1 \\ d_{1} \equiv l_{1}}}{V x} \frac{F_{1}\left(d_{1}\right)}{d_{1}^{\frac{1}{m}}}=\frac{a_{1} x_{3}^{n_{1}}}{m n_{1}}+O\left(x_{2}^{n_{1}-1}\right),
$$

where

$$
a_{1}=\frac{b m}{h\left(n_{1}-1\right)!} \underset{\substack{n_{1}=1 \\ v_{1} z^{m}=l_{1}}}{\sum_{v_{1}}^{\infty} \frac{f_{1}\left(v_{1}\right)}{\frac{1}{m}}} .
$$

Hence

$$
\begin{aligned}
& T_{1}=\frac{a_{1} a_{2} x^{\frac{1}{m}}{ }_{i c_{2}{ }^{n_{1}+n_{2}-1}}^{m n_{1} \log x}+O\left(\frac{x^{\frac{1}{m}} x_{2}^{n_{1}+n_{2}-2}}{\log x}\right), ~\left(x_{2}\right.}{m}
\end{aligned}
$$

The value of T_{2} is found by interchanging n_{1} and n_{2} in this formula and as according to our supposition relation (1) holds good for $n=n_{1}$ and for $n=n_{2}$, we have

$$
\begin{aligned}
T_{1}=\underbrace{V_{x}}_{\substack{d_{1}=1 \\
d_{1} \equiv l_{1}}} F_{1}\left(d_{1}\right) & =O\left(\frac{(V x)^{\frac{1}{n}}(\log \log V x)^{n_{1}-1}}{\log V x}\right) \\
& \cdot \\
& =O\left(\frac{\frac{1}{x^{2 m}}(\log \log x)^{n_{1}-1}}{\log x}\right)
\end{aligned}
$$

and

$$
T_{4}=O\left(\frac{x^{\frac{1}{2 n}}(\log \log x)^{n_{2}-1}}{\log x}\right)
$$

By substituting these values for T, T_{2}, T_{3} and T_{4} in (4), we find the formula

841

$$
\begin{aligned}
& +o\left(\frac{x^{\frac{1}{m}} x_{2}{ }^{n_{1}+n_{2}-2}}{\log x}\right) .
\end{aligned}
$$

Write again down a series consisting of h integers prime to k and not containing two numbers, which are congruent to each other with regard to the modulus k; give to l_{1} successively each value of this series and determine for every value of l_{1} a number l_{2} by the congruence

$$
l_{1} l_{2} \equiv l ;
$$

the h relations, thus obtained, added, give in the left member

$$
\begin{aligned}
& \underset{d_{1} d_{2} \leqq x}{ } F_{1}\left(d_{1}\right) F_{2}\left(d_{2}\right) \\
& d_{1} d_{2} \equiv l
\end{aligned}
$$

and in the right member

$$
\frac{b^{3} m\left(n_{1}+n_{2}\right) x^{\frac{1}{m}} x_{2}^{n_{1}+n_{2}-1}}{h^{3} n_{1}!n_{2}!\log x} \cdot c+O\left(\frac{x^{\frac{1}{n}} x_{2}^{n_{1}+n_{2}-2}}{\log x}\right),
$$

where

$$
\begin{aligned}
& c=\sum_{l_{2}} \sum_{\substack{v_{1}=1 \\
v_{2} z_{3}^{m} \equiv l_{1}}}^{\infty} \sum_{\substack{v_{2}=1 \\
v_{2} z_{2}^{m} \equiv l_{3}}}^{\infty} \frac{f_{2}\left(v_{1}\right) f_{3}\left(v_{2}\right)}{\left(v_{1} v_{3}\right)^{\frac{1}{m}}}
\end{aligned}
$$

For every value of v_{1} exactly $\frac{l}{b}$ incongruent values for l_{1} are to be found for which the congruence

$$
v_{1} z_{1}^{m} \equiv l_{1}
$$

has roots, bence

$$
\begin{aligned}
\sum_{\substack{l_{1} \\
v_{1} z_{1} v_{2} r_{2}=l_{2}}}^{\sum} f_{2}\left(v_{1}\right) f_{2}\left(v_{2}\right) & =\frac{h}{b} \cdot \sum_{v_{1} v_{2}=v}^{\sum} f_{1}\left(v_{1}\right) f_{2}\left(v_{3}\right) \\
& =\frac{h}{b} \sum_{d \mid v} f_{1}(d) f_{2}\left(\frac{v}{d}\right) \\
& =\frac{h}{b} f(v),
\end{aligned}
$$

Proceedings Royal Acad. Amsterdam. Vol. XIX.

$$
\begin{aligned}
& =\frac{h}{b} \sum_{\substack{v=1 \\
v z^{m}=l}}^{\infty} \frac{f^{\prime}(v)}{\frac{1}{m}}
\end{aligned}
$$

and consequently

which was to be proved.

Mathematics. - "On an arithmetical function connected with the decomposition of the positive integers into prime factors." II. (Continued and concluded.) By J. G. van der Corput. (Communicated by Prof. J. C. Kicyver).
(Communicated in the meeting of June 24, 1916).
Lemma. ${ }^{1}$) The number of (positive integral) divisors of the positive integer v satisfies the relation

$$
\sum_{d v v} 1=0\left(v^{v}\right) .
$$

for every $\mu>0$.
Proof. If $v \geq 2$ decomposed into prime factors be equal to

$$
v=\Pi_{p_{v}} p^{x}
$$

we have

1) This proposition occurs for the first time in Runge: Ueber die auflösbaren Gleichungen von der Form $x^{5}+u x+v=0$ [Acta mathematica, Bd. VII (1885), pages 173-186], pages 181-183, with a proof similar to this one. This proof has been borrowed of E. Landau. Ueber die Anzahl der Gitterpunkte in gewissen Bereichen [Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse (1912), pages 687-771], page 716. In his "Handbuch der Lehre von der Verteilung der Primzahlen," I. p. 220, he gives the by far sharper relation:

If δ be positive, $\xi=\xi(\delta)$ fitly chosen and x an integer $\geq \xi$, we have

$$
\sum_{d x} 1<2^{\frac{(1+0) \log x}{\log \log x}}
$$

