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which was to be proved.
Mathematies. — “On an arithmetical function connected with the

decomposition of the positive integers into prime factors.” 1l
(Continued and concluded.) By J. G. van pEr Corrur. (Com-
municated by Prof. J. C. Kivyvew).

(Communicated in the meeting of June 24, 19186).

Lemma. ') The number of (positive integral) divisors of the
positive integer v satisfies the relation
21 =0 (@)
div
for every pu >0. ;
Proof. If v> 2 decomposed into prime factors be equal to
v = Il p* *
plo
we have

) This proposition occurs for the first time in RuNgE: Ueber die auflésbaren
Gleichungen von der Form 8+ ux + v = 0 [Acta mathematica, Bd. V11 (1885),
pages 173—186], pages 181—183, with a proof similar to this one. This
proof has been borrowed of E. Laxpau. Ueber die Anzahl der Gitterpunkte in
gewissen Bereichen |Nachrichten von der Koniglichen Gesellschaft der Wissen-
schaften zu Gottingen, mathematisch-physikalische Klasse (1912), pages 687—771},
page 716. In his *“Handbuch der Lehre von der Verteilung der Primzahlen,”
I. p. 220, he gives the by far sharper relation:

If 3 be positive, £ = § (3) fitly chosen and x an integer > £, we have

(1+d)log =
}: 1 <2 loglogx

dr
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S1=HI@+1),

div plv

=1

v 17 atl .
T

1
The quantity % is limited (u taken fixed!) for an invariable

value of p and variable « =1, 2, ..., since it is equal to nothing
1

for e=co; for any p>2« and any value e>1 it is even <1,
existing in that case the inequalities

1
Therefore, if v contains one or more prime factors > 2#, we have

I at1 <1
plv IP“" -

p2 or
1
and as there exist only a finite number of prime numbers p<2:
=21
4 is limited, i.e. smaller than a number independent of v.
"

Lemma. Let »n, and n, be two arbitrary positive integers, whose
sum n, 4 n, is equal to n and suppose F' to be an arbitrary function
with the parameters 7 and n; three functions /', F,, and ¥, may
be found then in such a way that the parameters of F, are equal
to m and n,, of F, equal to m and n, and of F, equal to m and
n--1 with the relation

!
n,ngt

Flu) = SF ()F, (§)+ OF, @} . . . (5)

(n,+n,)/ din

Proof. Introduce the functions #,, F,, and F, by means of the
following relations:
F,(w)=f(vy) for e,—=m, a, =n,,
=0  in the other cases,
F,w)=1 for e, =m, @y ="n,, v,=1,
=0 in the other cases,
F,(uy=wv» for ¢, >m and also for e, =m, o, <n—1,
=0 in the other cases, i.e. for ¢, < m and also for
eu=m, ay >n—1.
54*



From these definitions it appears that the parameters of F, are
"~ equal to m and n,, of F, to m and n, and of F, to m and n—1,
so that now only relation (5) is to be proved and in order to do
this, we distinguish b cases: “
L. ey > m;
then we have
' w=,
and the quantity
P F, ('_') =30
d d dv,
=021
dvy
is according to the preceding lemma equal to O (z,%) and therefore

roo
Fy — -2 S Py F (3)— 0 (v4*) — O (v47) 6
s 3 ; e 1 [ e w wofe * ( )
n+n) g d
=0(F, @)
2. e, = m, aSn—1;
then we have
H—_ p‘m p’m . e pauﬂl vu
~ and
=P (d) F,'(’i) = 01
du d diu
=0 = 1.21
. dpmp™...pa™ dlvy

= 0(1). O (v,

so that the relation (6) holds good in this case as well.

3. e, = m. au==—"n;
in this case we have

' u=p,"pS. . . poy
and
F (u) = f (vy),

where at least one of the following conditions is satistied, d representing

- . " u
any arbitrary divisor of » and d’ being subsiituted for 7

a) ea < m,

b) e my,

c) eq=m, ag > n,,

d)  epy=m, ag > ny,

€) CdT=EF =My A == Ny, ag ==n,,

In the first four cases we have
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; F @) F,(d)=0
- and the last case appears only if
d=gqmyg d = gmey
where ¢ is a divisor of
P=p.py---pn

consisting of n, prime factors, where ¢' = — is therefore composed

of n-—n, = n, prime factors and where the product of the integers
vq and vg 18 equal to v,. In case (¢) we have therefore
F,(d)=0, except for wvr=1,
consequently
F d)F,(d)=7f(vw) F,(d)
' =f(vy) for vg==1,
=0, for vg = 1,

hence -
SF (@ F, (&)= X ()
diu ¢! P
= f(vy) 2 1.
¢\ P
p - (n, 40} - :
containing exactly e different divisors composed of n, prime
nynl .
factors, we have
3 1=t
Y - n,/n,! 4
and therefore
‘ nn,!

oy =, FFd) =70

= F(u),
from which relation (5) ensues at once. '
4, =M, Gy >n;
one of the following conditions at least is in this case satisfied
a) ed < m,
b) e < m,

C) €d ==, ad>”]’
d) e =m, ag _>n,

50 we have
F(u)==0 and F(d)F, G}) =0
5. - €y < m;

in this case one of the numbers ¢; and ey at least is smaller than
m, 80 that again the relations
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Fu)=10 and F,(d) F, G.) =0
hold good.

These lemmas having been demonstrated, the proof of formula (1)
for any arbitrary value of n will be easy, viz.: we shall demon-
strate the proposition for n —n, 4 n,, supposing that-it has been
proved for n=mn,. for n=mn, and for n=n, 4 n,—1, where n,
and »n, represent two arbitrary positive integers; as the proposition
in § 2 has been proved for n =1, the validity for n=2, 3, 4..
ete. respectively, follows from this argument.

Let F(u) b= the function with parameters m and n, + n,, for which
relation (1) -has to be proved; we introduce (and according to the
preceding lemma this is possible) the function F,(u) with parameters
m and =n,, the function F,(u) with parameters m and n, and the
function F,(u} with parameters m and n, + n,—1, so that we have

.@F()+oww»

(+,)’

Fu)=

and consequently

Iy ! x
b5 Fly= —"% 35' F (DF(d) + 0 F (u),

u—> (n, +”1)/ . u=2
u==l dd :l wzl
As velation (1) holds good for n = n, 4 n,—1, consequently for
the fanction | F,(u)!, we have

1 o
s F (@) =0 ’_._fif,,"ﬁ"'

—0 log

H=—a

and as according to our proposition, (1) holds good also for n = n,
and for n = n,, i.e. for the functions F, and F,, we have, accord-
ing to the second lemma of this paragraph

1 1
. bm(n +n )z';.zz"x"{""a—“l = f{v) ,g;;:x’!lg+7tg-—2
S F@Fd) = 3/ | TR,
dd'<z tnyin,llog & log x

;-a

‘=l pom=] ™"
so that we econclude
1 { 1

z b m g n +ng—1 ® m g n iig—12
E F(u) — my E 1 ﬂv) + ’o’c a” ) ;
u==2 h(n,+n,—1)logz 4 }__ log 2

w=l pem=]?"

therefore formula (1) has been proved for all positive integers n.
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§ 4. In this last paragraph we have to consider the proof and
the significance of the formulae (1) and (3), which have been
demonstrated in §§ 2 and 3. As to the proof, we see that relation
(1) has been deduced from (2) in an elementary way and as has been
observed at the beginning of the preceding paragraph, some other
~ formulae, e.g. (3) may be proved by means of (1). Relation (3) may
also be demonstrated directly, viz. without the round-about way
along formula (1), by not starting from -formula (2) but from
the relation

1 1
f;:zloglogx+0(l). e e o DY
==
r=l

This proof is analogous to the one used in order to demonstrate
relation {I); on executing it, it will appear that in that case the
- proof is even simpler. Yet, “that proof has not been given in this
paper, because (1) lies deeper that (3), i.e. (3) is to be deduced
from (1) and the reverse is not possible, so that it would not do
to prove formula (3) first, as it is not possible then to conclude to
formula (1) and as will be seen it is principally this formula
that we want. The qunestion, however, is somewhat different for
k=1, as (V) in that case is to be deduced?) quite elementarily
from the identity .

& & : [£3
Elogp(~'+ — |+ - )J==logu 3)
péx P X p | =2 ’

=z logax + O(x)

¢o that relation (3) may be proved quite elementarily for £ —=1.

Formula (1) is also to be proved directly, i.e. without using
(2); it is namely possible to prove (1) with propositions in the
theory of functions in a way, analogous (o the one, used to demon-
strate formula {2); it is clear, however, that, in that case, an ele-
mentary proof is not to be thought of and we have succeeded in
deducing (1. from (2) by means of elementary methods.

If in (1) and (3) u is taken equal to nothing, we have this

Proposition. If the finite arithmetical function F'(x) is equal to
nothing for ¢,<m and also for e, = m, @,>n, and the fanction f(w)
equals nothing for e, Zm, F(u) being equal to f(v,) for ¢, = m, au=n,
the formulae (1) and (3) hold good, if /and £ are prime to egeh other.

1) E. Laspavu. Handbuch L p. 450.

%) E. Laxpau. Handbuch L p. 98—102.
3) E, Lanpav, Handbuch L p. 77, (formula 4).
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In order to bring out the significance of this proposition four
applications are given as follows.

Application I. Any integer > 1, resolved into prime factors,
has a series of exponents and the question arises how many integers
below a given limit are to be found with a given series of expo-
nents and how many of these integers are to be met in a given
arithmetical series, of which the first term and the difference are
prime to each other. It is clear that the first question is a special
case of the second. 1f the given series of exponents consists of
one number and this number is equal to one, the second question
is identicai with the question how many prime numbers are to be
found in that arithmetical series below a certain limit and the answer
is given by formula (2); if the given series of the exponents is com-
posed of one number m >>1, it is sought how many numbers equal
to the m™ power of a prime number occur in the arithmetical series,
below a given limit and this is easy to calculate by means of for-
“mula (2). The question, however, becomes more intricate, as soon
as the series of exponents consists of more than one number,
but in that case the answer may be found by means of the propo-
sition, for any series of exponents. Take e.g. the smallest number,
occurring in the given series of the exponents, equal to m and
suppose that this number occurs n times in this series, so that the
given series of the exponents is equal to

Oy @y oo oy O3y My My o vy Ty
where -
a; >m  for ci?.g?;l.

Take F(u) =1, if the integer u, resolved into prime factors, has
a series of exponents, equal to the given series and take /{u) =0 in
the other cases; take f(u) =1, if the series of the exponents of the
prime factors of the integer u is equal toa,,a,, ...,e and f(uy=0"
in the other cases. The conditions, laid down in the proposition are
then satisfied, viz.

1. F(uwy=0, for ¢, < m and also for e.=m, a, >n,

2. fry=0, for e, < m,

3. Fuwy=/f(), fore,=m, an—=mn,
for if e,=m, a, = n and the given series of the exponents is (not)
corresponding to that of u, the series a,,«a,, ..., a: is (not) corre-
sponding to the series of the exponents of v, so that both the funct-
ions F(u) and f(v,) are in that case equal to one-(nothing).

The proposition may therefore be applied and formula (1) gives
the sums
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x x
2 F ) and = F (v,
%=2 u=2
u=l
which exactly represent the numbers sought. So we find e.g.
The number of positive integers <, composed of two different
prime factors, occurring in these numbers respectively in the degree
a and 8, is for « > equal to

- (1
a8 1 aB
— 2t 0| — .
loge , = + ((log m)’)
‘ pe
The number of positive integers < z, composed of one quinfuple
and three double prime factors (these prime facfors are thought
different from each other) is equal to
2 1
—-‘/-'f(loglogm)’ = — 40 —‘-/—‘f—.loglog:c) .
log x p pg log =
and among these numbers
2 1 '
-—Zf(loglogz)’ = — 40 (L/—fi . log log .z)
109 & p==limod. 8 P% . log T
integers are to be found, which ave congruent to /, with regard to
the modulus 8 ({=1, 3, 5 or 7) and
Ve

Va 1 ( )
log log £)* >z — O —— .loglog &
log a:( g g ) p==71{{mod.10; p% + log‘v g

integers, which are congruent with /, with regard to the modulus
10 (I==1, 3, 7 or 9. |

In the following application, viz. with the function ar, (z) defined
there, the case will be treated that the given series of exponents
consists of n» numbers, each equal to 1.

Application II. We introduce the following well-known notation?) :
7, () represents the number of squareless integers <z, composed
of n prime factors, ¢, (#) the number of integers < x, of which the
number of different prime factors is equal ton, and o, () the number
of integers < 2, for which the total number of prime factors equals 7.
(Gauss surmised in 1796

1 & (log log z)r—1

o)~ T T dege

1) See for this notation e.g. E. Laxpav, Handbuch I, pages.205, 208, 211.
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This relation has been first proved by E. Laxpav; from the proposition
1~ 2.
P; 2 log x
he deduced viz. in an elementary way these relations')?)
x (log log z)»—!
(&) ~
(n—1)!log =
z (log log 2y~ 1

0)! (-’F) ~ (n""‘l)! log z

A

and

(  z (log log x)n !
ex () (n —=1) log & )

By using the deeper lyinfr relation

...1.__

p<a loq & ((loq w)’)

he proves, also elementarily ')

@ (log log z)»—1 z (log log &)=
x, (L) - —— - O -2
(n—1)! log & log x
0 () = "N log 2P (e llog Loy =) ,_f)
(”—‘1)’IOJ-E Iog.:c
and |
a1 z (log log &2
0 (~v)=M +0 .’i,&lo_i_"i’_’i)___.)
(n—1)! log = log @

What 1 want to prove now is that these formulae are only
special cases of the proposition. Take F(u) =1, if u be equal to a
sqnareless number composed of n prime factors and take F(u) =0
in the other cases; then we have

x
S FU)y==,(x);

u==2

if F(u) be equal to 1 or 0 according as the total number of prime
- factors of u is equal to n or not, we have

é F () =g, (z)

w=2
and finally, by giving to F(u) the valae 1 or 0, according as the
number of different prime factors of u is equal to n or not, we
have

T T o
1) E. Lanpavu. Sur quelques problemes relalifs a la distribution des nombres
premiers. [Bulletin de la Société mathématique de France. Vol. 28 (1900) pg- 25-—28}

%) E. Laxpav. Handbuch 1. p. 2056—218.

-10 -
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x
_2["' (#) = on (2)-
In each of these three cases the function F'(u) satisfies the condifions
stated, if in them
) m=1 and consequently 6 =1,
JSOH=1
and f(@®) =0, for v >1

s0 that a possesses the value ——, and we conclude, that the

| h(n—1)!
relations (1) and (3) are modified to the formulae

:‘3 F)— z(log log z)n—1 z(log logz) "—'_2

=t h(n—1)llog x

u =

log «
and

. Flw)_ (oglogay

u=—2 U h.an!
wzsl

-+~ O (log log 2)—1.

For k=1 and consequently .2 =1 the first of these relations
passes into the formulae written down for =, (), 6, (z) and @, (2),
and the second relation produces an asymptotical expression, not of
the number but of the sum of the reciprocals of the integers
considered, e.g. the sum of the reciprocals of all squareless numbers
composed of n prime factors <, is equal to

Y

= lZg ¥ + O (log logz) "1
and the same holds good for the numbers that are mentioned in
the definition of ¢, () or 6. (z). These formulae concerning the sum
of the reciprocals being special cases of formula (3), where £ has
the value 1, may be proved by means of a merely elementary
reasoning, as has been observed at the beginning of this paragraph.
By giving an arbitrary value to £ in the formula, however, we
find that the number of squareless numbers <, composed of n

prime factors and congruent to /, with ‘regard to the modulus £, is
equal to

2(log log x) - 1 Lo (w(log log x)"‘j)

h(n—1)logz log
and that the sum of the reciprocals of these numbers is equal to
(log log x)»

h.anl + Ollog log =,

while again for the integers that are mentioned with the definition

-11 -



852

of the functions g, () and o, (z), perfectly analogous formulae hold
good.

For the very reason that the function #'(u) is general it will not
be difficult to deduce other corresponding relations; so we find
the same results if we consider the squareless numbers composed
of not more than » prime factors, or the integers for which the
total number of prime factors is <, or the integers for which the
number of different prime factors is not greater than =, etec.

Application III. In an arithmetical series, the difference of
which is £ and the first term of which is prime to £, oceur

£
6’”09%:&(1 . ) ((logi)_”

numbers < x, equal to a square multiplied by a prime number.
That this is again a special case of our proposition appears by
taking F(u) equal to 1 or 0, according to u being equal or not to

a square multiplied by a prime number.

We have
m=1 hence b=1,
n=1
and )
J() =1, if v is a square,
=0, if » is not a square,
consequently
t u=l1 -— - u=1 B
uzm=l ¥ kpgli l“p (e, k)=1
1 x 1
= X

— 2=
Lyuk(l - ~) (zl)=1
/.:11( )nk( )v::l"’

',,z ;
=14 -)
61‘1'17»'( P

and we have only to substitute these values in (1), in order to find
the relation sought.

Application IV. If all the prime factors of the positive integer

1) (u, k) represents the greatest commron divisor of wand X, so that the mumber
u in this sam assumes respectively each integral positive value prime to %.

-12 -
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q are greater than the prime number p, and
i == p* q s
the number of positive integers < , Acongruent to [, with regard to
the modulus %, (land £ prime to each other) for which the number
of divisors is exactly equal to w, is given by
1 1

axP—} , ab—1

— for e =1
l()g & (log m)’
and by
A ‘ L
a1 (log log ay—? Lo aP—1 (log log z)*—2
log log &
for any arbitrary positive integral value of «, where
bp—1) = 1
_ bl S
h{e—1) y=y _1
up—1

extended over all the positive integers u, of which the number of
divisors is exactly equal to ¢ and for which the congruence
uzp—1 = | (mod. &)
has roots z; b reptresents the number of incongruent roots of the
congruence
ar—1=1 (mod. £).
In order to prove this, we take the number of divisors of u
equal to 7, and
F{uy=1 for v, —=uw,
=0 for T.=k=w.
We have to prove first that this function satisfies the conditions
written in the proposition, if
m=p—1,
nz=a,
f=1 for r,=yg,
=0 for t#él;
In order to give this demonstration, we distinguish four cases:
1. Let ¢, be smaller than p—1;
for ‘ -
U= PP P
the number of divisors of u
‘ . v =(a,+ ) (a,+ 1)...(a. + 1)
is divisible by ¢, + 1, consequently by a number < p, hence

-13 -
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Tu =P3 L
F(u)=20.
2. Take ey =p —1, a, > «a;
T, is then divisible by
(ot Dlea + 1) (e + D =(e, + )u=peu,
therefore by p=t+1, so that in this case too, we have
Ty #-; w,
Fu)=0.
3. Take e, =p—1, a,—=a;
we have then
u==pr-lppr-1, .ppr-lp,
and from
Ty == p* 'rvu w = p“g
it follows that there are only two possibilities, viz.
a) Fu)y=1, Ty == o, T =¢ Flvy) =1,

b) F(u) = o, T, ==, T, =t=9q Sfv)=0,
hence in this case
Fu) = f(v4)
4. Take ¢, S p—1;
as 7, is divisible by e, 4+ 1, consequently by a number < P T IS
in this case unequal to ¢, hence
Jiv) =0,
Now that it has been proved that the conditions stated are
satisfied, we are allowed to apply the proposition and formula (1)
gives at once the relation sought.

Finally we observe: in application Il some asy mptotical expressions
have bheen written for =,(z), a.(z) and g,(2), but Lanpav deduces
still sharper formulae for these functions. He proves') that for
each positive integral value of ¢, constant numbers A,;, B,; and
Cap are to be found, for which the relations

T (B)= =z 2’5 4 b (log log 2)° + "( : ),

=t im0 (logx)s (log 2y

Lre  (ogloga) @ )
n (&) = > By e el I 8
o= 35 5,0 o (G ©®
and g_n=1 (log log )b ( x )
o, () =2 Z2Z Cop —————+o| —
D=2 FZ gy T \Gogoy

1) E. Laspavu. Ueber die Verteilung der Zahlen, weiche aus + Primfaktoren
zusammengesetzt sindy [Nachrichtéen von der Koniglichen Gesellschaft der Wissen-
schaften za Gotlingen. Math.-physikalische Klasse. (1911). pages 861—381].

-14 -
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hold good. It is a matter of course that such a relation does not
hold good for any function satisfying the condition stated in § 1.
It appears, however, that we have only to modify this condition
a little to be sure that such a relation does hold good, viz.:

If the arithmetical function F(u) of the integer u >>1 satisfies
the conditions:

1. for ¢, <m, and also for ¢, =m, a, >n, we have

F(u)=0;
2. for ¢, =m, a, < n we have
F ) = f(vu a)y

where f(v,a) represents an arithmetical function of the positive integers
v and @, and

1
3. F(u) = O(ve*), where p< m(m -I——T);

then there are constant values Dgp for g2 a21, n—12562>0 to
be found for any positive integral value of ¢, satisfying the relation
1

1 -
z - g n—1 loa 1 b ]
S Fuy=an 2 = D,,,b( ogbog =) | ol -~
=2 a=1 b=0 (log x)® (log x)

This proposition is again very general; this appears obviously by
the observation that the functions which occur in the four appli-
cations of this paragraph and which have been substituted for F'(u)
also satisfy this condition, so that the formulae deduced in those
applications are also to be intensified with this proposition. And the
formulae obtained in application 1l are exactly the formulae (8).

The proposition is elementarily, i. e. without using considerations
belonging to the theory of functions to be deduced from the well-
known relation

x
s1=21 —-‘-i—u—q—o( ‘”h),l)
ple h ; log u (log 2)

p=l
accor(iing to a reasoning somewhat similar to the one followed here
in order to prove formula (1); it goes, however, without saying that
the proof is not so simple.

1) E. Laxpau. Handbuch. 1. p, 468.
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