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the point, where, in the domain («), that function has its maximum
modulus, coincides with a point where @, attains its upper limit value.

6. We will now say something about the dependence between
the quantities « and B. The number ¢ may vary from zeio to an
amount A, which is the upper limit of the radii of domains, in_
which the quantity a, determined by (6) is a limited function. The
number A cannot in any case be greater than the radius of con-
vergence of one of the functions a,(z). but it may be less, since,
even when all those functions are regular in a certain domain («), it is
possible that the upper limit (6) has not a finite value in some point
of (a). It might also occur that the limit (6) did exist in all the points
of (m), but was not bounded in that domain. On the other hand it
may happen that the number A is infinite (e.g. if a,, (a) = con-
stant =— ™).

From the fact that the quantity a has been defined as the upper
limit of the funection «a. in the domain («), it follows at once that
a cannot decrease if ¢ increases, in other words that a is a mono-
tone function of «. Therefore according to (7), B is a monotonely
increasing function of «, not smaller than «. (3 may be equal to «,
eg. if a,(r)=1:m/!, for in that case a, = constant = 0).

Let & be the value of g for « =10, and B the one for « = 4 ;
in many cases /3 will be infinite, but it need not beso. Every value
# may assmne lies, as 3 is a monotonely increasing function of ¢,
in the interval (b, B), and corresponds to only one value of a. The
number 4, which, as a -value, belongs to @ = 0, may be zero, if
r, ==0. In that ease any function for which =z, is an ordinary
point, with arbitrarily small domain of regularity, has in &,
a transmuted determined by (1). If a, as a function of «, is in
that case continnous in « =0, the series (1) produces for any
function,” with arbitrarily small domain of convergence, a transmuted
in a certain domain of a,. The transmuting series in that case
is, according to a name introduced by PINCHERLE, of the first kind.

Chemistry. — “In-, mono- and dwariant equilibria”. XI11. By Prof.
F. A. H. ScHREINEMAKERS.

(Communicated in the meeting of December 21, 1916).

21, Ternary systems with two indifferent phases.

In the previous communication we have deduced the four P,7-
diagramtypes, which occur in ternary systems with two indifferent
phases. Now we ghall consider a case more in detail.
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We take a ternary system with the components water and the
two salts Z and 4 which are not volatile, in which of the salt Z
vet also the hydrate Z.un H,0 occurs, which we shall represent
by Z, (fig. 1).

Suppose, the invariant equilibrium

Z+Z,+ La+ G

occurs in the binary system V4 7 at the tewperature 7y and
under the pressure /5. The liguid Ly is represented in fig. 1 by
the point « between I and Z,: of course we might as well have
taken « between /7 and Z,. When we add the salt 4 to this equi-
librium, then the equilibrinm Z 4 Z, 4 1. 4 (7 arises; the liquid
L proceeds then a curve o A (fig. 1). It is evident that 7 and P
change along this curve A m from point to point.

Now we assume that in the point m the added salt A dissolves
no more, so that at 7}, and under /”, the invariant equilibrium:

A4+ Z,+ A4 L, + 7
is formed. A similar case is found e.g. in the system: water 4
Na, SO, 4+ NaCl. In the binary system: waler 4+ Na,SO, viz. at
32°.5 the equilibrium ‘
Na, SO, 4+ Na SO, 10H, 04+ L 4+
occurs. On addition of VaCl at 17°.9 arises:
Na,SO, 4+ Na,50, .10 H,0 4+ NaCl 4+ L + G.

As the gas-phase (7 is represented in fig. 1 by the point I, the
phases Z, Z, and (7 are situated on a straight line. 7, 7, and &
are, therefore, the singular phases, A and L, the indifferent phases
of the equilibrium:

42, A+ L, + G

Consequently from the invariant point start the singular equilibria:

My=Z+Zi+ G [Curve (M) in fig. 2]

Ay=Z2+ Z,+ L+ G [Curve (4)=md in fig. 2 and md in fig. 1]

Ly=Z+4+Z, +A+ G [Curve (L)y=mt in fig. 2]

and further the equilibria:

A =2, + A+ L+ G [Curve (£) = ru in fig. 2 and rm in fig. 1]

(Zn=2 4+ A+ L -+ G [Carve (Z,)=mb in tig. 2 and m¥b in fig. 1]

((h=Z+ 7Z,+ A+ I. [Carve () in fig. 2]

Let us first consider the binary system W /7 in which at
T, and under Py the invariant equilibrium

A+, 4+ Li+ G
securs. From the invariant point d (fig. 2) start the equilibria:
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Z + L + (7, represented by curvwe da (fig. 2)

v L4660 . . 0 . . o . do (fig. 2)
LYZ,+L, . . . . . . . ds (g 2)
A+, 4G 0 0 0 0 o oL dmt (fig. 2)

The solutions of the first equilibrium are represented in fig. 1 by
points of da, those of the second equilibrium by points of do. Curve
ds is drawn vertically in fig. 2; the little curve with the arrows
indicates that it may proceed as well a little towards the right as
to the left. [This little arc has the same meaning for the curve ()
in this and in the following figures]. 7

It follows from the reaction: £, 2 Z-+4 (G which may oceur
between the phases of the equilibrinm Z -+ 7, 4 ; that curvet m d
is a curve ascending with the temperature. With this reaction from
left to right viz. as well the volume as the entropy increases.

This curve o nif is at the same time the (A )-curve of the ternary
avstem I 4 Z 4 4. Consequently on this curve is sitnated some-
where the point m in which oceurs the invariant equilibrium:

A4 dit At L+ G
of the ternary system. The two other singular eguilibria:

M=/ 47+ L+ 6Gand (LY=Z4Z, + A4+ G
coincide with this eurve 2 d. As the equilibrium (A) exists under
higher pressurés and at higher temperatures than the equilibrinm
(L), (A) is rvepresented by curve m « and (L) by curve it in fig. 2.
" [Further we shall show this yet in another way].

The equilibrium (G) = Z+ Z.+ 4+ L goes, starting from m
towards higher pressures and it may go as well towards higher as
towards lower temperatures. [We shall refer to this later].

Now we have still to draw in fig. 2 the curves (Z£) and (Z£,).
For this we consider the concentration-diagram of fig. 1. In this
are represented the solutions of:

(A)=Z+ Z,+ L+ < by curve md
D=z, +4+L+6G ,, , mr
Ly=Z+A+L+6G 7 ,, mb

We wmake the obvious supposition that the curves md and mé
go towards higher pressures, starting from m and that curve m»
goes towards lower temperatures, starting from m. [We shall refer
to this later]. ] )

The dotted curves are the saturation curves of Z,, Zand A under
their own vapour-pressure; the little arrows indicate the direction,
jn which the pressure increases.
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The regions, in whieh Z,, 7Z and A4 ocenr as solid phases, are
indicated by circumcircled letters.

Fig. 2.

It appears from the direction of the little arrow on curve Ai
(fig. 1) that the vapour-pressure is higher in /A than in {. This
saturation-curve h: is represented in fig. 2 by a straight line k¢
parallel to the P-axis, the point A is situated, therefore, higher than
the point ¢, so that curve m 4 d must be situated above curve m ¢ b.

Curve a b of fig. 1 is represented in fig. 2 by the straight line
a b parallel to the I-axis; as, in accordance with fig. 1, the pressure”
is higher in « than in &, in fig. 2 point a4 must be situated above
point & and consequently curve « @ above curve m b.

We have drawn in fig. 2 curve m b starting from m towards
higher pressures, later on we shall see that this need not he always
the case.

Now we have still to determine in fig. 2 the position of curve
(Z) with respect to the other curves. We are able to do this in
different ways, we shall show that the metastable prolongation ma
of curve »m is sitnated below curve m b.

For this we imagine in fig. 1 the curves g4 and k¢ to be pro-
longed till they intersect one another in a point 2. This point of
intersection is a point of the metastable prolongation of curve 7 m:
As T.="1,=T,=T;, the points 2, &, g and ¢ are situated in
fig. 2 on a straight line parallel to the P-axis. It is apparent from
fig. 1 that the vapour-pressure is smaller in point x than in A and
in z; in fig. 2 the point x is situated, therefore, below point i, so
that curve mae is situated below curve mb.
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We could also draw in fig. 2 still the P, T-curve of the equilibrium
A~ L -+ G of the binary system W - A; it appears from fig. 1
that this curve must be situated in fig. 2 above the carves rm
and mb.

In our previous considerations we have followed for the deduetion
of the P.T-diagram the same way as in the deduction of the P,7-
diagrams for some special cases in binary systems [Communication
XI|. We have used viz. the concentration-diagrams and some of
their properties. In the ®ase which is discussed now, we used the
property that the vapour-pressure increases along. the saturation-
curves in the direction of the little arrows. Further we have made
the obvious supposition that in the concentration-diagram (fig. 1)
the curves b and md go starting from m towards higher (empe-
ratures and that curve mr goes, starting from m towards lower
temperatures. :

We may, however, follow also quite another way, in which we
may deduce as well the P,7- as the concentration-diagram and in
which we more plainly feel the suppositions which are assumed in
the deduections.

-

For this we consider the different reactions which maj oceur in

the invariant equilibrium:
242+ A+ L+ G

With this we shall assume that the liquid L is represented in fig. 1
by a point m within the triangle Z,AW. From the position of the
five phases with respect to one another follow the reactions:

1. For the singular equilibriuin (M) =24+ 7, +

Z2rG+A—a 2 (LV)y 5 (bH)u
2. For the equilibriom (/) =2, + A+ L4 ¢
L2yG 4wz 4+ (1—y—u) A L1z ;3 (bH)z

Herein «, y, 4, 1—« and 1—a—y have positive values, which may
be determined when  the compositions of the phases are known.
(AV)y and (AH)y are the changes in volume and” entropy when
reaction (1) proceeds from left to right, so that the indicated quan-
tities participate in the reaction. The same is true for (&4 F)z and
(6LH)z At the following reactions we shall indicate in the same
way the changes in volume and entropy.

Now we may deduce, as has been discussed formerly, from 1 and 2 the
reactions for the other monovariant equilibria and also the isovolu-
metrical and isentropical reaction. We find :
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3. For the equilibrivm ()= 7+ Z, + Af—l— L
W+ o) Bty AS e L4 y(l—0) Z (LT)g : (bH)q
Herein is: ‘
LWMe=yLVIu—a(LV)z : (LH)s=y(LH)y—z(LH)z
4. For the equilibrium (£) =2+ A+ L+ 4
LEy+uyfd+ul—a) 24+ t—y—w A (LV), : (LH),
Herein 1s:
EVy=u@VMy+Lz + (BHy=ubH)y+ (LH)

5. For the isovolumetrical reaction:

L) Zot+d—y—) Ly d+- (L. G5

A—a) (& Vig A4 (LVy. L 0 . (AHw

Herein is: (&8H)y = (L V) ALH )y — (L V)y. (L H)y,
6. For the isentropical reaction:

LHy . Zy+ (d—y—w LH)y A4+ {LH); 2

A—a)y(&H)z. Z+ LH)y. L (& Vg ;0.
Herein is: (L V)g=(LV)y.(6H)z — (L V)z(LH )y
conseqnently (LWg=—(LH)y

In order to express in another way the occurring changes in
volume and entropy, we represent the volumes and entropies of the
unity of guantity of the phases

Z Z, A L and @

by Vy Ve VaVy and Vg
and Hz Hn HA HL and H(; )

With the aid of the reactions 1—6 we find:
Ly =aVe+Q—a) Vi—Fyo
(LH)y =vHe+ 1 ~w) H,—H),
LVyz =yVe+uVy+ (d—y—w) Va—17
(LH)Yg = yH¢ + uHy + (Y—y—uw) Hqg— H,,
VYo = Vi Ay (i) Vi — () Vi (1—y—) Vg
(LH)g = xH 4+ y (1—a) Hy — (y+=21u) Hi—ap (1—y—) H 4
LV =@+ u) Vg4 u(—2) Vz+4 Q—y—u) V4—V,,
(&H), =+ wr) He + v (1—a) Hz + (1—y—u) H 4 MHI
(LHYy = (lm.r) (LT Hy 4+ LWy Hy, — (&1 ).
— (=) (& Vy. Ha— (& V)G Hg
(V=A== (LH)z Vz+ (8H)y. Vi —(&H).. V,
—(—y—wy(H)y . Va—(LH)g Vg
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Now we have to examine whether those changes in volume and
entropy are positive or negative. When we knew the values of
a,y,u, Vz..., Hz..., then those changes would be easy to cal-
culate. When this is not the case, then we have to try to find in
another way they are positive or not.

(AV)y and (A H)y are the increase of volume and entropy at
the reaction
oy >G4+ 1 —a)2
consequently at the separation of the hydrate Z; into anhydric salt
Z and watervapour (7. Consequently we are allowed to assume that
(LV )y and (AH)y are positive.
(AV)z and (&H)z. We write :
LViz=y(Ve—Vo+ulatAQ—uVys—V,
(bH)Y; =y(Hg— Hy) +uH,+ 1 —uw Hqg — H;.

Jonsequently both are positive for values of y which are not too
small. For small values of y (&AH); becomes negative, fory — 0 we
find viz

(AH)z —=uH, 4+ (1 —uw) Hqy — Hf,
which is negative, when we assnume that heat is wanted for the
melting of solid substances.

(A Vjz can become negative for very small values of y; for this
is it necessary that v V,+ (1 —u) V4— V is negative.

(LV); and (LH),. Tt appears from the value of (AT )g that this
may be as well positive as negative. (&AH)¢ is the change in entropy
at reaction 3, in which only solid substances and the liquid L
participate. When we assume that heat is wanted for the formation
of liquid, then (AH)g is positive.

(&V) and (AH),.. (A1), is always positive on account of the
large value of Vg For y = 0 becomes:

AV hw=uw Ve+uldl—a)Vz4+Ad —uwVi4i— V..

When in fig. 1 the point m is not situated in the immediate vicinity
of point A, so that u and consequently also wa does not become
exiremely small, then (& 17), is still positive, even for y = 0.

(LH), is positive; for small values of y it may, however, become
negafive, for this it is necessary 'that

wHet+uv(l —a2)Hz +1 —u Hy — Hyp
is negative.

(AV))g and (AH)y. 1t is apparent from the value mentioned for
(AV)g that this bas the same sign as — (AH)g on account of the
large value of V. Hence it appears that (A Vg < Oand (AH)y > 0.

‘ 56

Proceedings Royal Acad. Amsterdam. Vol. XIX.
®

e



We have seen above that the sign of (AT )z, (AH)z and (AH),
depends on the value of y, consequently of the position of the point
m in iig. 1. In proportion as viz. the point m is situated more
closely to the line AZ,, y becomes smaller; when m is situated on
AZ, then y = 0.

I. First we consider the case that the point m is situated not
too closely to the line AZ. Then we have:

AV, (&V)zand (A1), >0 AVig<L0 ; (AV)20

(AH3y , (BH)z , (LH)g . (&H), and (AH)y > 0.

It “follows from 5, when we omit the reaction coefficients, for
the isovolumetrical reaction that:

Zn“""»fij:(;z Z 4 L 0 ; (AHYy>0
(Z) (L) VAN

Towards lower 7' Towards higher 7'

As (A17); may be as well positive as negative, we give in this
reaction to the phase (G as well the sign -+ as —

It follows from this reaction that the curves (Z) and (L) go
towards lower temperatures starting from the invariant peint m and
the curves (Z,) and (4) towards higher temperatures. As the phase
(G wmay have as well the positive as the negative sign, the direction
of curve ({7) is undefined; it may go, starting from the invariant
point as well towards higher as towards lower 7'

When we omit the coefficients in the isentropical reaction, then
follows from 6:

G4+ A+ G2 L+ L @V)g<0 ; 0
(2) (L) | A6
Towards lower P ' Towards higher P.

Hence it appears that the curves (Z) and (L) go towards lower
pressures, starting from the invariant point and the curves (Z,).
(1) and () go towards higher pressures. ‘

1t is apparent from both these reactions that the curves must be
situated as in fig. 2 as regards their direction of pressure and tem-
- perature. The curves (Z) and (L) must go viz. starting from m
towards lower P and 7, the curves (Z,) and (4) towards higher
P and 7. Curve ((+) must go towards higher P, starting from m,
but it may go as well towards lower as towards higher 7.

Now we have still to determine the position of the curves with
respect to one another. We have viz. still to show that in fig. 2
curve (Z,) is situated below —curve (4) and above the metastable
prolongation of curve (7, ete. :
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As in the three singular equilibria (M), (4) and (L) the same
reaction (1) occurs:

( ) M (dg (d T Eil;ij;

For the equilibrium (Z,) we have

dP\ _ (LH)
ﬁ n o rA-—iz_)n
Hence it follows: ~

) ( _(0H)y (AR,
(dT AT/, (A V)M (A V)ﬂ.

As (AV )y and (AV), are positive, the second side has the same
sign as .

(& V)n (AH)M“‘(A Ir)M (AH),. '
As, in accordance with (4)
AV)=ubV i+ (LV)z and (OH), = ubH)y+ (LH)z
that form passes into: .
(V)2 8H)y— LTy (b )z = (LH)y > 0.
(‘onsequently it is apparent from this:

Or curve (4) must be situated in fig. 2 above curve (Z,).
Now we take:

/dP P\ _(LH), (& )z
(Zi_f)“ (Eff‘)z"' bV, (&7)z

. The second part has the same sign as:
(LVyz(bHw— AV W(aH)z.

When we substitute in this again the values of (A}"), and (A H ),
« from 4, then it passes into u (&H)y >0. Hence it follows:

().~ Ga)>o o () > (),

or curve (4, must be situated in fiz. 2 above the prolongation of
curve ().

I[I. Now we Tet the point m in fig. 1 approach more closely to
line AZ, so that y gets small values. As long as the changes in
volume and entropy keep the same signs as in 1, we obtain a
P, T-diagram as in fig. 2.

For small values of y (AV )z, (AH),gafnd (AH),, may change their

56*

-10 -
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sign and become, therefore, negative; now we shall consider those

cases more in detail. ‘
The first of those three quantities which becomes negative

when y diminishes, is
(OMH)z=yH6— H)+uH,. + 1 —uw Hy — Hy.

When (A1 )z=y (VG — Vo +uVy+ (1-—u)V 14—V becomes
negative, then this may however, only take place, on account of
the large value of Vg, for very small values of v.

(AH), can only become negative, when (L H)z is negative: this
follows from:

(LHY, =u(bH W+ (LH),
in wbich w (& H )M is positive.

Consequently we distinguish four cases.

a. (LHz<0 : LV)z>0 ; (LH),>0

b (LHZ <O 5 (BV)z>0 5 (AHLLO

¢. (LH)z<L0  LV)zL0 @ (BH)W>0 (AV)6>0

d. (LH)z<L0 o (LT)z<L0 5 QHR L0 (AT)6>0.

In ¢ and d at the same time (L 17)g is taken > 0; it follows from:

LV)e=yLViu—a(lLV.

that this must be the case.

Hence it appears viz. that for extremely small values of y [and
only for those (&V1), may become negative] (A1 ); and (AT,
have opposite signs. ~

a. Now we have:

(BT )ar, (LV)z and (AT, >0; (L F)p< 05 (BV)Z0
(6H )y, (&H)g, (&H), and (LH), >0; (AH)z < 0.

When we omit the coefficients in (5), then the isovolumetrical
reaction becomes:

Zi+Ax GZ2ZZ4+L 0 5 (AH),>0
(Z) (L) | (Z) (4)
Towards lower 7' Towards higher 7"
If follows from (6) for the isentropical reaction:
L+t A+ G2 L bV <0 ; 0
(L)  (Z) (2 (4) (&)
Towards lower I | Towards higher P

It follows from both these reactions that the curves must be

-11 -
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situated as in fig. 3, with vespect to their directions of temperature
and pressure.

M) In the same way as in I we

may show that curve Z, must be
situated below curve (4) and above
[Zn) the metastable part of curve (£),
etc, so that we obtain a partition
of curves as in fig. 3.
- Fig. 2 and 3 differ from one
another only in this respect that
curve (Z) goes, starting from m
in fig. 2 towards lower and in
fig. 3 towards higher pressures.

Fig. 3.

0. Now we have:
(AV)sy. (AP)z and (AV ), >0;LV)E<0;(AV)¢20
(&H)y,(LH)g and (LH)y>0;(LH), and (8H)z <0
The isovolumetrical reaction becomes: "
Zyi+AxGZZ+L 0 ; (LH) >0

£ (L) | (Z) (4
Towards lower 7' | Towards higher 7’

The isentropical reaction becomes:
L+A+GC27Z,+L  LV)p<<o 5 0
Zy (L) (DA
Towards lower P = Towards higher P
From both these reactions it follows
that the curves must be situated as
in fig. 4 with respect to their directions
of temperature and pressure. In the
same way as in / we may show now
again that curve (Z,) must be situated
below curve (4) and above the meta-
stable part of carve (Z), etc. so that
we obtain a partition of the curves
as in fig. 4.
X Figs. 3 and 4 differ from one another
only in that respect, that curve (Z,) goes starting from sm in fig. 3
towards higher and in fig. 4 towards lower pressures.

Fig. 4.

W e e

¢. Now we have

-12 -
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(LT, (A1) and (L P)e>0 5 (AV)z and (LV)pL 0
(AH)w, (L H), , (LH)y and (&H) >0  (bH)z L0
The isovolumetrical reaction becomes now :
Z+Z,+A4+6C2L 0 ; (LHYW >0
(L) ' {2) () (A (&)
Towards lower T ' Towards higher T
The isentropical reaction becowmes:
Z+Z,,+A+G""L LVal0 ; 0O
(L) | (£)(Z) (4 (G)
Towards lower P | Towards higher P
From both these reactions it
(z) {j) Mj follows that the curves must be
/A{) situated as in .ﬁg. 5 with respect
to their direction of temperature

(zw) and pressure.

- g Now we have still to show

/'l, that curve ‘(Z) is situated above

(G, curve () above (4) and curve

M) {'{) (A, above (Z,): this latter appears
Fig. 5. again in the same way as in /.

In order to show that curve (%) is situated above curve (G') we take:

dP (LH), (LH)G
( ) ( ) ((A Ve (&V)6
As (&1 )z is negative, the second part has the same sign as:
DV (LH)yg— (b1 )y . (LAH)g.
When we substitute in this:
BV )g =YLV )u—elbs Vg and (bH)g = yLH)y—(LH)y
then we find:
yaVizaH)—(L1)M(LH)z]=yboH)y >0
Hence it is apparent that in fig. 5 curve (£) must be situated
above curve ((¥).
In order to show that carve () is situated above curve (4) we take:

() (d'l) iﬁgiz“fﬁ?fﬁ-

In the same way as above we find that the second part must
have the same sign as a(LH )y, so that this is poditive. In fig. 5
curve ({r) must be situated, therefore, above curve (A4).

. d. Now we have:

-13 -
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AVM, (V) and (AV)g>0; (&V)z and (LT )H <O
(AH )y , (LH)g and (LH)Yy >0 ; (AH)z and (& H), < O0.
The isovolumetrical reaction becomes:
Z4+Z4+A+6G2L 0; (AH)y <0
(L) 1 (Z)(Z4) (A (&)

i
!
i

Towards lower 7' | Towards higher T
The isentropical reaction becomes:
L) | (2
Towards lower £ | Towards higher P
(z) From both these reactions it appears
) (ij that the curves must be situated as
[M) in fig. 6 with respect to their direction -
(A)  of temperature and pressure. It is
apparent in the same way as in ¢,
that, just as in fig. 5, also in fig. 6
carve (£) must be situated above
{Zn} () and curve (() above (A).

(M ‘ The only difference between fig. 5
L) and fig. 6 is this: curve (Z,) goes,
Fig. 6. starting from m in ftig. 5 towards

higher, in fig. 6 towards lower pressures.

~When we compare the [P 7-diagrams deduced above, with one
another, then we cee that they belong (0 a same type, viz. that of
fig 4 (XII). This must, of course, be the case, as the phases, (7, Z,,
Z, L, and A are situated with respect to one another in the same
way as the five phases in tig. 3 (XII).

In a P,7-diagram we imagine a curve X+ Y+ L-}-G, to be drawn
in which X and Y represent two salts. On this curve is situated
a point of maximum-pressure, there may also be situated a point
of maximum temperature. We call the part at the left of the point
of maximum pressure the ascending branch, the part between the
~point of maximum pressure and the point of maximum temperature
the descending branch and the other part the returning branch.

The difference between the figs 2—6 is dependent on the position
of the invariant point m. In fig. 2 this point is situated on the
ascending branch of each of the curves (Z) and (Z,), in fig. 3 on
the descending branch of curve (£) and on the ascending branch
of (Z,), in fig. 4 on the desecending branch of each of the curves
- (Z) and (Z,) in fig. 5, on the returning branch of curve (Z) and on

-14 -
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the ascending branch of (Z,) and in fig. 6 on the returning branch
of curve (Z) and on the descending branch of curve (Z,).

As we have found now the F,T-diagrams, we may easily deduce
the corresponding concentration-diagrams with the aid of those.

1 shall not enter into this subject any farther and leave this
deduction to the reader.

Leiden, Inorg. Chen. Lab. - (To be continued.)

Chemistry. — <A New Method for the Passification of Iron.”
By Prof. A. Smirs and C. A. Loery px Bruyx. (Communicated
by Prof. P. Zremax).

(Communicated in the meeting of Dec. 21, 1916).

I. Iif iron is immersed in an electrolyte, we have to deal with
the following complex equilibria:
Fes 2 Fes™ 4 2 s
i1 1 nw ... .M
FeL, 2 FeL "+ 26,
Feg 22 Feg '} 3 65
L A 2 L )
Fe, 2 Fey, "+ 3 0y,
from which follows:
Fes” 22 FeS" ' 65
wunouw e

Fe;, 2 Fey ™ + 6.,

Those of these equilibria that are indicated by vertical arrows
except the equilibrium between the uncharged ironatoms -in the
solid phase and the electrolyte refer to that part of the heterogeneous
equilibrium that governs the potential difference.

Now it has been pointed out before that the iron, which is in
internal equilibrium, can be in electromotive equilibrium only with
a solution which contains almost exclusively ferro-ions, so that under
these circumstances the equilibrium:

Feb";: F'eL"'+ 6[,
in solution lies almost entirely to the left.

If we now add ferri-ions, a consequence of this will be that
ferro-ions and electrons from the iron go into solution, which disturbs
the equilibrium in the iron surface.

This disturbance can now cease again, as a result of the reaction

Fes — Feg” 4 2 65 '

.
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