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small term «, —a, ¢®® in equation (1) a ferm which could not,
however, originate in the motion of the liquid (an asymmetry of the
oscillating system was out of the question and, moreover, a, was
independent of the nature of the liquid), but probably had to be
ascribed to a want of symmetry in the wire?).

Physics. — “The wviscosity of lquefied gases. VII. The torsional
oscillatory motion of a body of revolution in a viscous liquid.”
By J. E. Verscaarrerr. (Communication N°. 151¢ from the
Physical Laboratory at Leiden). (Communicated by Prof. H.
KameruingE OnNEs.)

{Communicated in the meeling of February 24, 1917).

1. In Comm. N°. 1485 the theory of the torsional oscillatory motion
of a sphere in a viscous liquid was developed to a first approxim-
ation; the results of the experimental investigation described in the
previous part (V1, Comm. N°. 151d) render it advisable to develop the
. theory to a higher degree of approximation. The present paper is
an attempt to a solution of the problem, not only for a sphere but
for an arbitrary body of revolution. This attempt was in so far
successful as a method of solution is given, in which the motion
of the liquid and of the body is put into the form of a series; the
terms of these series, however, contain functions of the coordinates
which in the mean time owing to the difficulties of the integration
remain determined by differential equations, and coefficients the
numerical value of which cannot yet be given. In form these series
agree with those which were found experimentally (Comm. N°. 151d).

The motion of the liquid.

2. We start from the well-known hydrodynamical equations?)

") An asymmetry of this kind is not improbable, as the wire owing to the
method of preparation showed a permanent twist: on the tension being taken off
it curls up spirally and the zero changed with the weight suspended from it.
During the oscillation of the system the wire obtains a higher twist in the one
direction and is untwisted in the other, which might involve a small deviation
from HookE's law to be expressed by a term Na? in the equation of motion of
the oscillating body (Comm. N°. 148b, equation 23).

%) u, v, w are the components of the velocity at a point z, y, z; p is the pres-
sure in the liquid, its density being « and its viscosity w; X, Yy, Z; are the
components of the external field of force, in which the liquid is placed, in our
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the last of which we shall replace by a different one which follows
from the whole set of four viz.:

(fhcav Ovdu Ovdw Owdr Owdu auaw) )

0z0y Oxdy OyOz Oyo:z + 0z 0z 0z 0z

If the motion of the liquid is the result of the friction of an
immersed body of revolution rotating about its axis (the z-axis) and
if, moreover, the boundary of the liguid, if it exists, is also the
same in alle meridian planes, we may put

u—¢tx—wy , v=&twr,. . . . . (2

where & and » are functions of the cylindrical coordinates ¢ =V z* 4y
and z and of the time.
For small velocities we may write:

se=¢&+ &+ 4+, .. y P=pit Pttt @8)
where each successive term of the series is considered as infinitely
small with respect to the preceding one. We therefore treat the
motion of the liquid as the result of a composition of a series of
conditions of motion, the velocities of which diminish very rapidly,
the further we go down the series '). Consequently the equations (1)
can now be separated into a series of sets each of which determines
a condition of motion. Putting in the n' set:

6u+ Ou Ou_:_ X et 4’
ua; v‘a—;«}»wgg_—— "y e e e e . . ()

X, Yo, Z, are to be looked upon as the components of a force
generated by the inertia of the liquid; they are completely determined
by the preceding approximations. Also by (1') in each successive
approximation the distribution of pressure is determined by the
preceding approximation.

case the field of gravity (Xo=0, Yo, =0, Z;,=g). 4 is the symbol for LapLACE's
operator. -

It will be supposed, that neither # nor s are functions of the coordinates or
of the time. In a piece of apparatus of ordinary dimensions this condition is pract-
ically fulfilled, even for a gas, when no greater differences of pressure occur than
are occasioned by gravity. (Comp. on this point Zexprén, Ann. d Phys,, 88, 81,1912).

1) ‘This method of treatment of the problem was given by A. N. Wurreszao
(Quarterly Journ. of pure and applied Mathem., 23, 78, 1889) for the purpose of
finding a second approximation: he applied it to the case of a unifsrm rotation
of a sphere. Comp. also Zempién, Ann, d. Phys,, 88, 74, 1912. B
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3. In the first approximation (velocities infinitely small of the
first order) we have ’ '
Ou
Lp,=0) , nlu=p3
If the motion of the body is an oscillation of the damped harmonic
kind, the angle of deviation of which can be represented by the
real part of

, ete. . . . (®)

a=aek ). . . . . . . . (6
we must put - .
p,=0 , w,=0 , =0 , o, =kap,,. . . (7)

where ¢, is now only a function of ¢, zand b —= %% determined
N

by the differential equation
Pp, , 80p, g,
d¢* ¢ Oo 9z*
and by the boundary conditions, that at the surface of the body

¢, =1 and at the external boundary of the liquid (at infinity, if
the liquid is infinite) ¢, — 0)?).

—bg, =0 . . . . . (8)

4. In the second approximation one finds:

dp, _ Ou,
— 3, TN tuX,=p-", ete

where ' .
X,=ow, Y=oy, Z,=0.

®)

This represents the first approximation to a motion in the field
of the centrifugal force*). Moreover:

1) In the first approximation the distribution of pressure is the same as in
condition of rest.

%) k is a complex imaginary quantity; a may be taken as real. (Comp. Comm. No,
148b). :

%) If the body of revolution is a sphere, ¢; becomes a function of r = V/z% + y? + 28
only, and equation (8) reduces to equation (11) of Comm. NO. 148b.

4) In general this field of force has no potential; that is why it causes a movement
of circulation in the liquid. (Comp. Comm. N, 148d, Proc. XVIII, 2, p. 1038). For

. . . 0
that reasen it is also impossible to put in general P p X3, etc., as in the

Ox

distribution of ‘the pressures under thée influence of the external field of force.
- Only in the case of an infinitely long cylinder, where @, is merely a function of o,
the field of force of the centrifugal force has a potential; a movement of circula-
tion is absent in that case and the motions of higher order disappear at the same time,
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bp, = __ bow,)
e d¢
These equations are satisfied by putting:
s, =2ka’YP, , 0,=0 , w,=2ka'y, , p,=2ka’x,.. (10)

P |

where ¢,, 7,, ®x, are new functions of ¢, 2, and b. A motion of cir-
culation is thus obtained in the meridian planes; this motion is a
damped pulsating one, with twice as high a frequency and degree
of damping, as the oscillation in first approximation.

5. In third approximation we have again Ap,—0, or p, =0, and
Ou
nlu +pX, _..u—a—l, etc.
where this time
X\, =,y , VY, =—®,2 , Z2,=0, . . (1Y)
with

‘ 3y, e,
¢.="k’a’[2¢1¢,+e%—5{+7.{—]-
() F4

In a third approximation we thus have a motion caused by a
periodic damped field of force at right angles to the meridian planes
and containing the time in the factor e3¢t It follows, that this motion
like the one in first approximation consists of an oscillatory rotation
of the liquid in shells, each with its own amplitude and phase, but
with the same period and degree of damping; i.e. the equations
can be satisfied by putting:

w,=0 , §=0 , w,=3kay,,
@, being a new function of ¢, z, and b, determined by the differen-
tial equation :
aa:? + g %% + = q)' — 8b'p, = 20 (2%% + o, %% + 7 %‘2’) (12)
and by the condmon, that ¢, = 0 at the boundaries of the liquid.

6. As one would be inclined to expect and as, moreover, can be
easily proved, further approximations yield alternately circulation
in meridian planes and oscillations, about the axis, with frequencies
and degrees of damping which increase in an aritbhmetical series.
By putting

— K =%e—Py , —Va=Wy+ ®ux,. . (13)
one finds, using a well known method ') ’

1) If the. relations hold for % = { to m, it may be proved, that they also hold
for n==m -+ 1.
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'P'g,._H:O, Py, —0, Zgn+1:0 ,'82,,_*_1:':0 , Wep=0, w2n+1:0 ,p2,+1:0
t3y==2nka®mPy , wen1==(2n + 1)ka2r+lpg, 11 , win==2nka2rys, , Q (14)
. pgn:-_?.nka?"arg,.
_From the foregoing discussion it appears, that, when a body of
revolution in a liquid oscillates- about its axis in a simple harmonic
damped motion (how the motion is sustained, is of no account), the
liquid will assume a motion which consists partly of a compound
harmonic damped oscillation of liquid shells, where the amplitude
may be represented by
a=a, +a,+a,+...=ap -+ ekt atpeh ... . (15)
and for the rest of a motion of circulation in meridian planes.
The above reasoning still holds, if the motion of the oscillating
body itself is a compound harmonic one of the form:
a=—aé? 4 g,adkt g, a0k .5, . . . (16)
the functions ¢241 are, however, not then zero at the surface of
the body, but equal to 62,4. ] ‘

The motion of the body.

7. The question now arises: of what nature will the motion be
which the body assumes in the liquid, when without friction it
would perform a simple harmonic oscillation? Certainly not a simple
damped motion, for, even if by some artifice the body was for some
time made to swing exactly in the simple damped motion, which it
must assume according to the first approximation, the higher terms
of the liquid motion would still by friction give rise to forces which
would try to disturb the simple motion and which would certainly
create this disturbance, as soon as the body was left to itself. It is
obvious that they would impart to the body a composite motion,
corresponding to equation (16) where the even terms would not occur,
seeing that the liquid motions of even order only give friction along
the meridians and thus cannot have any influence on the oscillation®.

1) The quantities ¢ are funetions of ¢, 2 and b which are exclusively determined
by the boundary conditions. In the case, when the body is an infinitely long
cylinder, all ¢’s are zero, with the exception of @,. At the solid boundaries of
the liquid the ¢'s become zero (except @; = 1). If the liquid is partly bounded by
a free surface, a special condition will hold there.

%) The friction along the meridians can only produce an imperceptible deformation
of the body. It might seem as if the circulational motion in the liquid, although
it is kept up by the body and damped by friction in the liquid, did not occasion
a Joss of emergy of the body. The explanation of this seeming contradiction may
be found in the circumstance, that the motions of different order are not mutually
independent and a loss of energy of even order is provided by products of
velocities of uneven order.
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In this manner it becomes intelligible that the oscillating body, also
when it is made to swing freely in the liquid, will assume & motion
corresponding to equation (16)‘), as was first revealed by experiment
(comp. Part VI).

In equation (16) the exponent & which contains the time of oscil-

d 2m
lation 7" and the logarithmic decrement (k: ~ % +——;,—' ) as also

the coefficients o,, g,, etc. (a is arbitrary) are determined by the
interactions between liquid and body. By the friction to which the
body is subject, moments act on it-which can be calculated, as was
actually done in the first approximation in Comm. N°. 1485 for the
case of a sphere, as soon as the function8 wa and y. are known;
if the moments of the couples causéd by thesuccessive sets of motion
are represented by C,, C,, C, etc. (the moments of even order are
all zero), the equation of motion of the body is:

d'a
K—d—t—;-—ﬂ +Ma=0. . . . . . . (17

(comp. 23, Comm. N°. 148b), where C=C, 4 C, 4 C, 4+ ... The
quamities C are given by

Cp=" ngds_. ’)._.nulca,,f SN da————L,,d:.—"
rwhere (18)
72
, 0y
Ly—= — 0’ aNd.s.__----uA,,,
F- . -

4, is a numerical quantity (of the dimensions of a volume) which
depends on the shape of the body and further on the quantity 5,
i.e. on k (time of swing and decrement), on the consiants v and pu
of the liquid and finally on the coefficients ¢ up to and including
g, *). Equation (17) can thus be sepacrated into a series of equations

) That is to say after the disturbancss, which are due to the starting of the
motion, have subsided: these disturbances are not gone into here (comp. Comm.
N° 14858, § 4, note).

) As in Comm. NO, 1488, F represents the tangential force per unit area in the
direction of the motion; ds IS the area of a circular strip roynd the body of -
53 N" is the gradlent of the angular velocity of the n**’ order in the
liquid close to the body; 2, and z; are the z-limits of the body. -~
- ) If different parts of the oscillating system are surrounded by different fluids
(e.g. a part by a liquid and the other part by air, as was the case in the
experiments) Ln itsell has to be divided into parts, each of which refers to one
of the fluids,

revolution;




1079

=0,

daw
¢ (19)
or ' - :
kB K+nkl, + M=10,
the first of which (n=1) is the same as equation (26) of Comm.
N°. 148b, by which % is determmed The other equations determine
the quantities ¢.'). -
‘Herewith the problem is formally completely solved. Numemcal
apphca.hon would, however, only be possible, if one succeeded in

finding the functions w, and v, *)

Physics — «The viscosity of liquefied gases. VIII. The similarity
tn the oscillatory rotation of a body of revolution in a viscous
liquid’. By J. E. Verscuarrerr. (Communication N°. 151f
from the Physical Laboratory at Leiden). (Commumcated by

_ Prof. H. Kamearinga ONNgs).

(Communicated in the meeting of February 24, 1917).

1. In Comm. N°. 148¢ the conditions were derived under
which similarity would exist between two different modes of motion
of an oscillating sphere in a viscous liquid. The discussion was at
that time entirely based on the first approximation of -the problem :
but even then it was anticipated that the conclusions would prove
to hold in general (Comm. N°. 148¢ § 5), not only in nearer approxi-
mations, but also for bodies of different shape to the sphere; this
will now be shown to be the case.

Returning once more to the general hydrodynamical equations
(equation (1) of the previous communication, Comm. N°. 151¢), we will
inquire whether it is possible to introduce units of length, mass and time
such that everythmg spemﬁc disappears from the equations. The
external similarity of the liquid motion of course requires in the
first place similarity of the body oscillating i the liquid (the latter
condition is of itself satisfied in the case of a sphere); let R be a

1) In all this the supposition is retained that the moment of the torsional couple
is propnrtmnal to the a,ngle of torsion and that the ordinary laws of friction
remain valid. = -

%) Not till then would it be possible to settle the exact condition for infinite

smallness of the velocities {comp. preceding communication § 1 note), i.e. the
condition for g5 (for the body) to remain below a definite fraction of «, or, as
would be ever :more yseful for our purpose, the condition for the decrement 3
not to deviate by more than a definite amount from the limiting value 3,



