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3. During evaporation in vacnum silver develops a deposit against
the bulb. With ipcreasing thickness the colour of this deposit passes
through greenish-yellow, orange, red, violet and blue.

4. The red, the violet and the blue films are distinetly hetero-
geneous. They consist of a network of very small ultramicrons. The
yellow deposit shows a hardly perceptible heterogeneousness and
approaches in structure the amorphous-vitreous state.

5. The deposits are not proof against the influence of moist air.
The colour changes in the direction yellow — red — blue and the
structure becomes. coarser. Heating likewise caunses a coarsening of
structure,

6. Gold forms — in a similar way as silver — coloured depo-
sits, which are ultramicroscopically heterogeneous.

7. Tungsten forms a black deposit, ultramicroscopically it is
not soluble. ‘

8. Deposits obtained by cathode-atomizing consist as a rule of
coarser particles than the evaporation-deposits.

Delyt, Anorg. and Physic-chemical — Eindhoven, Lab. of Philips’
Laboratory of the ,,Technische “Carbon Filament Lamps”
Hoogeschoo!l” (Technical Untversity). Works Ltd.

Physics. — ““The virtual displacements of the electro-magnetic and
of the gravitational field in applications of Hamiron's variation
principle” By Dr. A. D.Fokkgr. (Communicated by Prof. LoreNTz).

(Communicated in the meeting of January 27, 1917

In some papers on EinstrIN's theory of gravitation Prof. LorenTtz?)
recently applied HamiLtoN’s principle to the deduction of the principal
equations of this theory from one single variation law. Starting from
an invariant equation he was able to reach conclusions which again
were represented by invariant equations. It was however not
necessary to keep the equations invariant during the whole deduction.
On the contrary, an artifice, consisting in the choice of a specially
defined virtual displacement (withont taking into consideration the
conditions of invariancy), proved very useful.

Now it is possible to let the invariancy exist continually during

1y H. A. Lorexrz, On Hamwron’s principle in Eincrens theory of gravitation,
Proceedings, Kon. Ak. v. Wet. Amsterdam, XIX, p. 751. Over Einsteins theorie
der zwaartekrackt, 1, 11, lll, Verslagen, Kon. Ak, v. Wet. XXIV, p. 1389, 1759,
XXV, p. 468.
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the deductions; and that in a way which fully appreciates the fact that
the tensor of the ten gravitation potentials and the tensor of the four
electrodynamical potentials, being directed quantities, have a geometrical
character (§ 12 etc.). Moreover the tensors of stress, momentum
and energy appear in a new way from the variation calculation.

In the following paragraphs this will be shown. Thanks to the
cited papers and to some others, a short indication will often suffice.

The variation principle.

1. For a material particle, falling under the influence of a force,

Hamiuron’s principle takes the form:

2 2

0=4d| —mds { | Z(p)k, or> ds,

1 1
where m is the coefficient of mass of the particle, ds the arc-length
of the world-line run by the particle in the world referred to a system
of four space-time parameters z,,z,,z,,x,. Further %, (p=1, 2, 3, 4)
represents the four-vector of the force acting on the particle, while
or (p.=1, 2, 3, 4) denote the components of the virtual displacements,
In the variation of the motion there corresponds to each point-
instant 2, (m=1,2,3,4) of the unvaried path a point-instant
zy 4 o™ (m=1,2,3,4) of the varied path. The final points of the
path remain unvaried. As nsually we assume

ds? = 2(ad) g,y dzs dz,,
where gap (@, 0=1,2, 3,4, ga. = gsa) are the gravitation potentials.
If the particle has an electric charge, so that it is influenced by
an electro-magnetic field this may be faken into consideration by
writing
] 2
0=4d |(—mds + 2Z() ep;da;) 4 | Z¥ k, drrds.
1 1

Here ¢; (!=1,2,3,4) represent the eleciro-dynamic potentials,
four quantities changing from point to point and determining the
field. 4 is a constant determined by the choice of the units of mass
and charge in which m and ¢ are expressed. Now £, no longer
contains the electric forces.

2. Applied to a limited extension of the four-dimensional world
HamiLtoN’s principle is represented by the equation:
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0= de de, dz, die, dx, +fEiP»‘ K, drp dz, dz, deyde, . . (1)

Here A, denotes the pt component of the force acting on the
system per unit of volume. V'—yg de, dz, dz, de, being a scalar (if
g is the determinant of the g¢a), AN —¢ and not K must be a
covariant vector, which further will be denoted by 4. For the same
reason not L, but LA“—g must be a scalar, if the variation law
shall be expressed invariantly. We suppose the function of LAGRANGE
L to consist of different separate parts for the gravitational field,
for the matter, for the electro-magnetic field and for the electric
convection-current,

Structure of the function of LAGRANGE.

8. The contribution of the gravitational field to L will be denoted
by v'—g H. 1t will be known, that for /{ must be taken (/2x, where
G is a scalar indicating the curvature of the field figure and = the
gravitation constant. By means of RikMasN’s symbol, G may be
expressed as follows:

G = Z(tm) g™ Gy,
Gim = Z(kl) g*! (ik, L),
(tky Im) =} (Gimkt + Jklim — Gilm — Fhuiit) +

x| T[]
a b a b |\
The quantities g0 (a, b =1, 2, 3, 4) are the algebraic complements
of the gay; gima is written for the second derivative of g with
respect to x; and x;; and CarisTorrel’s symbols mean :

Tin
- % (,9'ia,m -+ Imayi — Gima )-

a

Fuarther the notation g"cb and gzs for the first, respectively ' second
derivative of ¢ with respect to z. and x4 will be used from time
to time.

4. The contribution of the matter to L will be denoted by
1"—¢g R. In order to find ont what has to be put for V' —yg B we
must investigate how the element -—mds, which occurs in the
variation law for the motion of a single inaterial particle, can
be extended to V' —g¢ R de,de,de,de, for the matter we are consi-
dering. Lorentz has indicated ') what ' —¢g R becomes for a con-

1) L c. XIX p. 754, XXV, p. 478.
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tinuously varying current of incoherent material points or for a more
general case in which there are acting certain molecular forces
between the points.

For an ideal gas V—¢g B will be the sum of the elements of the
world-lines described per unit of time by the molecules present in
a unit of volume, each element multiplied by — m, if m is the
mass of the molecule that describes the element.

Now it is known that for a molecule with the mass m the
momentam is given by

d
i,,:——mz(b)gab—;{

for a—=1,2,3, and that the energy is — 7,. For an ideal gas the
expressions for the stresses, the momentum and the energy per unit
of volume and the energy-current can be written down directly.
Without entering into details by introducing a distribution function
I only give the table of notations

V"".q T)] V_g Ta’ l/'—g T1a V—g T, X, Xy X,— 1,

‘/'—gT:l V—-—gT,’ V—gT,' l/'—'ng‘ Y»’C Yy Yz"]y (2)

V—9 T} V—gT} V—gT) V—gT,)(=)2:2y2.—1,

V—g T} V—gT V—gT} Vv-97' &5 SE

Here the coordinates a, y, z and ¢t are supposed to be used. 7,

is a mixed tensor. It may be called the dynamical tensor. It is not
symmetrical. The covariant tensor

Top=2 (m)gmb T:zna
on the contrary is symmetrical.

It may be remarked that the sum of the diagonal components is
equal to

Sy —9Ta=—V—gR

5. The contribution to L of the electric current and the electro-
magnetic field may be divided into two parts, 21'—g Sand A v'—¢g M,
4 being the same constant as in § 1.

For v'—¢ 8 dzdrde,dr, we take the extension of the element
= () e qpidri that occurred in the variation law for a single charged
particle. If the extension is effected in such a way that we pass to
a continuous electric convection-current, we find

) Xy, Yz, Z: are the forces, exerted in the direction of X, Y, or Z by the sur

roundings of a unit cube, on a face for which the outwardly directed normal has
the direction of the axis indicated by the index.
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V=g S8=2 (m)v'—g W pn. ;

V—g Wn (m=1, 2, 3,4 denotes what is usually indicated by
ovr, 0v,, ov. and ¢. Here, as in other places, the factor }/'—g¢g
occurs becanse we take the different quantities per units of time
and volume, expressed in the coordinates and not in natural units.
It is to be noted that at a change of the gas, 1'—¢ W remainsunchanged.
This corresponds to the fact that for a single charged particle the
term = (m) ep,dz,, is independent of the gravitation potentials.

For the electro-magnetic field the scalar may be constructed in
the following way. From the potentials the covariant field-intensities
are derived :

6lpq 9:&,
Tes Er;, T s,

From these we form the contravariant intensities of the field :
Feb = Z (mn) g™ g¥" fren.

Finally we form the scalar:

M = — § 2 (abmn) g*™ g fub fan s
= — } X (ad) F<* fuy
Further it may be remarked here, that
oM oM

e == — § F'80 aRQ o = e } X m e
afab ; ,8]1 agam &2'(6")9 fdbf

ScuwarzscmiLp') has already used the integrand V'—¢ S in the
variation law. Recently TresLiNG?) has communicated to the Academy
of Sciences how this term may be used in Hamiiton's principle.

Except as to the sign, the term 1/—g¢M corresponds to the term
used by LoreNtz, who writes w,; for what has been called here

V' —gFet and oy for fo.
Variations of the field quantities.

8. In the first place we shall consider the variation which is
obtained by varying the electric field in such a way, that everywhere
the potentials ¢, are changed to an amount dyy,.

The Vg, (m=1,2,3,4) will be infinitesimal continuous functions
of the coordinates.

) K. ScewamzscHILD, Zur Elekirodynamik. I. K. Ges. Wiss. GoOttingen,
Math. phys. 1903. e

%) J. Tresring, The equations of the theory of eléctroms in a gravitalion
field of EINsTEIN deduced from a varigtion principle. The principal function
of the motion of the electrons. These Proceedings. XIX p. 892. '
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The variation becomes'):

0
ch'L de, dx, dx, llﬁ‘:%fdwl de, dz, dz, X (mgq) [5—;— V' —g F»3 dgy) +
g

i
+ O ) V=g Wn— o (V—~g F ”“7)]'
q

If at the boundaries of the four-dimensional extension the J¢m
are chosen equal to O, while within this extension they have arbitrary
values, then HamiLTON's principle demands that

0
V—g Wn= X (g} Fy. (V' —g Fm9), m=1,284 . (3
g
These are the four equations of the field in an invariant form.

7. The second variation to be considered is a variation of the
gravitational field. At each point-instant of the extension it may be
determined by the changes dg*® of the quantities geb.

If we have to do with an ideal gas, we may deduce directly that
now the variation of V'—g R is:

IV —gR) = X (abm) } V—agua Ts g®%) . . . (4a)
Taking into consideration that,
oV —g=— 2 (ab) } V'— g9 gar dg*t,

M = — Z (abdn) § g?" fad fin Ig®® = — } E(abedmn) gam g™ g% fed fon dg7t,
M= -2 (abmn) igam Fm"fbn d:‘]ab '
we easily find for the variation of V' —¢g M

MoV —g M) = X (abm) § V' —g gma Ep 092> . . . (4b)
where we have put
Ey = — 23 (n) Frn fou—2ady M.
dy is a mixed tensor, the components of which are 1 or 0
according as m =25 or m =}=5b. We shall also introduce the notation
Eup = Z(m) gam £t -
We shall see further on that V'—g E;' are the stresses ete. in
the electro-magnetic field in the same way as V'—gT'; are those in

the matter.
For the above mentioned reason the variation of V'—g¢ .S will

be zero.
0dp,  0d¢n

1) li should be kept in mind that dfin¢ — and that Fm¢g— — F

don Oz, o

Comp. for the deduction TrEesting, l.c.
%} Comp. Lorentz, le. XXV, p. 476, form. (63).
62

Proceedings Royal Acad. Amsterdam. Vol. XIX.
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8. When ¢ changes by dg, then g¢o° and gis change by

Qdgnd azdgf’!’
and :
oz, 0Oy

and their derivatives, the variation of V'—¢ H becomes

If we consider V'—¢g H as a function of the g7t

ol 0 -g0H
d([/-y f‘]) v((’l)l,d) [lfa"b3-~ 3 V-4 99ab H4y a= rrb B;Z(Ké}%z_) b
0? vV -90H ] H
e fo ab
aa axd( aqnf’ )2 (h'c (V g 6 b 99 ) +

_ V-goH N V-goH
; qab - D .
' 6.14( Gq""’ e ) O | (ﬁ J?d( dgr )u ' )

i

If H= G:2x, it can be proved®) that
oH 1 d —qgdf 1 0* —g0H 1
O W(V g0l 1 V29 =2 6 (dd)
0g7  } —q 0, aggb V' —g0x ey O-"g(? 2x

Summarizing and choosing the variations g2 arbitrarily with
only this condition that both they and their first derivatives vanish
at the boundaries of the extension, HamiLToN's principle requires that

0 :fd.’(tl dae,dey de, T (abm) Dg V —ggan(Ts + E} ) +

dg”“J . . (9
Hence we find the well-known equations for the gravitational field
Gat ~ 3906 0= —x(Tas + Egy. . . . . . (b)

The origin of the second term of the left hand side is apparent;
it appears by the variation of ¥/ —g in the principal funetion,

1
b V=g (Ga— } gu B)
2x

Virtual displacement of the matter.

9. The third variation we shall consider will be caused by giving
to the molecules of our gas virtual displacements. We do not choose
these displacements different for each individual molecule, but to all
molecules which at a certain moment are present in a definite element
of volume we give the same virtual displacement, characterized by
the infinitesimal vector dm (comp. § 1), which may be an arbitrary
function of the coordinates. The variation gives direetly

f de, de, de, de, = (almp) [éfl z V' —g(—dz B — Tq) drl‘% +
Lo )

a " a am W
A TRy O B2 rer SR | IO

P
1) Comp. Lorentz, l.c. XXV, p. 472.
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If the drr are zero at the boundary, then HamiLtroN’s principle
demands that the integral always vanishes, so that

a m 6 an
V—ghk, + = (aml) |~ (V=g T) — § V' —g g7 59-—

alvm -’L‘],

T7/ =0 . (8)

These are the equations of motion of the maiter in an invariant
form. %, is a covariant vector and the form between brackets is
}/—yg times the covariant divergency of the mixed tensor 7).

10. Consider now the wirtual variation of the electric current.
If each electric particle undergoes a displacement d»», then the
variation of the intensity of the current at a definite point-instant, is

0
IV —g W) =2 () s— (V' —gWe drm — /—g Wn drr), )
so that the integral is varied by:

0
fdm, dz, dey do, 2 (map) [5_‘ Pl ; V=g (Wmnge—d,' S) dra: +

m

) O Ly

oz,

-+ drr

If ¢ vanishes at the boundary of our extension, we must have
therefore

a ‘m a g
Vmgky + Sy V—g wm(_’f__n_ ”f’):o. ... (10)

0z,  Oa,
This may be called the “equation of motion” for the electric
current. The second term may be said to represent the force exerted
by the electric field on the carrier of the charge.

Virtual displacements of the fields.

11. Before calculating the variation which is obtained by a
virtual displacement of the electro-magnetic field or of the gravitational
field, we have to state what will be meant by this. '

Doubtlessly we can say: to give a virtual displacement to the
electro-magnetic field means to assume that the four potentials which
originally occur at the point-instant z, (p =1, 2, 3, 4) will be found
after the displacement at the point-instant @, | dr (p =1, 2, 3, 4).
From this follows that there will be at one and the same point-
instant a variation dg,,

0Pm

drp .
a.r,,

Fipm = — Z(p)

- 1) Comp. Lorewntz, le. XXIIL, p. 1077.
62%
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It is, however, immediately evident that dy, is no covariant vector
though ¢, -is one, so that we should compare with HamiLToN's
invariant integral another, which is no longer invariant.

The same difficulty arises if a virtual displacement of the gravi-
tational field is defined as the shift of a set of values g,, from the
point-instant «, to another next to it z, - ¢r’. By so doing we do
not obtain a covariant variation

agab

drp
oz,

dgap = — 2(p)

12. A closer examination of the geometrical meaning of the
tensor components ¢, teaches us that in virtue of the equation
&' = Z(ab) gus dva dzy they form together an infinitesimal quadratic
three-dimensional extension, the “indicatrix’’ around each point-instant
of the field figure.

The whole gravitational tield may be said to be represented by the
totality of the indicatrices described around the different point-
instants, in the same way as in elementary considerations an elec-
tric field is deseribed by Farapay’s lines of force. A virtual displa-
cement of the gravitation field must therefore mean a displacement
of all these indicatrices, in such a way, that it does not disturb the
configuration and intersections of the indicatrices.

Let us consider two neighbouring indicatrices 4 and j, which
intersect in the figure 1. We may give the displacements to the
indicatrix 4 and the indicatrix j separately and also to the figure q.
We then demand that the shifted figure ¢ shall again be the inter-
section of the shifted indicatrices 4’ and j.

This cannot be managed by the variation specified in the preced-
ing paragraph. There all point-instants of an indicatrix were
supposed to undergo one and the same virtual displacement, equal
to that which belongs to the centre. Now on the contrary we require
that the virtual displacements of the point-instants of an indicatrix
be defined by the values of dr» at the different point-instants them-
selves.

If the dr? are not constant, the virtual displacement will generally
consist not only in a certain translation, but also in a rotation of
the indicatrices. Analogous considerations may be applied to the
virtual displacement of the electro-magnetic field. The potentials
which together form a covariant tensor of the first order, represent
at each point-instant a trivector multiplied by V' —g, i. e. (in
infinitesimal dimensions) a certain linear three-dimensional extension.

-10 -
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18. In order to find what has to be put for d¢., and dy, ,
if they are to represent a virtual displacement of the fields in
agreement with the geometrical character of the potentials g, and
¢= just discussed, we shall proceed in the following way. First
we sball describe the world by means of somewhat altered coordi-
nates. We introduce the transformation

ap=ap— drm(m =<1, 2, 3, 4),

where dr™ represent the infinitesimal components of the displace-
ment, the squares of which will be neglected, so that in differentiating
a quantity which contains this d7” or is to be muliplied by it, we
need make no difference between partial differentiations with respect
to a, and to ' .

After the transformation of the coordinates we shall deform the
net of coordinates together with the field in such a way that the
surfaces «',, = a,, come at the place where originally were found
the surfaces #, — a, . This is evidently reached by a virtual displa-
cement of the field characterized everywhere by dr™ . In order to
find what we have after the displacement we have only to omit the accents.

For the indicated transformation we have

odrm
0’y

The geometrical character of the g, implies that the form
= (ab) g'ap da'o di'y = X (ab) gap dwg dixp =

odra odr>
= 2 (ab) ga (d.ra’- =(p) 5o dm',,) (dmb — Z(p) 5 T da’y, )
@p

is invariant.
Hence we deduce easily that

dey=—dz', — 2

dmp

Odr» odr»
Qab——-yab"“-’(p).’]yba ; 2(?)901’6 '

Here gq; is the same function of (.z-m—dr"') which g, was of
&,. Therefore
0gas drb dodr» i (—)i”'l‘"
2 g””a ' Jap 0’y

If, omitting the accents, we now express that the new net of
coordinates can be made to coincide with the original one, when

the field is displaced at the same time, we find for the variation at
a definite point-instant:

gab--gab(dﬂm)_‘z( )

a odrw adﬂ’
dgas = — 2(10)3“4 R v i L voul AR (11)

-11 -
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In the same way we find by a virtual displacement of the electro-
magnetic field

a m 6 dry

d?mw—"‘E(P) Pt gps—f (12)

oz,
These variations dg,, and dy, are really covariant tensors. Tensors
formed in an analogous way are mentioned without commentary
in a paper by HiLBERT.?)

14. For the case of a wirtual displacement of the electric field
we have

odrv Odr»

N a N .
d:fmu = — 2 (}7) 2 a’v dry + ,fpn 'a‘r_" + j;np _5;_' - . . (] 3)
<p “m n

We can now easily calculate the variation of HamiLtoN’s integral.
We find

Jd.z de,drydr, 2 (mnp)[é—-( V—gWn g, dw +V/ — g P, o) +

Lo

1 7 m alm
+ dry 3- V-gk, + — (V——q”"‘q/) — —gWn
0z, a:cp
afmn
R (‘/ g F"mf,u") + 3 V___q Fmn 3 .
7Il e 4
Using the equation of contmuny of the electric current
= (m) s (/=g W) = 0
and transforming with
a(/k" a%m
A _ ka lm
0r, = (am) g oz, ’
ajpmn 611 agﬂ
3 (mn)} Fom e + 1 X (almn) Fmn f, gl am:’

we find, introducing the symbol E7, for the variation

a X1
fd'c dz dz,dx E(almp)[ iy —g(—aAWng,—Ady M—E, ora} +

0p, Opn

—_ —gWm| T2 __ TR

+6er1/ gkp+ AV —g (d.zm awp)
") 41/ —ggu 2 ] Coe (19

Ty
For a virtual displacement which is zero at the boundaries of the

1) Davip Hiusert. Die Grundlagen der Physik, I. K. Ges Wiss. Gottingen,
Math. Phys. 1915.

-12 -
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extension, HamiLToN’s principle requires that

' 0 Oifim |
0=y —gb, + 22 (m)p ' —9g lV’"(wp—P _ —lw) +

M a.fb'},

ED - pv—ort ] o)

+ 2 (Ima) 0
5.:',,1 (L/,
These may be called the equations of motion for the field. We
see that the acting external force and the force which the carrier
of the charges exerts on the field') must be opposite to the co-
variant divergency of a tensor multiplied by 1/—¢. The equations
correspond exactly to those which we found for the matter. For that
reason we are justified in considering the tensor E, as the dynamical
tensor of the stresses, momenta and energy in the electro-magnetic
field.

15. For the wvirtunl displacement of the gravitational fjield it is
easy to find the variation of the part of the integral containing
V' —¢g H. The integral being a scalar, we have

fl/—-—g Hdz de dede, :fl/——g’ H'de/ de dz,’ de,

for the transformation of § 13. H being a scalar, we also have
HI == f[ (.tv',_; d d?‘n“).
0(x,...x,) —— odrv
R I 2V NV e prpu o 8 DRSS
l/ 9 ‘/ a( ;. 4) g(’L’} TP) (p) ().L',,

So that after the displacement we find (by omitting the accents)

0
de—g Hdez dz,dv,dx, :fd.r1 dx,de,de, 2 (p) r(————[/——gHtfrP). (16)
v

“p
In what follows we shall use the results of § 8. With
dgad — — 2 (mn) g gb* dgppn, - . . - . (17)
we apply the formulae (44, 44, 11} and find after a short trans-
formation for the total varmation

m

‘—fdf«v1 da,de,de, 2 (almp) [w{t/——q( On H + Tq + Eq ) dri -

mn a anm 1
+drf'g|/~9’c —~—(i/—91’ +V-9E] )+yl/—9.9“‘aq (77 4- Ef )ﬂ (18)

As in the preceding cases HaMiLTON’s princ1ple now teaches us
that, whenever the displacement vanishes at the boundary of the
extension, we must have

1) Per unit of volume.

-13 -
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a aam "
0=1/—gh, + Slalm) |5 (V—9 Z7) — 4 V=gl 72 21 . (19)

where
m™m m m 1
Zy = — (T, + Ep):—;S(b)g’“b(pr—igpr) . . (20)

These might be called the ‘“‘equations of motion” for the gravita-
tional field. Comparing this with our former result, we are induced
to consider the tensor Z, as the dynamical tensor of the stresses,
momenta and energy in the gravitational field. We see that it is just
equal and opposite to those of the matter and of the electro-magnetic
field taken together.

18. By formula (16) we can prove, that the covariant divergency of
Z, must be identically zero. The variation of f V' —q Hdz, dz, dx, dr,

may also be calculated by means of the formulae of § 8. If we
choose the Jr? and their first and second derivatives equal to zero
at the boundary, then according to (16) the variation must vanish.
From 4¢ and d together with (17) and (11) we find

1
de—-g Hdz dz,de dx, — Z(ab) o V-9 (Gai—49aG)da%dr (dx da da ,—

1 0
-_-f da,dr,di de, z(abmu)[é—— ) V -9 9 (Gt} gas G) 07)
Z.n -

0 Oyfkm
— Ora 35‘; (V-99"(Gat — $ 9ab G)) — 4 V/'~g gk 5’;: 9" (Gs —4aw G)]

a

This can only be equal to zero if the coeflicient of J79, i.e.
V' —g¢ times tl*xe covariant divergency of Zy is zero, so that

1 0
E(bklm); E’ W'-g gbm (Gab""'é Jab G)} -_—

Ogkem

S (G — b G)=0 .. (1)
LTa

1
e~ okl
2xi/gg

17. This identity, which implies four connexions between the
components of (Gg— 3% gas ), is important because it shows that
the ten differential equations

Gapy — 4 9. G=0
which determine the gravitational field at those places of our extension
where there is neither matter nor an electro-magnetic field, are not
independent of each other. In such extensions void of matter the
gravitation petentials may therefore be subjected arbitrarily to four

-14 -
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additional connexions. EinsTeiN has shown that this indefiniteness
in the extensions void of matter can never give rise to an indefiniteness
in the observations that can be made with material instraments.

The identity further confirms that in the absence of an external
force the laws of conservation of energy and momentum hold for
the matter. Indeed, from the field equation {6,, which is given in
(20) in another form, together with (21) it is evident that

Ogkn

m

0= S(km)—{§/—9 (Ta + Ed )} — + V—9g 9"1

6

" We may even conclude that no other force can be exerted on the
matter and the electro-magnetic field by any agency if this does
not change the gravitation field at the same time.

18. The second term on the left-hand-side of (21) can be trans-
formed. We may write for it

dglt
Z(Zb)— Vv — ga

According to (4d) this comes to the same as

V—gH 3 3y -gH), K ¥ (W*f/f’
a b amc agib Gmc Oag ag([:l:i ‘

The same may also be expressed as follows

3 (lbed) go [

0 0y —9g H 0 [oy —gH
= (lbed — ib T gl ¢
(fbe )aa:a ‘ 3z, |'s dgte s deq ( ng’i )
Oy —gH
-+ 4 .
%4

If now we put

l/‘“ng,ZE(lbd)glbaV—gH WOV —gH 9 til/-—_gH

9 — g ~ dav/~g1H,
NG I TR

then we have according to the preceding equation and (21), (20):

E(m)a—a-—n/—g(T:'-}—E;")}—}—E(c) 0 —g¢5)=0. . (23)
Zm 0z,

So we find in VV—gz; a complex, the “quasi-divergency” (no
invariant) of which is the opposite of the quasi-divergency of the
dynamical tensor of matter and electro-magnetic field. LoreNTZ )
and De Donper *) have deduced another similar complex

1) L e XXV, p. 478.

%) Ta. oe Donper, Les égquations différentielles du champ gravifique d’EinsTEIN
créé par un champ electromagnétique de MaxwerL-Lorgsrz. Verslagen, Kon. Ac.
Wet. Amsterdam, XXV, p. 150.
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) 3Y/~g oV-gH 3 d/-gH
_gst = Z(lbd) qi5.0 b —da V-9l
V-gs (o) g, ot +€I ad=3~ Odtted dxd Ogited V=g

which is found as easily as 1/ -——ng, by transformation of the second
term of the identity (21).

If we wish we may take the components of one of these complexes
for the stresses, momenta etc. in the gravitation field. Aeccording
to (21) we have however identically :

m a C - a <
= () — a WV—a9 Z4)= = (e 5o (V' —g2q) =2 (c)a;ﬂ/——g 8a)

"l

so that we have also

0 , 0
S (m) o 1V —o(Td + Ea)| +

me a'1"711
Now it is quite a matter of taste and, as to the calculations one
of opportunity, which of the three equations (22), (23) or (24) will
be regarded as the expression of the laws of conservation of energy

—0 Za)=0. . (24)

and of momentum and whether zi, s will be regarded as a dyna-
mical quasi-tensor, or Z, as the dynamical pure tensor of the
gravitation field ; or finally whether it is better not to introduce a
dynamical tensor in the gravitational field at all.

Connexion with LoReNTZ's theory of electrons.

19. Finally we shall shortly show how the deduced formulae
are connected with the classic formulae of the theory of electrons.
For this purpose we must treat the case of constant gravitation
potentials having the values

—1 0 0 0

Ju(=) 0 —1 0 0

0 0 -1 0.

0 0 0 c

To these corresponds the value g = -—c¢* and the values of the
algebraic complements

—1 0 0 0

(=) 0 —1 0 0

0 0 —1 0.

1

0 0 0 5

Our formulae are based on Hamiirox’s principle for the motion
of a point which falls freely. In the case now uander consideration
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it takes the form
2 2
0=d| —mds=d | —mVe — v dt.
1 1
Comparing this with what we were used to write in the old
mechanics of relativity

9
1

0=d | —me V12" dt,

1
we see that in our formulae the function of LaGrANGE has been
taken ¢ times smaller. Correspondingly definite forces, energy,
stresses etc. will have to be represented by numbers which are ¢
times smaller than they were formerly.

If for instance the unit of electric charge is left as it is defined
in the theory of electrons (in these units an electron has e.g. a charge
-~ 4w > 4,65 > 10-19) and if at the same time the unit of the
intensity of the electric field ¢ and that of the magnetic field /. are
left unchanged, we shall have to write for the force per unit of volume

1 1
f=o|—d+ ~[v.].
[ 4

If we wish our equations (3) for the electric field

=) Bi(l/vg Fab)y=/'—g We,
zp

in which the components of the current V'—¢g W, are v, ovy, 0vs,
o, to agree with the well known relations

0h oh, i)
céy—z -ca—z'/—a—tdx:gvl, ete.,
the compounents of the contravariant field tensor mnst be
1
0 h: —bhy — " dy
1
Cc
Fab(=)

1
}lq "‘"lx O —_ dz
1

1 1 1
~d, —-d, —d; O,
[1 [+ [+
Hence it follows for the components of our covariant field tensor
0 ke —h, cdy
E(ab)g,,}, gqu“b :f;vq (=) —h- 0 ha ¢ dy
hy —he O cd,
'—-L‘d, “‘Gdy ‘_—“Zz 0 .
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We know that f,,q_—:g—w—q——%. Hence it is evident how the
zp Oz
scalar potential ¢ and the vector potential a of the theory of elec-
trons are connected with our potentials:
1 4y P P (=) ar ay oz —ap.

For the components of the force acting on the charge per unit

of volume we found in our formula (10):
—K=—V—gb=22m V' —g W" fon.

To make this agree with the above, we must, with a view to the

choice of units, give the value d==1/c* to the coefficient 2. The

formula thus becomes
1
— V—gk :(—)—; Z(m) V' —g W™ fum.

It keeps this form when we pass to a system of coordinates
in which the unit of time is ¢ times smaller and in which the
velocity of light becomes equal to 1 (¢ remains 3.10'%). 1t may be
remarked in passing that in the papers of Lorenrtz') and TresLING
the factor 1/c* is failing. It is thus seen that they have silently used
a unit of charge ¢ times larger than the usual one.

The scalar for the field becomes

M= — 15 (ab) Fob fy — L (&* — 1Y),

1
and the principal function 24/ —gM :-_é—(d’—h'). In agreement with
c
what has been said at the beginning of this paragraph this expression
is ¢ times smaller than the one we were accustomed to.

The stresses, the negative momenta, the energy and the energy-
currents become

Vg En =—-AZ(b) V/—g Fm fop — Y/ —gda M,

1 1 1 1

= @hE —k 4 2di—d%), — (hahy+ dedy), ~ (hzhs + duds), — = (dghe—d:hy),
1 1 1 1

— (hohy+dedy), ~ (2hy- h* + 2d5-d?), ~ (hgh: +dyds), — = (dehe—dhs),
1 1 1 s 2 1

‘;; (hxhz+ d:rdz)v :(hyhz‘{_dydz)a ;z—c'(zhz'h + 2d "d )1 - "':;‘ (dzhy—‘dyhx)7
1

(d,hr—dzhy), (dsho—dihz), (dshy—dyh2), o B+ d).

We see that all these components become ¢ times smaller than
formerly, as has been remarked already in the beginning-of this
paragraph. ,

1) For the comparison with the papers of LORENTZ it may be remarked that
V' —g Fab = dab and fat = $ag5. Further that V' —gWn = wpn,
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