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3. Dur'jng e\'aporation in vaclmm silver develops a deposil against 
tbe bllib. With i'pcreasing thickness the colonr of this deposit passes 
through greenish-yellow, orange, red, violet and bllle. 

4. Tbe red, tbe violet, and tbe blne films are distinctly hetero­
geneous. Tbey consist of a nehvork of vel'y small ultramicrons, The 
yellow deposit shows a bardly perceptible heterogeneousness and 
approaches in structure t be amorphous-vitreous state. 

5. Tbe deposits are not proof against the inflllence of moist air. 
Tbe coloul' changes in the dir'ection yellow -+ red -+ blne and the 
stl'llcture becomes, coarser. Heating likewise canses a coarsening' of 
structUl'e. 

6. Gold forms - in a similar way as silver - coloured depo­
sits, wbicb are 1lltramicl'oscopically heterogeneous. 

7. Tungsten forms a black deposit, ultramicroscopic.ally it is 
not soluble. 

8. Deposits obtained by cathode-atomizing consist as a rllle of 
coarser particles tban the evaporation-deposits. 

De(lt, Anorg. and Physic-chemical Eindhoven, Lab. of Philips' 
Lahoratory of the "Technische "Carbon Filament Lamps" 
Hoogeschool" (Tec1mical Univel'sity). Wor.b Ltd. 

Physic8. - "Tltevil'lual displacements of the electl'o-magnetic and 
of the gravitationalfield in applicatious ofHAMIJ.ToN's variation 
pl'inciple",By Dl'. A. D. FOKKER. (Commllnicated by Prof.LoRENTZ). 

(Communicated in tbe meeting of January 27, 1917.) 

In some papel's on EINSTKIN'S theory of gravitation Prof. LORENTZ 1) 

recently applied HAMJLTON'S principle to the dedllction of the principal 
equations of th is theory from one single \'ariation law. Starting from 
an invariant equation he was able to reach conclusions wbich again 
were represented by invariant equations. It was however not 
necessary (0 keep tbe equations Înval'Îant during fbe whole deduction. 
On the contrary, an artilice, consisting in tbe choice of a specially 
defined virtllal displacement (witbont taking into consideration the 
conditions of invariancy), proved very usefu!' 

Now it is possible lO let the invariancy exist cont.inllally dlll'Îng 

1) H. A. LOREIITZ, On HAM1LTOli'S principle in EUlrTElIiS theory of gravitation, 
ProceedinY8, Kon. Ak. v. Wet. Amsleraam, XIX, p. 751. Over EINSTEINS theorie 
der zwaartekracht, I, 11, 111, Verslagen, Kon. Ak. v. Wet. XXIV, p. 1389, 1759, 
XXV, p. 468. 
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the deductions; and that in a way whieh fully appreciates the fact that 
the tensor of Ihe ten gl'a\'itation potentials and the tensor of the four 
electrodynaOlical potentials, beingdirected quantities, have a geometrical 
charac te I' (; 12 etc.), Moreover the tensors of sh'ess, momentum 
and energy appeal' in a new way from the val'Îation calculation. 

In the following paragraphs this wi\l be shown. Thanks to the 
cited papers and to some olbers, a short indication will of ten suffiee. 

The va,riation principle, 

1. For a material pal·ticle, falling under the influence of a force, 
HAMfLTON'S principle takes the form: 

2 2 

0= oJ - m ds + J~(P)kl' orP ds, 

1 1 

where rn is the coefficient of mass of the particle, ds tbe are-Jength 
of tbe world-Jine run by the particle in the world referred 10 a system 
of four space-time parameters Xp x2 • x" ,Tt' Furthel' kl,(p =1, 2, 3, 4) 
l'epresents !he four-vector of the force acting on the particie, whiJe 
('ri' (po = 1, 2,3,4) denote the components of Ihe \'il,tual displacements. 
In tbe val'iation of the motion there corresponds to each point­
instant xi,; (m = 1, 2,3,4) of the unval'ied palh a point-instant 
/lJ,,, + 010111 (m = 1, 2, 3,4) of the \'aried path. The final points of the 
path remain um'aried. As Ilsllally we assume 

ds' = ~(ab) gab d.'l:a d:eu, 

where Hab (a, b = 1,2,3,4, gab = .qba) are tbe gravitation potentials. 
If the particle has an eleclric charge, so thaI it is intluenced by 

an electro-magnet.ic field this may be taken into eonsideration by 
writing 

2 2 

0= oj< - mds + l~(l) e'fld/lJl) + J ~(p) lep Orpds. 

1 1 

Here <PI (I = 1, 2,3,4) represent the electro-dynamic potentiais, 
four quantities cbanging from point 10 point and delermining the 
field. 1 is a constant determined by t.he choice of tbe units of mass 
and charge in which mand e are expressed. Now kp no longer 
contains the eleetric forces. 

I. Applied to a. limited extension of the fOllroodimensional world 
HAMILTON'S principle is represented by the equation: 
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0= ÓJL dir! dirs d.t~. dx. + J ;Stl') ~l drp dZ I d:r, dx. d.-c.. • (1) 

Here ~l denotes the ptA component of the force acting on the 
system per unit of ,'olume. V -fl d'r! dX i dXa dr. being a scalar (if 
,q is the determinant of the Ha"). K IV -g and I10t K must be a 
covariant "eclor, which fmther wil\ be denoled by Ic. For the same 
reason not L, bilt L/l/ -g must be a scalar, if Ihe variation law 
shaH be expressed inval·ialltly. We snppose the fnnction of LAGRANGE 
L to consist of different separale parls for the gravitational fielci, 
for the matter, for the electro-magnetic field and for the electric 
con vection-current. 

Structure of t!te funcûon of LAGRANGE. 

3. The cOlltribntion of the .g/'!1vitatiol1al .field to L will be denoted 
hy J/-g H. It wil! be known, that fol' H must be taken (}J2x, whel'e 
() is a scalar indicating the cun'ature of the field figure and x the 
gravitalion constant. By means of RIEMANN'S symbol, G may be 
expl'essed as follows: 

G = ..l:(im) gim Gim, 

Gim = ...l:(kl) gkl (ik, Zw), 

(ik, lm) = i (gim,kl + gkl,im - gil,km - gkm,il) + 

The quantities gab (a, b = 1, 2, 3,4) are the algebraic complements 
of the gab; !Jim,kl is written for the second derivative of gim witb 
respect 10 d'k and XI; and CHRlSTOFFEl:S symbols mean: 

[z:/ ] = t (gia,m + gma,i - gi1ll,a ). 

Further the notation g:b and !l~~ fol' tbe first, respectively' serond 
derÎ\'ative of gab with respect 10 Xc and Xd will be used from time 
to time. 

4. The conlribution of tbe matter to L wiU be denoted by 
V'-,q R. In Ol"der to find ont w hat bas to be put for V-fI R we 
must invesligate how tbe element - m ds, which occnrs in the 
variation law for tbe motion of a single matertal pal'tiele, ean 
be exlended to V -g R cl:c1dic,d,c,d.'C. fol' the matter we are con si­
del"ing. LORENTZ bas indicaled I) what V -g R be<'Olnes for a con-

I) I. c. XIX p. 754, XXV, p. 47&. 
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tinuously varying current of incoherent materia! points or for a more 
general case in whieh there are acting certain moleeular force8 
between the points. 

For an ideal gas V-g R will be lhe sum of the elements of the 
world-lines described per unit of time by the molecules present in 
a unit of volume, eaclt element multiplied by - m, if m is t.he 
mass of the molecule that describes the element. 

Now it is known· that for a molecule with the mass In the 
momentum is given by 

d3:b 
ia = - m:E (IJ) gub­

ds 

for a = 1,2,3, and that the energy is - i •. For an ideal gas the 
expressions for the stresses, the momentum and the energy per nnit 
of volume and the energy-current can be written down dil'ectly. 
Without entering into details by introdueing a distribution funclion 
1 only give the table of notalions 

V-.'l T,l V-g TI' V-g TI' 

V-gT,l V-gTI' V-gT,' 

V-gT,I V-gT,' V-gT.' 

V-g T 4 1 V-gT/ V-gT/ 

V-g T1
4 XxXyXz-Ix 

V-g T I
4 Yx Yy Yz-Iy 

(2) 
V -g T a4 (=) Zx Zy Zz-lz 

V- 9 T: Sx S!J SzE. 

Here the coordinates .x, y, zand tI) are supposed to be used. 1';: 
is a mixed tensor. lt may be called tbe dynamical tensor. It is not 
symmetrieal. The covariant tensor 

Tab =:E (m) gmb T:;, 
on the contrary is symmetrieal. 

It may he remarked that the sum of the diagonal components is 
equaJ to 

:l;(a) V-g 1-: = - V-gR. 

5. The contribution to L of the electl'Ïc curl'ent and the electro­
magnet.ic field may be divided into two parts, Î. V-g S and À V-g M. 
À being the same constallt as in ~ 1. 

For V -g S ck l dx,dx.d3:4 we take the extension of the element 
:E (I) e 'P,drl that occun-oo in the variation law (or a single charged 
particle. If the extension is etfected in sueb a way th at we pass to 
a continuous electric convection-current, we find 

1) Xz, Yx, ZZ are the forces. exerted in the direction of X, Y, or Z by the sur 
rotmdings of a unit cube, on a face for whicb the outwardly directed normal has 
tbe direction of the axis indicated by the index. 
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V-gS= ~(m)V-g WmfPm. 

V -g Wm (m = 1, 2, 3,4) denotes what is usually indieated by 
(W.r, f!v.~, f!vz aud Q. Here, as in other places, the factor V -!l 
oecurs OOcause we take the different quantities per units of time 
and volume, expl'essed in the coordinates and not in natural units. 
It is to he notedthal at a change of the flab, V -.f! Wm remainsunchanged, 
This cOI'responds to the fact that for a single cllarged parlicle lhe 
tel'lU ::E (m) erpmf.b:m is independent of the gra\itation potentiaIs, 

For the electro-magnetic field lhe scalar may be constructed in 
lbe following way. 1"1'010 the potentials tbe covariant field-intensities 
are derived: 

drpq d(Pp 
f pq =----

o.:tl' d.:tq• 

From these we form .. he contravariant inlensities of the field: 

pab = ::E (mn)g"m g1m fmn' 

Finally we fOl'm the sealar: 

M = - t ::E (abmn) gum gbll fab fmn , 

= - t::E (ab) F,ófab 

Further it may he remarked here, that 
dM dJ! 
~ = - i ]?ab, and-::. = _. i ~ (bn) gbn fabfnw' 
IJfab uganl 

ScHWARZSCHlJ.D 1) has alrearly used the integl'and V-. 9 S in the 
variation law. Recently TKESUNG ') has communicated to the Academy 
of Seiences how Ibis term may '00 used in HUIlT,TON'S principle. 

Except as to the sign, the term V-gM corresponds to tlle term 
llsed by LORF..NTZ, who writes "'ab for wbat has been called here 
V _gFab and "'ab for lab. 

Vm'iations Ol t!te field quantities. 

6. In the first place we sllall t'onsider t~e variation whic.h is 
obtained by varying Ihe electric .field in sucb a way, th at everywhere 
tbe pOIentials f/'m are changed to an amount tJIlm. 

The ()(Im (m = 1, 2, 3, 4) will be infinitesimal continuous functions 
of the coordinates. 

I) K. SCHW A RZl:!CHILD, Zur Elekirodynamik. I. K. Ges. Wiss. GOttingen, 
Math. phys. 1903. 

2) J. TRESLING. The equatio'll8 of the theory of electron8 in a gratlitation 
field of EINSTEIN deduced from a vari4tion principle. The principal ftcnction 
of the motion of the electro128. These Procee,djnss. XIX p. Sil!. 
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Tbe variation becomes I) : 

dJL €Lv} d:c, d.E, d3J. = 1 d3J 1 d.v, d3J. d3J. ~ (mq) [a~q (V -g Fmq drpm) + 

+ drl'm 1 v -g Wm - a!q (V -g Fmq)J 

If at the boundaries of the four-dimensional extension the JlfJm 

are chosen equal to 0, while within this extensioJl they bave arbitrary 
values, then HAMll.TON'S principle demands that 

a 
V-g Wm=~(q)-(V-gFlllq), (m=l, 2, 3, 4) . (3) 

a3Jq 

These are the four equations of tlte field in an invariant form. 

7. The second "al'iation to be considered is a variation of tbe 
gravitational field. At each point-instant of the exfension it may be 
determined by the changes dgab of the quantities ,gab. 

If we have to do with an ideal gas, we may deduce directly tbat 
now the variation of 1/ -g R is: 

d (V -g R) = ~ (abm) i V -(J glRa T~ dgab ') 

Taking into consideration that, 

d V -g = - ~ (ab) t V - g gab dgab, 

. • (4a) 

dM = - ~ (abdn) i geI" j~d Ibn dgab = - i r. (abcàmn) gam gcm geIn lcd Ibn dgab , 

dM = - ~ (abmn) i galll Fmn Ibn dgab , 

we easiJy find for lhe variation of V -g J[ 

).. d (V -g Jf) = ~ (abm) i V -g gma Eb ógab 

where we have put 

E~ = -;.~ (1'1) pllln }bn-).db M. 

. . • (4b) 

db is a mixed tensor, the components of which are 1 Ol' 0 
according as m = b or m =\= b. We shal1 al80 introduce tbe notation 
Eab = ~(m) gam Eb, 

We shall see fUl'ther on tbat V -g Ebl1 
are the stresses etc. in 

tbe electro-magnetic field in t,he same way as V-gT'b are Ihose in 
tbe matter. 

For the above mentioned reason tbe variation of V -g S will 
be zero. 

. . ddrl'q adq>m 
1) II should he kept In mmd that dlnq = -À- - -- and that Fmq = - F glll 

V3Jm d3Jq 

Comp. for the deduction TRESLING, l.c. 
I) Comp. LOl\lHTZ, l.c. XXV, p. 476, form. (63). 

62 
Proceedinp Royal Acad. Amsterdam. Vol. XIX. 
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If H = Gi2x, if can be pl'üved 1) thaI 

al.'] __ 1 _. ~(V~~dfl) + __ 2~~_._(~'--=-gd~~)=_~ Gab (4d) 
dg'1Ó V -[1 à.rc dg~b V - 9 d.ccd.fd a!l~; 2" 

SlImmarizing and choosing the variations rfgab arbilral'ily with 
only tbis condilion that both thcJ and their first derivatives vaflish 
at the bOlludal'ies of the extensioll, HAMILTON'S I'rineiple requires that 

0= J d:/: 1 (he, d.c, d'/'4 ~ (abm) [~i V -[,gam (l'r + E'/,') + 

+ _!- V -g (fiab - ~ !lau G) I dg'lb] , (5) 
2x \ 

Hence we tiud the well-known eq1latÎous f01' t!te gral'itatiollalfield 

Gab - ~ gab G = - ,,(Tab + Eau), , (6) 

The origin of the second term of tlle left haJld side is apparent; 
it appèars by Ihe varialion of J/ ~H in fhe prineipal function. 

Vil'tual displa('ement of t!te matte/'. 

9. The third variation we shall considel' will oe caused by giving 
to the molecules of OUI' gas virtual (1I:'1placements. We do 1I0t choose 
tllese dlsplacemenls difrcrellt. fol' caeh individllal molecule, but to all 
molecules whieh at a eerlain moment are present in a definite element 
of volume we gi\'e the same virtual displacement, chal'aetcl'ized by 
the iIlfinÏlesimal vector órll (eomp. ~ 1), which may be an arbitl'ary 
fllnction of the coordinates. The val'Ïation gives dir'ectly 

JdX) doT% doT. d'''4 :2 (almp) [ä~m 1 V - 9 (- d~n R - 1~) ór" t + 

+ órl' ) V --9 kJ' + d:m (V -9 1;1) - i V --[/ gal t:m Tin tJ (7) 

I) Comp. LORENTZ, l.C. XXV, p. 472. 
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If the drp are zero at the bOl1ndary, then HAMII.TON'S principle 
demands that the integral always mnishes, so that 

V -g kp + :2 (aml) ~ ~ a (V - 9 '1';:1 ) - i V -g gal O;am Ti I = 0 . (8) 
t Vi!:m vrcp \ 

These are the eqaations of motton of the matter in an invariant 

form. lep is a covariant vector and the form bet ween brackets is 
V -g times the covariant divergeney of the mixed tensor r;n. 

10. Consider now the lJirtual va1'iation of the elect1'ic CUl'rent. 
1f eaeh eleetric partiele undel'goes a displacement Ó1'I', then the 
variation of the intensity of the eurrent at a definite point-instant, is 

a 
d (V-g Wm) =:S (a) ;;-(V _gWa dt"n - V-g Wm ór"), 1) 

UllJa 

. (9) 

If dtl' vanishes at tbe bOllndary of OUl' extension, we must haye 
therefore 

(
arpm Orf'p ) 

J,/-gkp + :2(m) V-g lVIII ----- =0. a.xl, a,vIII 
(10) 

This may be called the "equatioll of motion" fol' the electric 
current. The seeoud term may be said to represent the force exerted 
by the eleclric field on the carrier of the charge. 

Virtual displacements of the Jtelds, 

11. Befol'e ealeulating the val'Îation whieh is obtailled by a 
vil,tual displacemellt of the electro-magnetic field Ol' of the gl'ayitational 
field, we have to state what wiII be meant by this. 

Doubllessly we ean say: to gi"e a vil,tual displacement to the 
eleett'o-magnetic field means to assume that the fOUl' potentials whieh 
originally OCCUl' at the point-instant .xp (p = 1, 2,3,4) will be found 
aftel' the displacement at the point-in'ltant .vp + drp Cp = 1, 2, 3,4). 
From this follows that tbere wiJl be at one and tbe same point­
instant a variation tJ'fm 

. dcpm 
ór{i1ll = - :2(p) -a - drP • 

• 1:p 

J) Comp. LORENTZ, l.c, XXIII, p. 1077. 
62* 
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lt is, however, immediately evident that dfrm is no eoval'iant vector 
thollgh ({mis Olie, so that we should compare with Hum.TON's 
invariant int.egral anolher, whieh is no longer inval'iant. 

The same dif'ficully arises if ti. virtual displacement of the gravi­
tational field is defined as tue shift of a set of vallles gab from the 
point-instant xI' to another next to it .'rl' + ér.'. By 80 doing we do 
not obtain a eovariant variation 

12. A closer examination of the geometrical meaning of the 
tensor components ,gab . teaebes US tbat in virtue of the equation 
ft = ~(ab) gab d.t'a d;r;b they form together an in!initesimal quadralie 
thl'ee-dimensional extension, the "indicatrix" around each point-instant 
of the field Iigul'e. 

The whole gl'avitational tield m~J be said to be represented b." the 
totality of tbe indicatrices descl'Ïbed arollnd Ihe different point­
instants, in the same waJ as in elementary considerations an elec­
trie field is described lIy FARADAY'S lines of force, A vil'tllal displa­
cement of the gra\'italion field must thel'efol'e mean a displacement 
of all tbese indicatl'ices, in slIeh a way, that it does not distUl'b fbe 
configllration and intel'sections of the illdicatri(~es. 

Let us consider two neighbouring indicatrices hand j, which 
inlersect in the figlll'e i. We may give the displacements t.() the 
indieah'ix ft and the indicatrix j separately and also to fhe figure i, 
'Ve Ihen èemund that the shifted figure i shall again he the inter­
se('tion of tbe shifted indieatrices lt' and j'. 

This camlOt be managed by the variation specified in the preced­
ing paragraph, Thel'e all point-instants of au indicatrix were 
supposed to undel"go OM and the same virtl1al displacement, aqual 
fo fIJat whieh belongs 10 the centre. Now on the contrary we requiro;, 
that the virtual displacements of the point-instants of au indicatrix 
be defined by Ihe "allIes of órl ' at the different point-instants them­
selves. 

If the órP are not constant, the virtual displacement will geuerally 
consist not only in a certain translation, but also in a rotation of 
the indicatriees. Analogous considerations may he applied to lhe 
virtual displacement of the electro-magnetic field. The potentials 
whieh together form a covariant tensor of the first order, repreèent 
at each point-inslant a tri vector multiplied by V -g, i. e, (in 
infinitesimal dimensions) a cerlain linear three-dimensioual exteusion. 



- 11 -

977 

13. In order 10 find what has to be put for ogab and óf/'m, 

iC they are to represent a virtual displacement of the fields in 
agreement with tbe geornetrical character of the potentials gaé and 
tfm just discus:3ed, we shall proceed in the following wa)'. First 
we sball de:3cribe the world by rneans of somewhat altered rOOl'di­
nates. 'Ve introduce the transformation 

,Vm = o;'m - (f1'1II (m = 1, 2, 3,4), 

where M'JI represent the infinitesirnal components of the displace­
ment, the squRl'es of which wiIl be neglected, so that in differentiating 
a quantity which contains this ór'''' or is fo be multiplied by it, we 
need make no difference between partial differentiations wit.h respect 
to 0;1/1 and to o;'m • 

Aftel' the tl'ansformation of the coordinates we shall deform the 
net of coordinates together with the field in sueh a way th at the 
surfaces .v'm = am come at the place where originally we re found 
the surfaces 0;", = a lll • This is evidently l'eached by a Vil'tllal displa­
cement of the field characterized evel'y where by órlll

• In order to 
find what we have aftel' tbe displacement we have only to omit the aecents. 

For thE' indicated transformation we have 

ddl'm 
d.vm = ddJ'", - ;Elp) ~do;'p' 

u.'lIp 

The geometrieal charaeter of the gab implies th at the form 

:E (ab) g'ab do;'a do;'b = :E (ab) g'lb do;a dmb = 
= :E (ab) gab (dma'- ~ (p) :~a d.'lI'p) (dW'b - };(p) :::: do;'j; ) 

is invariant. 
Rence we deduce easily that 

iMrp MrP 
g' ab = gab - }; (p) 9pb -=>T - ;E (p) gap -=>T' 

um a U3J b 

Here gab is the same function of (x' -dr"') whieh gab was of 
111 

.'Cm. Therefore 

, ,,.... 1 dgab. OÓr/) oórP t 
!/ab=gab (.lJ m) -..l: (p) ~drP + gpb;;-;- + gapî' . 

uo;p uo; a u.'lI IJ 

If. omitting the aecents, we now express that. the new net of 
coordinates can be made to coincide with the original one, when 
the field is displaeed at the same time, we find ror the variation at 
a definit.e point-instant: 

l
Ogab orl'rP MrP t 

Ó!lab = - ~ (P) ~ ÓrP + gpb ~ + gap ~ • 
U3Jp u~a u3J iJ 

. (tI) 
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In the same way we find by a virtual displacement of the electt·o­
magnetic field 

(12) 

Tbese variations d,qab and ór{1I1 are really covariant tensors. Tensors 
formed in an analogol1s way are mentioned without commentary 
in a paper by HILBERT. 1

) 

14. For the case of a virtual displacement of t!te electric field 
we have 

. : af, .. " . aórl' aórP t 
~tmll = - ~ (p) -a- drp + I"" -a - + fmp -;;- . • 

lCp .rm U·'ttl 
(13) 

We can now easiJy calculate the variation of HAMII,TON'S illtegral. 
We find 

À. '~a:1 d.r, d.r, d.".:F (m1ip) [-aa (- V -[1 ~VI1l ({pór/, + V - 9 pm"hm &1') + J 'Cm 

~ 
1 à ar{1I1 + ór/' ~ V-gkfJ + ~ (J/-gwm'l,.)-V-gWm_a 
,. va:m :Cp 

a arm.,t] - --- (V -g Fllln /1',,) + t V-g pmTl -' - . 
d:Cm o.r}l 

Using the equation of continuity of the electric CUl'rent 
a 

;S (m) - (V-g lf"ill) = 0 a.zm 

and transforming with 

• (14) 

For a virtual displacement which is zero at the boundal'Ïes of the 

1) DAVID HILBERT. Die Grundlagen der Ph'!Jsik, J. K. Ges. WiS3. Göttingen, 
Math. Phys. 1915. 
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extension, HAMILTON'S principle requil'es that 

., (arl'p arf'm) 
0= V-gkp + À 2S ('11) V-g Win - - -- + a.v III a xI' 

. a a' 
, ...... (l ») (V E m

) 1 V {fl ga. In E m
, t ( " 5) -t- - ma - -g I' - 2" -g 9 -- I \ 

a"'1Il am!, 
These may be called the equations oj motion jol' fIle field. We 

see that the acting extemal force and the force which the carrier 
of the charges exerts on the field I) must be opposite to the co­
val'iant divergency of a tensor multiplied by V -go The equations 
correspond exactly to those which we found for the matter. Fm that 
reason we at'e jnstified in eonsidering tbe tensor E;' as the dynmnical 
tensor of the stl'esses, momenta and enel~qy in the electro-magnetic 
field. 

15. For the virtwrl rlisplfzcenwzt of the gravitatiollal field it is 
easy to find the variation of the IHtrt of the integl'al containing 
f/ --g H. The integral being a scala!', we have 

J V -9 II d.v 1di'c 2 die adiC 4 = J V -g' H' d"v/ die,' die 3 ' d'1':,. 

for the transformation of § 13. H being a scalar, we also hu\'e 

H' = El (x'l' - Órl'). 

, a (.v 1 • ... v ) V-- I 1 MrJi t 
V-g = V-g --, -,-= -g(.vl'-ór/J) 1-2 (p) - , 

à(a;l' .x.) a ,v!, 

80 that aftel' the displacement we find (by omitting the accents) 

óJ V-g H d.v l dX 2 d''V a dx. fdX! die, dx. d,c. 2 (p) a~!' (-V -gHórl') , (16) 

In what follows we shall use the results of § 8, With 

ógab = -- 2 (mn) gmn gbll óglnn , (17) 

we apply the fOl'mulae (411, 46, 11; and find aftel' a short trans­
formation fOl' the total varlation 

f [ a lil· ,In lil I 

di~1 d.'C, die. d.1I. 2 (almp) ~ IV -g (-da El + 1 a + Ea ) firn I T 
_\Ja: 111 

+drl' ~V -gkl'- ~ a (V_gl}~l + V -gE~) + i-V_ggat
a: am 

(T't ., -Ei») lJ (18) l ~In ~~_ 
As in the preceding cases HAJ\HLTON'S principle now teaches us 

that, whenevel' the displacement vanishes at the boundary of the 
extension, we must have 

1) Per unit of volume, 



- 14 -

980 

\ O,.,m Ogam m t 
O=V-gkp+~(alm)ld.1:m (V-ghp ) - i V-ggal d/e

p 
Zl , . (19) 

wbere 

111 111 mIG Zp = - (Tp + Ep) = - ~ (b)gmb(Gpb - i gpb ) 
X 

. (20) 

These migbt be ealled tbe "equations olmotion" lor the gravita­
tional.field. Comparing th is with our former result, we are indueed 
10 eonsider the tensor Z; as the dynamical tensor ol tl,e stre.l;ses, 
momenta and energy in the gravitational .field. We see that it is just 
equal and opposite to those of the matter and of the electro-magnetie 
field taken together. 

16. By formula (16) we can prove, that the covariant dive1:qenc.71 ol 

Z;n must be identically zel·o. The variation of J V-g H dX I dx, d,x. (lx. 

may a160 be caleulated by means of the formulae of § 8. If we 
ehoose the OrT> and their tirst and second del'i\'atives equal to zero 
at the boundary, then according to (16) tbe \'ariation must vanish. 
From 4c and d together witb (17) and (11) we find 

dj V -g H dfCld/e,drc.dfC. = ~(ab1;x V-g (Gab-ifJabG)dgabdrc ld.1!,dor.d/e.= 

-1dfCldxtd.'C,dfC. : ~(abmkl)[O:m ) V-g g"l11 (Gab-:i gab G) dr<l)t -

- ora '~(V_ggbm(Gab - habG») - i V-ggkl O!lkm glllb(GU,-hI6 G)] t 
I d/em o.xa ' 

This can only be equal to zero if tbe coeffieient of ~1.a, i.e. 
V-g times tl~e covariant divergency of Z~' is zero, so that 

1 0 
~(bklm)- ~IV-g gbm(Gab-i gab G)l-

X v/em 

1 ogkm 
- - V-g gkl __ gmb (Gtb - i glb G) 0 .. (21) 

2x àfCa 

17. This identity, which implies four connexions bet ween the 
eomponents of (Gab-! gab G), is important because it shows that 
the ten differential equations 

Gab - i gab G = 0 

which determine the gravitational field at those places of our extension 
where tbere is neither matter nor an electro-magnetic field, are not 
independent of each other. In su eb extensions void of matter fhe 
gravitation petentials may therefore be subjected arbitrarily to four 
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additional connexions. EINSTEIN has shown that this indefiniteness 
in the ex.tenRions void of matter can never give rise to an indefiniteness 
in the observations thai can be made with material instrnments. 

The identity further confirms that in the absence of an external 
force the laws of conservation of energy and momentum hold for 
the matter. Indeed, from the fie1d equation (6j, which is given in 
(20) in aDother form, together with (21) it is evident that 

à m m àgkm rr1fI 1/1 

o = ~(klm) à'~m IV -g (Ta + Ea )1- t V -g gkl àX
a 

(1{ +El ).(22) 

- We may even conclude that no other force can be exerted on the 
matter and the electro-magnetic field by any agency if this does 
not change the gravitation field at the same time. 

18. The second term on the left- hand-side of (21) can be trans­
formed. We may wl'ite for it 

1 àg1b 
~(lb)- V - 9 ~ (Glb - i glb G). 

2" U'~a 

According to (4d) this comes io the same as 

~(lbcd)9~[à V-gH _~ (à V-9H)+ à
2 

(à V-9H)]. 
àg/IJ à.'l:c àg~b à.'l:c a.~d àg;~ 

The same mayalso be ex.pressed as follows ' 

à à 1 à V -g H à (à V -(/ H) ~(lbcd)- (V-g H) - - glb . _ glb _ u + 
d.va àtl1c • a àg1b a àtl1d àqlb 

, c •. cd 

If now we put 

lb à V-g Hl + g da --ag-lb- \ . 
• cd 

V- ZC =~(lbJ\ Ib
àV- gH+ Ib àV- gH _ lb~ àV-gH tlV-ll 

ga"'" 9 a rl~lb 9 ad à lb ga à.v à Lb a g, 
v:!c 9cd d gcd 

then we have according to the preceding equatioD and (21), (20): 

à 'n..,.m à 
~(m)-~ -IV-g(Ta +.r..a )1+ ~(ch-(V-gz~)= O. (23) 

Utl1m UtI1c 

80 we find in V -g z~ a complex, the "qnasi-divergency" (no 
invariant) of which is the opposite of the quasi-divergency of the 
dynamical tensor of matter and electro-magnetic field. LORENTZ 1; 
and DE DONDER ') have deduced another similar complex 

1) I. c. XXV, p. 473. 
2) Ta. DE DONDER, Les équations différentielles du champ gravifique d'EINSTEIN 

créi par un champ electromagnétique de MUWELL·LoRENTZ. Verslagen, Kon. Ac. 
Wet. Amsterdam, XXV, p. 150. 
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c av -gH av -gIl a av- ,gH c 
V-gsa= 2(lbd) !l/b,a a +9Ib,adT---9lb,fl al' -a---Óa V-gH, 

glb,c [flb,cd • d glb,cd 

whieh is found as easilJ as 1/ -.qz~ oy transformation of the second 
term of the identity (21). 

If we ,vish we may take the components of one of these complexes 
fol' the stl'e&ses, momenta etc. in the gra\'Îlation field. According 
to (21) we have however identically 

a a a 
2 (111) - (v' -g Z~I) == 2 (c)-- (V -g z~) =: ::i (c) - (V -9 8~) , a.xm a.xc a.xc 

so that we have also 

al ,/11 ..,lilt a nln 
2(m)~- V-g(1 a +1!-a) +~(V-gE-a)=O. 

vam v.xm 
(24) 

Now it is quite a matter of taste and, as 10 the calclllations one 
of opportunity. whiclt of !tie ttll'ee equations (22), (23) Ol' (24) wiJl 
be I'egarded as the expression of the la\Vs of cOJlservation ot enel'gy 

and of momentnm and whether z~, s~ wiJl lJe regarcled as a dyna­

mical quasi-tensor, or Z~' as the dynamical pure tensor of the 
gl'avitatioTl field; or finally whether it is bettel' not to intl'oduce a 
dynamical tensol' in the gl'a \'Î tational field at all. 

Conne.rion witlt LORENTZ'S tlteory of electrowJ. 

19. Finally we :,;hall shortly show how the deduced formuJae 
are connected wilh the classic formulae of the tbeol')' of electrons. 
For Ihis purpose we mllst !reat the case of constant gravitalion 
potentials having the values 

-1 0 0 0 

!lab (=) 0 -1 0 0 
0 0 -1 O. 
0 0 0 ct 

To these cOI'l'esponds the value g = -- Cl and the ,'alues of the 
aJgebraic complements 

-1 0 0 0 
gab (=) 0 -1 0 0 

0 0 -1 o . 
1 

0 0 0 
ct 

Our formulae are based on HAMILTON'S principle for the motion 
of a point which falls ft'eely. In tlJe ease now under consideration 
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it takes the form 
2 2 

O=dJ -mds=d'J -mVc'-v·dt. 

1 1 

Comparing this with wllat we were used to write In the old 
mechanics of relati vit)' 

2 

O=d'J -mc' Vl-v'jc' dt, 

1 

we see that in OUl' formlllae the fllnction of LAGRANGE has been 
taken c times smaller. COl'l'espondingly definite fOl'ces, energy, 
stresses etc. wiJl have to be represented by numbers which are c 
times smaller than tlle} were fOI'merly. 

If for instance the unit of electric charge is left as it is defined 
in the theory of electrons (in these units an electron has e.g. a charge 
--~/ 4Jr X 4,65 >< 10-10 ), and if at the same time the unit of the 
intensity of the electric field d and that of the magnetic field !t are 
left unchanged, we shall have to write for the force per unit of volume 

f = (! L~ d + ~ [v • /t] I. I c c' \ 
If we wish our equations (3) for the electric field 

:2(b)~(V-gFab)=V_g Wa, 
d.xb 

in which the components of tbe current t/ -g lVa are ('Vx , QV!J, Q~'z, 

(', to agree with the weil known relations 
d/tz dlt'l d 

C ~ - c - - - dx = Ql'x, etc., 
uy dz dt 

the components of the contl'avariant field tensor mnst be 
1 o /t;: - hy - - dx 
c 

1 
0 Itx - -dy 

c 

1 
-!tx 0 --dz 

c 
1 1 1 
- d.r: - dy - dz O. 
c c c 

Hence it foJlows fOl' the components of our covariant field tensor 
o /tz -hp c dx 

:2(ab)gajJgbqFab =fl'q (=) -/tz 0 hx c dy 
/ty - h;r 0 c dz 

-cd, -cdy -cdz 0 , 
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a"q a,/,p 
We know that /"q = ~ -~. Hence it is evident how the 

ViXp ViXp 

scalar potenlia) fIJ and the vector potential a of Ihe theory of elec· 
trons are cOlluected wilh our potentials : 

flJl 'I, fJY. ft. (=) a,r a.'1 az -r"p, 
Fo!' the componellts of the force acting on the charge per unit 

of volume we found in our formula (10) : 
- Kp= - V-gkp=l ~ (ml V-g W'''jpm' 

To make this agl'ee wilh the above, we must, with a view to Ihe 
choice of units, give the vallIe A = 11c' to the coefficient 1. The 
formula titus becomes 

1 
- V-gkp =, ~(m) V-g Wm jpm' 

c 
It keeps this form whell we pass to a sysfem of coordinates 

in which the unit of time is c times smaller and in which the 
velocity of light becomes equal to 1 (c remains 3.1018

). lt may be 
remarked in passing fhat in fhe papers of LOUNTZ I) and TRESJ.lNO 
fhe factor llc' is failing. lt is thus seen that they have siJently used 
a unit of charge c times larger than the usualone. 

The St'alar for the field becomes 
J.JI = - t:s (ab) pab jab = t (cl' - h') , 

I 
and fhe principal function ). J/-g.M = - (d'-h'). In agreement with 

2c 

whaf has been said at the beginning of tbis paragraph this expression 
is c times smaller than the one we were acl~uslomed to. 

The slressf!,$, the ne!/ative momenla, the mergy and Ihe mergy­
currents become 

2.(2h!-h'+ 2d;-d2
), !.(h;hg+dxd.'l)' 

2c c 

1 1 2 2 
-(ltxhg+d,rd.'l)' -(2hg-lt' + 2dy-d'). 
c c 

1 1 
- (hxhz+ d,rdz), -(hyhz + dgdz) , 
c c 

1 
-(hyhz+dydz), 
c 

~(2h;-h' + 2i-d'), 
2c 

] 
-;;: (dyhz-di'y), 

1 
- -; (dzhz-dzhz) , 

c 
1 

- t (d3,kg-dyhz), 
c 

2. (h'+d2
). 

2c 

We see that all these components become c times smaller tban 
formerly, as has been remarked already in the beginning -of this 
paragraph. 

1) For the comparison with the papers of LORENTZ it may be rt>marked that 
V - g Fab = J,ab and (ab = 4-al,. ft~urther that V -gWm = Wm, 


